
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN: 2319-7242

Volume 4 Issue 8 Aug 2015, Page No. 13746-13753

S.Neelakandan, IJECS Volume 4 Issue 8 Aug, 2015 Page No.13746-13753 Page 13746

Transformation-based Optimizations Framework (ToF) for

Workflows and its Security issues in the Cloud Computing

S.Neelakandan1, S.Muthukumaran2
1,2

 Assistant Professor

Department of Computer Science and Engineering

Jeppiaar Institute of Technology,Sriperumbudur
1 snksnk17@gmail.com, 2 smkumaran83@gmail.com

Abstract—A general transformation-based optimization framework for workflows in the cloud. Specifically, ToF

formulates six basic workflow transformation operations. An arbitrary performance and cost optimization

process can be represented as a transformation plan (i.e., a sequence of basic transformation operations). All

transformations form a huge optimization space. We further develop a cost model guided planner to efficiently

find the optimized transformation for a predefined goal and our experimental results demonstrate the

effectiveness of ToF in optimizing the performance and cost in comparison with other existing approaches. cloud

computing offers its customers an economical and convenient pay-as-you- go service model, known also as usage-

based pricing. Cloud customers pay only for the actual use of computing resources, storage, and band-width,

according to their changing needs, utilizing the cloud’s scalable and elastic computational capabilities. In

particular, data transfer costs (i.e., bandwidth) is an important issue when trying to minimize costs

Index Terms—Cloud computing, monetary cost

optimizations, workflows.

1. INTRODUCTION

Cloud Computing is a flexible, cost- effective, and proven

delivery platform for providing business or consumer IT

services over the Internet. However, cloud Computing

presents an added level of

risk because essential services are often outsourced to a

third party, which makes it harder to maintain data security

and privacy, support data and service availability, and

demonstrate compliance. Cloud Computing has become

more like an onset trend in the face of enterprises. It sets a

milestone in the field of workflow execution in business

process management. Workflow Management System is

mainly devoted to support the definition as well as

execution cum control of business processes. Workflow

Scheduling is a key to workflow management. For

efficient Scheduling in workflows, cost-time based

evaluation of various algorithms has been included in this

paper. First, users have different requirements on

performance and cost. Some existing studies [5], [6] have

focused on minimizing the cost while satisfying the

performance requirement, some are aiming to optimize

performance for a given budget [11] and others are

considering the trade-off between performance and

monetary cost [8], [12], [9]. Second, different cloud

offerings result in significantly different cost structures for

running the workflow. Even from the same cloud provider,

there are multiple types of virtual machines (or instances)

with different prices and computing capabilities. Third,

workflows have very complicated structures and differ-

ent computation/IO characteristics, as observed in the

previous. We review the existing studies and find that

most of them are ad hoc in the sense that they fail to

capture the optimization opportunities in different user

requirements, cloud offerings and workflows. For

example, Kllapi et al. [8] consider only a single instance

type. However, previous studies [14], [15] have shown

that carefully selecting instance types is important

forthe overall cost. Mao et al. [5] focus on minimizing the

cost while satisfying the performance requirement of

individual workflows, and simply use a fixed sequence

of workflow transformation operations. The fixed

sequence can be effective for some of the workflows and

cloud offerings, but ineffective for others. All those studies

potentially lose optimization opportunities for

performance and cost. We have identified three design

http://www.ijecs.in/
mailto:snksnk17@gmail.com
mailto:smkumaran83@gmail.com

DOI: 10.18535/ijecs/v4i8.22

S.Neelakandan, IJECS Volume 4 Issue 8 Aug, 2015 Page No.13746-13753 Page 13747

principles. First, the framework should have an

extensible design on the workflow optimizations, which

adapts to different cloud offerings and workflow

structures. Second, the framework should have a general

optimization process for different requirements on

performance and cost constraints. Last, the framework

should be light weight for on-line decision making.

With these three design principles in mind, we propose

ToF, a transformation-based optimization framework for

optimiz-ing the performance and cost of workflows in

the cloud. A workflow is generally modeled as a

Directed Acyclic Graph (DAG) of tasks. ToF guides the

scheduling of each task in the workflow, including

which instance to assign to and when to start execution.

When a workflow is submitted to the cloud, each task is

initially assigned to a certain type of instance for

execution. Based on the initial instance assignment, we

perform transformations on the DAG. We categorize the

transformation operations into two kinds, namely main

schemes and auxiliary schemes. The main schemes

reduce monetary cost while auxiliary schemes transform

workflows into a DAG that is suitable for main schemes to

perform cost reduction. Specifically, we have formulated

six basic workflow transformation operations (Merge,

Demote, Split, Promote, Move and Co- scheduling). The

former two are categorized as main schemes and the

latter four are auxiliary schemes. Although there are many

benefits to adopting Cloud Computing, there are also some

significant barriers to adoption. One of the most

significant barriers to adoption is security, followed by

issues regarding compliance, privacy and legal matters

[8]. Because Cloud Computing represents a relatively

new computing model, there is a great deal of uncertainty

about how security at all levels (e.g., network, host,

application, and data levels) can be achieved and how

applications security is moved to Cloud Computing [9].

