
www.ijecs.in  
International Journal Of Engineering And Computer Science ISSN: 2319-7242     
Volume 4 Issue 8 Aug 2015, Page No. 13786-13790                                           

 

 

R.Latha1 IJECS Volume 4 Issue 8 Aug, 2015 Page No.13786-13790                                                              Page 13786 
 

SQL Injection Detection Based On Replacing The SQL Query 

Parameter Values 
  

R.Latha1, Dr.E. Ramaraj2,  
1M.phil Research Scholar, Department of Computer Science &Engineering, 

Alagappa University, Karaikudi 

lathasaru10@yahoo.com 
 

2Professor, Department of Computer Science &Engineering, 

Alagappa University, Karaikudi 

eramaraj@rediffmail.com 

 

Abstract: Information is converted to digitalized format and then flows through the network medium. Security mechanisms are mostly used 

to protect information from unauthorized intruders on the network. Secure communication between the medium as well as between the 

communicating entities is an essential part. There exist many types of attacks in which the SQL Injection is considered for the proposed 

work. This paper proposed a novel method for the detection and proper replacement to the affected queries. SQL Injection is one of the 

major attacks which will leaks the valuable information to the intruders. SQL Injection attacks target databases that are accessible through 

frontend structure of the website, and made flaws in the input validation logic of its components. Therefore, a strong method is needed to 

overcome the dispute. This paper proposed an efficient method for detecting the SQL injection by manipulating input attributes of the SQL 

query and measuring the distance of query strings.  It satisfies the both query analysis for both the static and dynamic manipulation of user 

queries.  
Keywords: Information, Security, SQL Injection, Web Components, Databases.  

1. Introduction 

Now – a- days, most of the services are offered as online 

services. Therefore, security of the data is remained as the 

major problem. The ability to access the web anywhere and 

anytime is a great advantage; however, as the web becomes 

more popular, web attacks are increasing. Most web attacks 

target the vulnerabilities of web applications, which have been 

researched and analyzed at OWASP [16].  A large number of 

web applications, especially those deployed by companies for 

e-business operations involve high reliability, efficiency and 

confidentiality [11]. SQL injection attack or SQL insertion 

attack is one of the code injection technique which makes use 

of the vulnerabilities arises in the security occurring in the 

database.  This is most often found within web pages and its 

content when it is concerned as dynamic. SQL Injection is 

stronger than other threats in the mean that it does not destroy 

the records instead they deploy various malicious attacks and 

prevent the logic from working status. Many researchers have 

been studying a number of methods to detect and prevent SQL 

injection attacks, and the most preferred techniques are web 

framework, static analysis, dynamic analysis, combined static 

and dynamic analysis, and machine learning techniques [12]. 

In digital world, every user has to handle the information that 

is available in various types and format in world wide. Web 

application is one of the main sources for accessing the data 

from anywhere and web application is used to retrieve the data 

from database and render in web pages. The intruders attack  

 

 

the system to steal the information through various type 

attacking models.   

 

 
Figure 1: Web Application Architecture  

SQL  commands  are  injected  from  the  web  form  into  the 

database  of  an  application.  The   Injected SQL commands 

then change the database content or dump the database 

information like credit card or passwords to the attacker side. 

SQL injection is one of the types of attack which drip the 

information without extra usage of system resources [10].  In 

this paper we proposed a new method for detecting SQL 

injection by string replacement algorithm and levenshtein 

distance method. The rest of the paper is as follows. Section 1 

shows the basics of the intrusion and attacks taken place at 

communication medium, SQL Injection attack. Section 2 

consists of the related works to the method. Section 3 proposes 

the method to detect and replace the SQL Injection in the 

specific database. Section 4 provides the results available from 

the experimental analysis. Section 5 brings the conclusion to 

the proposed method. 

2. Related Works 

Many researchers have proposed various methods for detecting 

SQL injection. Developers design the code to find the 

keywords of the input parameters which presents malicious 

code. Stephen W. Boyd and Angelos D.Keromytis[1] have 

proposed method which concatenate the random keywords 

with legitimate query to avoid the injection. For this method, 

proxy server is needed and developer knowledge must be 

http://www.ijecs.in/
mailto:lathasaru10@yahoo.com
mailto:eramaraj@rediffmail.com


DOI: 10.18535/ijecs/v4i8.29 
 

R.Latha1 IJECS Volume 4 Issue 8 Aug, 2015 Page No.13786-13790 Page 13787 

essential. So it’s difficult to implement in web application. 

