
www.ijecs.in
International Journal Of Engineering And Computer Science ISSN: 2319-7242
Volume 4 Issue 8 Aug 2015, Page No. 13838-13841

Nirmala H, IJECS Volume 4 Issue 8 Aug, 2015 Page No.13838-13841 Page 13838

Aperiodic task Scheduling Algorithms for Multiprocessor systems

in Real Time environment
Nirmala H[1], Dr.Girijamma [2]

[1] Research Student, [2] Professor, Dept of CSE, RNS Institute of Technology, Bangalore

Abstract
Multiprocessor systems contains multiple processors either homogeneous or heterogeneous, scheduling tasks for such system is

very critical and hence scheduling protocol should be followed for optimality.

Scheduling algorithms gives the scheduler a set of protocols to manage the real time systems. In this paper we present an overview

of aperiodic task scheduling algorithms servers for real-time systems on multiprocessor systems and method is proposed for the

aperiodic task having communication delay which can be scheduled using a Genetic Algorithm (GA)

.

Keywords: Aperiodic task, Genetic algorithm, DAG

1. Introduction

In Real-Time computing the correctness of the system

depends not only on the logical result of the computation but

also on the time at which the results are produced [1]. These

systems are used in many ways today more than PCs, we

don’t know or think about it when we use the devices in which

they are embedded, Cars, planes and entertainment systems

are some devices in which real-time systems reside [2].

In a real-time application, tasks are the basic executable

entities that are scheduled. The tasks may be periodic or

aperiodic and may have soft or hard real-time constraints.

Scheduling a task set consists of planning the order of

execution of task requests so that the timing constraints are

met. Scheduling aperiodic tasks with different WCETs of task

at different criticality levels is very difficult topic to workout

[3].

Real-time task scheduling could be done either statically or

dynamically. Dynamic scheduling for a set of tasks is

computed at run-time based on the tasks that is really

executing. Static schedule on the other hand is done at

compile time for all possible tasks. [4]. Example for Static

algorithms is Rate monotonic (RM) scheduling algorithm is a

uniprocessor static-priority preemptive scheme. Dynamic

schedule for a set of tasks is computed at run-time based on

the tasks that is really executing. Earliest deadline first (EDF)

is a dynamic priority driven scheduling algorithm which

gives tasks priority based on deadline.

Rest of the paper is organized as follows scheduling is

discussed in section 2, overview of aperiodic scheduling

algorithms in section 3, proposed scheduling approach in

section 4 followed by conclusion.

2. Background

Two main goals of task scheduling in real-time systems are:

meeting deadlines and achieving high resource utilization.

The two main approaches of scheduling algorithms on

multiprocessor are global scheduling and partitioned

scheduling. Global scheduling choose a task and assign it to

one of the idle processors otherwise, preempt one of the

running task. It is an on-line processor assignment with

migration. They are well suited for multiprocessor

architectures. A preemptive scheduler suspends the execution

of currently running task when a higher priority task enters.

Dynamic scheduling is an online scheduling of new tasks, the

scheduler dynamically determines the feasibility of

scheduling them without jeopardizing the guarantees that

have been provided for the previously scheduled tasks.

Online scheduling is a server based scheduling hence we need

to look up on different severs available to sever aperiodic

tasks. Few of them are discussed here.

Partitioning scheduling choose a processor for tasks, and then

run local scheduler on each processor, there is no migration

and may apply end-to-end worst case response time analysis.

It is an offline assignment.

2.1. Serving aperiodic tasks

Many of the systems need algorithms for scheduling of both

periodic and aperiodic tasks. Tasks which arrive at

unpredictable time are aperiodic and it is difficult to

guarantee a response time. Aperiodic task set is allowed to

execute within the server task. Deadline of an aperiodic task

is not used in scheduling decision instead deadline of sever is

used. Bandwidth of the server and execution time of the

server is used. The sever algorithms presented improve the

average response time.

The Background server algorithm [5] is a simple technique

for serving soft deadline aperiodic tasks, here aperiodic tasks

are served in the background and periodic tasks get priority

over aperiodic tasks hence results in bad response time for

them.

The polling server [5] is a periodic server here aperiodic tasks

are served at the beginning of each of the polling server’s

http://www.ijecs.in/

DOI: 10.18535/ijecs/v4i8.40

Nirmala H, IJECS Volume 4 Issue 8 Aug, 2015 Page No.13838-13841 Page 13839

periods , if there are no request pending the server suspends

itself allowing periodic tasks to execute. The server is treated

as a hard deadline periodic task with a fixed execution time

budget, whose deadline is equal to its period. i.e Ti=Di.

Where Ti is period and di is deadline of a task .If we have

multiple servers at different priority levels can accommodate

a set of tasks with a range of hard and soft deadline request.