That uncertainty has consistently led information

executives to state that security is their number one

concern with Cloud Computing [10].

Security concerns relate to risk areas such as externaldata

storage, dependency on the ―public‖ internet, lack of

control, multi-tenancy and integration with internal security.

Compared to traditional technologies, the cloud has many

specific features, such as its large scale and the fact that

resources belonging to cloud providers are completely

distributed, heterogeneous and totally virtualized.

Traditional security mechanisms such as identity,

authentication, and authorization are no longer enough for

clouds in their current form [11]. This paper makes the

following two key contributions. First, we propose a

transformation-based workflow optimization system to

address the performance and monetary cost optimizations in

the cloud. Second, we develop and deploy the workflow

optimization system in real cloud environments, and

demonstrate its effectiveness and efficiency with extensive

experiments. To the best of our knowledge, this work is

the first of its kind in developing a general

optimization engine for minimizing the monetary cost of

running workflows in the cloud.

The rest of this paper is organized as follows. We

introduce the background on cloud offerings and

application scenarios, and review the related work in

Section 2. Section 3 gives a system overview. We

present our workflow transformation operations in Section

4, followed by the cost model guided planner in Section

5. We present the experimental results in Section 6 and

conclude the paper in Section 7.

2. PRELIMINARY AND RELATED WORK

In this section, we first describe cloud computing

environments mainly from users’ perspective. Next, we

present the security issues and review the related work.

2.1 Cloud Environments

Cloud providers offer multiple types of instances with

different capabilities such as CPU speed, RAM size, I/O

speed and network bandwidth to satisfy different

application demands. Different instance types are

charged with different prices. Tables 1 and 2 show the

prices and capabilities of four on-demand instance types

offered by Amazon EC2 and Rack space, respectively.

Amazon EC2 mainly charges according to the CPU,

whereas Rack space mainly on the RAM size. Both

cloud providers adopt the instance hour billing model,

whereby partial instance hour usage is rounded up to one

hour. Each instance has a non-ignorable instance

acquisition time. Users usually have different

requirements on performance and monetary cost [8].

One may want to minimize the monetary cost of

2.3 Security Requirements

DOI: 10.18535/ijecs/v4i8.22

S.Neelakandan, IJECS Volume 4 Issue 8 Aug, 2015 Page No.13746-13753 Page 13748

Confidentiality: outsourced data must be protected from

the TTP, the CSP, and users that are not granted access.

Integrity: outsourced data are required to remain intact on

cloud servers. The data owner and authorized users must

be enabled to recognize data corruption over the CSP

side. Newness: receiving the most recent version of the

outsourced data file is an imperative requirement of

cloud-based storage systems. There must be a detection

mechanism if the CSP ignores any data-update requests

issued by the owner. Access control: only authorized

users are allowed to access the outsourced data. Revoked

users can read unmodified data, however, they must not

be able to read updated/new blocks.

2.4 Cost optimization for workflows

Performance and cost optimizations are a classic research

topic for decades. Many scheduling and provisioning

algorithms have been proposed leveraging market-based

techniques [12], rule-based techniques [9] and models [7]

for cost, performance and other optimization objectives.

Different applications re-quire different performance and

cost optimizations. Many relevant performance and cost

optimizations can be found in databases [19], Internet

[20], distributed systems [21] and so on. Performance and

cost optimizations for workflows have been well studied

on grid [22], cloud [12] and heterogeneous computing

environments [23]. Specifically, we review the most

relevant workflow optimizations in the grid and in the

cloud. Performance and cost optimization techniques

have been developed for a single cloud provider and

multiple cloud providers. There have been much more

research studies on a single cloud than on multiple

clouds.

On a single cloud, the research can be generally

divided into three categories. The first category is auto-

scaling (e.g., [5], [6]). The studies in this category are

usually based on heuristics, applying a fixed sequence of

transformations on the workflow. Mao et al. [5]

performed the following operations one by one: merge

(―task bundling‖ in their paper), deadline assignment and

allocating cost-efficient machines, scaling and

consolidation. This fixed sequence of workflow

transformations is ad hoc in the sense that there are many

possible sequences of transformations. The authors have

not justified or prove the applicability of this fixed

sequence. As demonstrated in our experiments,

workflows can have very different transformations for

minimizing the monetary cost. The second category is

dynamic provisioning with prediction models (e.g., [33],

[34], [7]). Building prediction models is orthogonal to

this study. The last category is workflow scheduling [8],

[9] with performance and cost constraints. Kllapi et al.

consider the trade-off between completion time and

money cost for data processing flows [8]. Malawski et al.

[9] proposed task scheduling and provisioning methods

for grouped scientific workflows called ensembles,

considering both budget and deadline constraints. This

paper belongs to this category, but goes beyond the

existing studies in two major aspects. First, we formally

formulate the performance and cost optimization process

with workflow transformation models. Second, we

develop a cost model guided optimization framework to

optimally utilize the transformation operations.