William Halfond [3] has presented the detection technique 

based on the concept of depth first traversal of the non 

deterministic finite automata. To Traces the hot spot and parse 

the sequence of strings of the SQL query by NDFA. This 

security model satisfies both static query analysis and dynamic 

query dynamic query analysis except stored procedure and 

runtime SQL query generation. Y.-W. Huang [4] have 

provided a method that satisfy both analysis and dynamic 

analysis. It performs sanitizing the task and in inserts the 

sanitizing routine in vulnerable section of code. The pre 

conditions should be stored for sanitizing to trusted output 

from tainted input. This method is not generic for all web 

application. Because the preconditions may change in various 

architecture design based upon web application. Ke Wei[13] 

has provided  a solution for preventing SQL injection in Stored 

procedures. This solution satisfies the static and run time 

validation. Define the query dependencies by graph and stored 

in table. Check the query dependencies while scanning the 

query execution. If satisfy the flow graph (DFA). This solution 

is not efficient because the data of query dependencies should 

be stored. Angelo ciampa. Et. Al., [14] have applied the 

heuristic based approach. The authors generate the attacks by 

crawling the web application and stored the attack pattern in 

database. The injection detects based on the stored attack 

patter. This method is not user friendly and does not satisfy the 

runtime query generation. R. A. McClure et.al., [5] has 

provided the solution based on DLL. The DLL will views on 

the SQL Syntax which is eliminate the possibility of SQL 

syntax, misspelling and data type mismatch problems. The 

information of each table and query details are incorporated 

with SQLDOM generation. If database schema changes, then 

SQLDOM Dll also has to be compiled. This method gives the 

solution for static analysis alone. William G.J. Halfond and  

Alessandro Orso[7]  have proposed  the method, syntax aware 

evaluation process which will fragment the query and store the 

keyword and operators. It evaluates the SQL query by 

arrangement of the syntax sequence. This method is difficult to 

implement because there exists a need to collect the keywords, 

operation and sequence of operator which satisfy the SQL 

syntax. Frank S. Rietta[8] has determined the method for detect 

the SQL injection in application layer. This detection system 

breaks the data and watches the frequency of access, compare 

with historically observed normal data. Efficiency of method is 

not reliable when it implement in large web application. 

Gregory T. Buehrer [6]   has applied tree concept for parsing 

the SQL query and compare the tree node of predefined parsed 

tree length and dynamic query string length which parse at 

runtime. Turnaround time of this method was increased.  

Debasish Das[11] has approached dynamic query matching 

based detection system. Legitimate queries are collect and 

stored in file in XML format. In runtime, SQL query is 

converting into XML and check of the predefined structure of 

legitimate query in master XML file. It doesn't work as 

dynamically in all web application. Inyong[12] proposed novel 

method by removing the input attributes of SQL query and 

measure the length of SQL query. But it only satisfied the 

string input parameters not fit for numerical input parameter.  

Y.kosuga[15] has analyzed the semantic and syntax of SQL 

queries for detecting SQL injection. To Create the repositories 

for collecting the normal queries and compared it with 

generated query during the attack. Sruthi Bandhakavi [9] has 

proposed the technique for detecting SQL injection is to 

dynamically mine the programmer-intended query structure on 

any input, and detect attacks by comparing it against the 

structure of the actual query issued.  

3. Proposed Method 

3.1 SQL Injection Attacks 

Attacks can be made through malicious code at any part of the 

program. The logic may be changed, the content while as static 

or dynamic may be intruded or the database content can be 

modified. Even, if the attacker appends the characters or 

keywords through input parameters of the web page it will 

change the logic of the proposed query. One of the most 

important attack taken place in the database to change the logic 

is the SQL Injection attack.  SQL injection attack or SQL 

insertion attack is one of the code injection technique which 

makes use of the vulnerabilities arises in the security occurring 

in the database. SQL injection is one of the types of attack 

which drip the information without extra usage of system 

resources. In the web environment the user request was 

fulfilled by the input query validation. Hence, the input 

validation must be checked for the proper response from the 

server. For example, user enters the value of username and 

value of password in Login page and submits into web server. 

In the database layer of the web application, SQL query is 

generated from value of the input parameters. The generated 

query passes into database and execute it, then the result send 

back to the web application. . Let us considered, the input 

values are “admin” and “admin#123”, then the legitimate 

query dynamically get the structure like “select data from login 

where userid='admin' and password='admin#123' “and passed 

into database, retrieve the information and sent back to server 

page. The server page processes the information and render 

results in HTML page. Attacker adds the wild card characters 

or malicious code into legitimate query, as for example 

 

“Select data from login where userid='' or 1 =1 – and 

password='' 

In above query, syntactical structure remains correct whereas 

the logical remains mistaken. The attacker changes the 

meaning of query by injecting the malicious code and 

conciliation it.  