The deferrable server (DS) algorithm [6] is an algorithm

which focus on quick response times for aperiodic tasks. This

algorithms improves the average response time for aperiodic

tasks compared to background and polling server. The DS is

periodic task with period and capacity, which serves

aperiodic tasks and continue to do so until available capacity

runs out, or the end of the period is reached. Regular periodic

tasks are ready at set times whereas the DS may receive

requests at any time during the period and therefore executes

at different times. The algorithm preserves the execution time

allocated for aperiodic service if, upon the initiation of the

server task, no aperiodic request are pending. It maintains the

aperiodic server’s execution time budget for the current

period, as long as it has not been exhausted. The DS uses

fixed periodic scheduling method (Rate Monotonic

scheduling). The server has the highest priority preferable if

we want good responsiveness and ensure that aperiodic tasks

meet their deadlines, while assigning the DS medium priority

aperiodic tasks might miss their deadlines as other tasks

might preempt the server.

 The deadline deferrable server algorithm (DDS) [6] is able

to serve requests that come during the middle of the period.

The DDS scheduler serves aperiodic requests at a priority

consistent independent of the actual arrival time. They served

with the request having come in at the beginning of the

period, so long as the server’s execution time budget has not

exhausted.

The priority Exchange server (PE) [5] is another capacity

preserving scheduling algorithm that uses a periodic server.

The algorithm mimic the DS algorithm but differs in how

capacity is preserved. The server replenishes its capacity at

the beginning of each period. Aperiodic tasks waiting to be

served at the start of a new period will be executed at the

priority of the server and consume capacity, assuming the

server currently has the highest priority. On the other hand, if

there are no aperiodic tasks ready for execution the server

allows a ready lower-priority periodic task to execute in

exchange for accumulation of capacity at the priority level of

that periodic task. Whenever an aperiodic task requests to run

capacity available for the server at the task with the highest

priority, amongst those with which capacity has been

exchanged, will be consumed by the aperiodic task. This type

of capacity exchange continues on lower levels with periodic

tasks, hence server capacity will not be lost, just stored at

lower priority levels or consumed by aperiodic requests

unless at some point the capacity is exchanged with the idle

task.

The DS algorithm is not as complex as the PE algorithm due

to the way capacity is preserved at the priority of the server.

In order for both algorithms to function properly particular

resource utilization has to be reserved for the server. The

server utilization, US, is the ratio of execution time to the

period, directly affects the schedulability of the system. The

highest utilization bound for periodic tasks at which the

periodic tasks can be scheduled, UP, is determined by RM.

From the equations, for any given value, US, where 0 < US <

1, the schedulability bound, UP, is lower for the DS algorithm

than for the PE algorithm. Another indication is that for a

given Up the server utilization is lower for the DS algorithm

than for the PE algorithm.

 The sporadic server (SS) algorithm preserves the unused

high priority execution time indefinitely. This is an

improvement over DS. The schedulabling effect of tasks with

lower priorities cannot be worse than that of a periodic task

with same period and execution time equal to the server size.

The sporadic server (SS) [5], similar to the DS, consists of a

periodic server for aperiodic tasks but how it replenishes

capacity differs. The server checks at which time in the future

capacity will be replenished depending on when aperiodic

requests occur and the priority of the current executing

periodic tasks. The explanation of the algorithm involves the

following terms:

_ Pexe the priority level of the currently executing task

in the system.

_ PS the priority level of the sporadic server.

_ Active is used to describe the priority level when

 Pexe > PS.

_ Idle is the opposite of active, Pexe < PS.

_ RTS is the time at which the server replenishes consumed

capacity.

The sporadic server starts [5] with fully replenished capacity.

Whenever the server becomes active RTS is set to the current

time added to the period of the server. How much the server

should replenish at RTS is determined when the server

becomes idle or all the capacity has been consumed. The

amount to replenish is the capacity consumed from the point

the server was activated to the point it becomes idle or runs

out of capacity. The sporadic server performance is better

than the background server and the polling server. The

performance is comparable to the DS and PE algorithms

although they are in some cases inferior to the SS algorithm.

 The deadline Sporadic sever (DSS) algorithm assign priority

to the task through an appropriate choice of deadline .It aim

to budget the server’s execution time in such a way that the

effect of the server on the schedulability of hard-deadline

tasks is no worse than that of a hard-deadline periodic task

DOI: 10.18535/ijecs/v4i8.40

Nirmala H, IJECS Volume 4 Issue 8 Aug, 2015 Page No.13838-13841 Page 13840

with period Ts & deadline and execution time Cs. Here sever

execution time budget is assigned in chunks.

The algorithm that we chose will greatly influence the

behavior of a real-time system and for this reason there are

many algorithms available and still research is going on in

this direction.

3. Proposed method

AS we are interested in aperiodic task which has a deadline

by which it must finish or start or it may have a constraint on

both start and finish time. Response of aperiodic tasks may

be prohibitively long and there is no possibility to assign a

high priority to them. When new aperiodic task come we need

to schedule it according to either start time or finish time as

shown it the figure 1.

Figure. 1 Allocation of aperiodic task for different servers

3.1 Algorithm

 Aperiodic task with execution time, deadline for start time

and finish time and communication delays if exists.

1. If aperiodic tasks have equal inter arrival time, they

will be assigned to sporadic server.

2. Otherwise check for communication delay exist in

the task control block of the task then go to step 4 ,

if no assign it to Background server.

3. Check with which task it communicate assign it to

the server where that task is executing or assign it to

new processor.

4. If communication delay is found in task control

block we can construct DAG and apply genetic

algorithm for scheduling.

Genetic algorithm is an approach for finding approximate

solution for optimization. It has initial population, fitness

operator function, selection operator, crossover operator and

mutation operator. A GA [9] starts with a generation of

individual, which are encoded as strings known as

chromosome. A chromosome corresponds to a solution to the

problem. A fitness function is used to evaluate the fitness

of each individual. In general, GAs consists of selection,

crossover and mutation operations based on some key

parameters such as fitness function, crossover probability

and mutation probability.

3.2 Direct acyclic graph (DAG)

A directed acyclic graph [8] is represented as G=(T,E) where

T is a set of nodes which represents the tasks, and E is the set

of edges which represent the execution dependencies as well

as the communication cost between two tasks on different

processor. Suppose T consists of m non preemptive tasks as:

T= {tj : j=1, 2, 3,4, …, m}. A directed edge set E consists of

k edges ranging from k=1, 2, …, r . Suppose any two task t 1

and t2 € T having a directed edge e1 i .e. an edge from t1 to

t2 which mean that t2 cannot schedule until t1 has been

completed, t1 is predecessor of t2, t2 is the successor of t1,

under the relation of dependency on multiprocessor system as

shown in figure 2.

Figure 2. A DAG for task set

4. Conclusion

The paper gives a brief insight about different servers for

aperiodic task scheduling. The proposed algorithm using

Genetic algorithm would optimizes the response time that

will be implemented and results will be discussed in the

future.

References

[1] William Stallings “Operating Systems Internals and

Design Principles”, sixth Edition, Pearson Prentice Hall.

[2]Fredrik Lindh, Thomas Otnes, Jessica Wennerström

“Scheduling Algorithms for Real-Time Systems”,

Mälardalens niversity, Sweden.

[3] Risat Mahmud Pathan, “Schedulability Analysis of

Mixed-Criticality Systems on Multiprocessors,” 24th

Euromicro Conference on Real-Time Systems (ECRTS), Pisa,

Italy, 2012

[4] Betzy Varghes, Alamgir Hossain, and Keshav Dahal

“Scheduling of Tasks in Multiprocessor System Using

Hybrid Genetic Algorithms”, Springer-Verlag berlin

Heidelberg 2009.

[5] Sprunt B., "Aperiodic Task Scheduling for Real-Time

Systems" Ph.D. Dissertation, Department of Electrical and

EDF

Deadline for Start

time

FCFS

Aperiod

ic task

Deadline for

finish time

CPU

DOI: 10.18535/ijecs/v4i8.40

Nirmala H, IJECS Volume 4 Issue 8 Aug, 2015 Page No.13838-13841 Page 13841

Computer Engineering, Carnegie Mellon University, August

1990.

[6] Strosnider J. K., Lehoczky J. P. and Sha L., "The

Deferrable Server Algorithm for Enhanced Aperiodic

Responsiveness in Hard Real-Time Environments", IEEE

Transactions on Computers, vol. 44, no. 1, January 1995.

[7] Annam Swetha, Radhamani Pillay,Sasikumar Punnekkat

and Santanu Dasgupta, “ Hard Aperiodic scheduling in Fault

tolerant Cruise system- Comparative Evaluation with Dual

Redundancy”, Springer International Publishing Switzerland

2015.

[8] Sri Raj Pradhan, Sital Sharma, Debanjan Konar,

 “A comparative study on Dynamic scheduling of Real-Time

tasks in Multiprocessor system using Genetic algorithms”,

IJCA (0975-8887), volume 120-No 20, June 2015.

[9] Jasbir Singh, Gurvinder Singh,” Improved Task

Scheduling on Parallel System using Genetic Algorithm”,
International Journal of Computer Applications (0975 – 8887)

Volume 39– No.17, February 2012