3.2 Recent Attacks and Survey 

 On  March  27,  2011  mysql.com,  the  official  

homepage  for  MySQL,  was Compromised by 

TinKode using SQL blind injection. 

 In August, 2011, Hacker Steals User Records From 

Nokia Developer Site. 

 In September, 2011, Turkish Hackers accessed 

NetNames DNS records and changed entries 

redirecting users. 

 In October, 2011, Malaysian Hacker, Phiber Optik 

managed to extract data from www.canon.com.cn by 

SQL Injection. 

 SQL injection has been responsible for 83-percent of 

successful hacking-related. 

3.3 Proposed Method 

SQL Injection is one of the major threats regarding the users. 

In this paper, we propose a method that detects the occurrence 

of the SQL vulnerability injection and replaces it with proper 



DOI: 10.18535/ijecs/v4i8.29 
 

R.Latha1 IJECS Volume 4 Issue 8 Aug, 2015 Page No.13786-13790 Page 13788 

alternative and satisfies the security of the web application. 

The algorithm works in the following procedure. First step is to 

replace the special character instead of using the input 

parameters as the SQL query.  There exists two categories of 

special characters namely the string and the numerical (STR, 

NUM). These two constraints will replace the original string 

constraints in the place of input parameters as fed by the users.  

The proposed method can be experiment with web 

applications. There are two type of query execution method has 

involved, such as dynamic query analysis and static query 

analysis. Initially, replace the special character instead of input 

parameters of the SQL query. The Proposed work is used for 

the detection and  prevention  against following  various  type  

of  attacks.  Tautologies,  Piggyback  queries,  Union  queries, 

Untyped  parameters,  Stored  Procedures,  Inference  Alternate  

encodings.  We have proposed a technique for preventing the 

SQL injection attacks in web applications. Our technique 

satisfy  both  static  and  dynamic  analysis.  SQL  injection  

detection  based  on replacing  special  string  constraints  

instead  of    SQL  query  attribute  values.  Following symbols 

are used in this method 

 PQ → Predefined Query 

 GQ → Generated Query with user input 

 STR → special string constraint of string input 

parameter 

 NUM → special string constraint of numeric input 

parameter 

 RPQ → Restructured Predefined Query 

 RGQ → Restructured Generated query with user 

input  

The user after entering the input value it is then replaced with 

the STR or NUM as per the input parameters. The distance of 

the input query was computed every time. The detection 

method explains with example in given below. 

 

PQ= “ select * from user account where userid='”+usrid+”' and 

password='”+passwd+”' “ 

 

 In PQ, there are two input parametes such as usrid and 

passwd. Here PQ is a legitimate query for accessing the 

useraccount table permitted users only. The proposed 

algorithm will replace the special string constraint instead of 

every input parameter. Before replacement entire SQL query 

rewrite into string format include input parameters. The 

following structure of SQL query string assigns to replace the 

special string constraint 

PQ=”Select * from user account where userid='+usrid+' and 

 password='+apsswd+' ” ; 

After replacement process, the  following  restructured query is  

obtained 

RPQ= Select * from user account where userid=STR and 

password=STR; 

 The algorithm then checks for the string and numeric 

constraint in the user given query and replaces it with the query 

provided. For the next process, we take generated SQL query 

with user input (GQ), replacing special string constraint which 

is covered with single quotes instead of input attributes values 

of the SQL query(GQ). 

 

GQ= “ select * from user account where userid='admin1' and 

password='tututu' “ 

 

Input attribute value of Userid is 'admin1' and password value 

is “tututu”. The algorithm which replace the special string 

constraint instead of input attribute values. The following 

statements are obtained after replace. 

 

GQ= “ select * from user account where userid='admin1' and 

password='tututu' “ 

 

RGQ=“ select * from user account where userid=STR and 

password=STR 

 

Finally, we get two restructured query in given below 

 

RPQ= Select * from user account where userid=STR and 

password=STR: 

 

RGQ=“ select * from user account where userid=STR and 

password=STR 

Finally, we have to applied the levenstein method, to measure 

the distance between the two strings. 

3.4 Levenshtein Method 

A novel method for the SQL injection by replacing it with 

Query parameter values was implemented and the 

experimental results are analyzed and compared with the 

existing available techniques.  The web application taken for 

the execution is the “Classifieds” application, that contains 

nearly 400 records as test samples. The outcome of out 

proposed method yields better results for the application.  

The following table 1 shows the detection of various SQL 

injection attacks, and their detection methods with different 

parameters such as tautology, illegal queries, piggy backed 

queries, stored procedure etc.,  The Detection and prevention 

methods in the table are taken from various references.  The 

proposed Method is capable of accepting the dynamic queries 

and efficiently replaces the detected Injected Queries with the 

proper attribute values.  The table 2 shows the analysis of 

varied elements for each prevention method. From the table 2 

it is clear that, the proposed method is automatically replaces 

the injected queries without the source code adjustment.  

4. Results and Discussions 

A novel method for the SQL injection by replacing it with 

Query parameter values was implemented and the 

experimental results are analyzed and compared with the 

existing available techniques.  The web application taken for 

the execution is the “Classifieds” application, that contains 

nearly 400 records as test samples. The outcome of out 

proposed method yields better results for the application.  

The following table 1 shows the detection of various SQL 

injection attacks, and their detection methods with different 

parameters such as tautology, illegal queries, piggy backed 

queries, stored procedure etc.,  The Detection and prevention 

methods in the table are taken from various references.  The 

proposed Method is capable of accepting the dynamic queries 

and efficiently replaces the detected Injected Queries with the 

proper attribute values.  The table 2 shows the analysis of 

varied elements for each prevention method. From the table 2 

it is clear that, the proposed method is automatically replaces 

the injected queries without the source code adjustment.  

 
 



DOI: 10.18535/ijecs/v4i8.29 
 

R.Latha1 IJECS Volume 4 Issue 8 Aug, 2015 Page No.13786-13790 Page 13789 

 

 

 

 

 

 

 

Table 1 :  Detection of SQL Queries against various attacks and their outcomes

 

 

Table 2 : Comparative Analysis for varied Detection and Prevention Methods 

Detection 

Method 

Source Code 

Adjustment 

Attack 

Detection 

Attack 

Prevention 

Elements Added 

Additionally 

Amnesia No Need Automatic Automatic Not Available 

SQL Guard Desirable Not Available Automatic Not Available 

SQLrand Desirable Automatic Automatic Not Available 

SQLDom Desirable Automatic Automatic Not Available 

WebSSARI No Need Automatic Automatic Not Available 

Existing Method No Need Automatic Automatic Not Available 

Proposed Method No Need Automatic Automatic Not Available 

 

5. CONCLUSION 

The proposed method can be experimented with classified web 

application. There are two types of query execution method 

namely dynamic query analysis and static query analysis. The 

proposed algorithms can also applicable for real web 

applications. Collection of compiled web applications are 

citied in online that are also used in many research works. The 

proposed algorithm used citied web application for 

implementation purpose. The proposed algorithm remains easy 

to implement and takes less turnaround time. The main 

advantage of the proposed algorithm is that it does not require 

Detection 

Prevention 

Method 

Tautologies 
Incorrect 

Queries 

Union 

Queries 

Piggy 

Backed 

Queries 

Stored 

Procedur

es 

Inferenc

e 

Alternat

e 

Encodin

g 

Static 

Querie

s 

Dynami

c 

Queries 

Amnesia Possible Possible Possible Possible 
Not 

Possible 
Possible Possible 

Not 

Possibl

e 

Not 

Possible 

SQL Guard Possible Possible Possible Possible 
Not 

Possible 
Possible Possible 

Not 

Possibl

e 

Not 

Possible 

SQLrand Possible 
Not 

Possible 
Possible Possible 

Not 

Possible 
Possible 

Not 

Possible 

Not 

Possibl

e 

Not 

Possible 

SQLDom Possible Possible Possible Possible 
Not 

Possible 
Possible Possible 

Not 

Possibl

e 

Not 

Possible 

WebSSARI Possible Possible Possible Possible Possible Possible Possible 
Possibl

e 

Not 

Possible 

Existing Method Possible Possible Possible Possible Possible Possible Possible 

Not 

Possibl

e 

Partially 

Applica

ble 

Proposed 

Method 
Possible Possible Possible Possible Possible Possible Possible 

Possibl

e 
Possible 



DOI: 10.18535/ijecs/v4i8.29 
 

R.Latha1 IJECS Volume 4 Issue 8 Aug, 2015 Page No.13786-13790 Page 13790 

any proxy server for executing detection mechanism. SQL 

Injection detection was done for both the string and numerical 

constraints than the existing algorithms that works only for the 

strings. We have presented a technique for preventing the SQL 

injection attacks in web applications. It can prevent from more 

than 1500 attacks that were implemented on the considered 

application without indication of false positive results. It was 

quite efficient and reliable. In our future work, we will 

investigate the technique for tracing the attacks in data packets 

by scanning the port level. Designing a component without 

dependencies of web application environment that plug in 

database software to secure the application against SQL 

injection attack was also to be found.  

References 

[1] S. W. Boyd and A. D. Keromytis. SQLrand: Preventing 

SQLinjection attacks. In Proceedings of the 2nd Applied 

Cryptography and Network Security (ACNS) Conference, 

pages 292–302, June 2004. 

[2] C. Anley Advanced SQL Injection In SQL Server 

Applications. Next Generation Security Software Ltd. 

White Paper, 2002. 

[3] William G.J. Halfond and Alessandro Orso ,AMNESIA: 

Analysis and Monitoring for NEutralizing SQL-Injection 

Attacks, ACM,ASE’05, November 7–11, 2005, Long 

Beach, California, USA 

[4] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D. T. Lee, and 

S.-Y. Kuo. Securing Web Application Code by Static 

Analysis and Runtime Protection. In Proceedings of the 

12th International World Wide Web Conference (WWW 

2004), May 2004. 

[5] R. McClure and I. Kr ̈ger. SQL DOM: Compile Time 

Checking of Dynamic SQL Statements.                              

 in Proceedings of the 27th  International Conference 

on Software Engineering (ICSE  2005), pages 88–

96, 2005. 

[6] Gregory T. Buehrer, Bruce W. Weide, and Paolo A. G. 

 Sivilotti,” Using parse Tree  Validation to 

Prevent SQL InjectionAttacks” ACM  September 2005 

[7] William G.J. Halfond, Alessandro Orso, and Panagiotis 

 Manolios,”Using Positive Tainting  and Syntax-

Aware  Evaluation to Counter SQL Injection 

Attacks”,  ACM,SIGSOFT’06/FSE-14, November 5–

11, 2006, 

[8] Frank S. Rietta,”Application Layer Intrusion Detection 

for SQL Injection”,ACM SE’06  March 10-12,  

Melbourne, Florida,  USA,2006. 

[9] Sruthi Bandhakavi Prithvi Bisht P. Madhusudan V. N. 

 Venkatakrishnan,”CANDID:  

 Preventing SQL Injection Attacks  using Dynamic 

Candidate Evaluations” , ACM,  November 2007. 

[10] Romil rawat, Chandrapal singh dangi, Jagdish patil,  “safe 

 guards anomalies against  SQL injection attacks”, 

international  journal of computer 

applications(0975-887),May  2011. 

[11] Debasish Das ; Utpal Sharma ; D.K. Bhattacharyya,”An 

 Approach to Detection of    SQL Injection 

Attack Based on  Dynamic Query Matching”, 

International Journal of  Computer 

 Applications ,ISSN:09758887,2010 

[12] Inyong,Lee Soonki,Jeong Sangsoo YeoJongsub,Moon,”A 

Novel  Method for SQL   Injection attack 

detection based on removing SQL query attribute values”, 

Elsevier,  Mathematical and computer modelling, Jan-

2011,ISSN:0895-7177, 

[13] Ke Wei, M. Muthuprasanna, Suraj Kothari, “Preventing 

SQL  Injection Attacks in  Stored 

Procedures”,IEEE,Software  Engineering Conference, 

2006. Australian, ISSN:  1530-0803. 

[14] Angelio ciampia,corrado Aaron visaggio, massimiliano di 

 penta,  “A heuristic-based  approach for detecting 

SQL-injection vulnerabilities in Web 

 applications”,SESS10,ACM,2010. 

[15] Y,kosuga,K.kernel,M,Hanaoka,M,Hishiyama,Y.Takaham

a,Sania: “Syntactic and  Semantic analysis for 

automated testing against SQL injection”, proceedings of 

the  computer security application conference,pp-

107-117,2007. 

[16] The Open Web Application Security Project, OWASP 

TOP 10 Project. http://www.owasp.org/. 

[17]  J. Park, B. Noh, SQL injection attack detection: profiling 

of web application parameter using the sequence pairwise 

alignment, in: Information Security Applications, in: 

LNCS, vol. 4298, 2007, pp. 74–82. 

http://www.doaj.org/doaj?func=openurl&issn=09758887&genre=journal&uiLanguage=en
http://www.doaj.org/doaj?func=openurl&issn=09758887&genre=journal&uiLanguage=en
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10753
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10753