2.5 Application security

These applications are typically delivered via the Internet

through a Web browser [12,22]. However, flaws in web

applications may create vulnerabilities for the SaaS appli-

cations. Attackers have been using the web to

compromise user’s computers and perform malicious

activities such as steal sensitive data [31]. Security

challenges in SaaS applications are not different from any

web application technology, but traditional security

solutions do not effectively protect it from attacks, so

new approaches are necessary [21]. The Open Web

Application Security Project (OWASP) has identified the

ten most critical web applications security threats [32].

There are more security issues, but it is a good start for

securing web applications. Infrastructure-as-a-service

(IaaS) security issues

IaaS provides a pool of resources such as servers,

storage, networks, and other computing resources in the

form of virtualized systems, which are accessed through

the Internet [24]. Users are entitled to run any software

with full control and management on the resources allo-

cated to them [18]. With IaaS, cloud users have better

control over the security compared to the other models as

long there is no security hole in the virtual machine

monitor [21]. They control the software running in their

virtual machines, and they are responsible to configure

se-curity policies correctly [41]. However, the underlying

compute, network, and storage infrastructure is controlled

by cloud providers. IaaS providers must undertake a sub-

stantial effort to secure their systems in order to minimize

DOI: 10.18535/ijecs/v4i8.22

S.Neelakandan, IJECS Volume 4 Issue 8 Aug, 2015 Page No.13746-13753 Page 13749

these threats that result from creation, communication,

monitoring, modification, and mobility [42].

3 Transformation Based Optimization

ToF has two major components for performance and cost

optimizations: transformation model and planner. The

trans-formation model defines the set of transformation

operations for a workflow, and the planner performs

thetransformation on the workflow according to the cost

model. Figure 1 shows the application model of ToF.

The planner is ran periodically. The period is denoted as

the plan period. The workflows submitted during the

epoch are temporarily stored in a queue, and then the

planner performs optimization for all the workflows in

the queue at the begin-ning of a plan period. This batch

processing has two major benefits: first, maximizing the

instance sharing and reuse so that the cost is reduced;

second, reducing the planner overhead.

In each plan period, after all the workflows in the

queue have been optimized, they are submitted to the

cloud with their execution plan for execution. The

execution plan is a set of instance requests. Each request

includes the instance type, the starting and ending time

of the requested instance and the task(s) scheduled to the

instance.

To enable instance reuse at runtime, we maintain a

pool of running instances, organized in lists according to

different instance types. During runtime, instances in the

pool which reach hourly running time and are currently

idle will be turned off. An instance request is processed

at the instance starting time by first looking into the

instance pool for an idle instance of the requested type.

If such an instance is found, it will be selected for

workflow execution. Otherwise, a new instance of the

requested type is acquired from the cloud provider.

Thus, the instances started during workflows execution

can be properly reused and their utilizations are

improved. Additionally, if we can reuse the instances,

the instance acquisition time is eliminated.

In current ToF, we have developed six basic

transformation operations, namely Merge, Split,

Promote, Demote, Move and

4. SCHEDULING

Co-scheduling. These basic transformations are

simple and lightweight. Moreover, they can capture the

current cloud features considered in this paper. They are

the most common operations and widely applicable to

workflow structures. For example, the operations of all the

comparison algorithms used in the experiments can be

represented using those transfor-mations. However, we

do not claim they form a complete set. Users can extend

more transformation operations into the transformation

set. Based on their capabilities in reducing

monetary cost, we categorize the transformation

operations into two kinds, namely main schemes and

auxiliary schemes. A main scheme can reduce the

monetary cost while an auxiliary scheme simply

transforms the workflows so that the transformed

workflow is suitable for main schemes to reduce cost.

By definition, Merge and Demote are main schemes,

and the other four operations are auxiliary schemes.

4.1 Main Schemes

Merge (M). The Merge operation performs on two vertices

when they are assigned to the same type of instances

and one vertex is assigned to start (shortly) after the

completion of the other one. Through merge, the two

tasks are assigned to the same instance, and the two

instance nodes in the instance DAG are merged to form a

super-node, which maintains the hierarchical relationship

among the merged nodes and also the structural

dependency with other nodes in the DAG. This super-

node can be treated the same as the other instance nodes

for further transformations. This operation increases

the usage of partial hours of instances. Take Figure

2 for example. Task A1 and A2 are assigned to the same

instance type but different instances. In our

implementation, after the Merge operation, the two tasks

are running on the same instance. There is no need to

adjust other vertices in the instance assignment DAG.

DOI: 10.18535/ijecs/v4i8.22

S.Neelakandan, IJECS Volume 4 Issue 8 Aug, 2015 Page No.13746-13753 Page 13750

Demote (D). Demote operation performs on a single

vertex by demoting the execution to a cheaper instance.

That can reduce the cost at the risk of a longer execution

time. In our implementation, we not only need to change

the demoted vertex, but also need to delay the starting

time of all vertices that have dependencies on the demoted

vertex.

4.2 Auxiliary Schemes

Move (V). The Move operation moves a task afterward

to the end of another task in order to make chances for

main schemes to further reduce cost. Note, the instance

DAG uses the earliest start time and thus there is

no―move forward‖ transformation. In our

implementation, we not only need to change the moved

vertex, but also need to delay the starting time of all

vertices that are dependent on the moved vertex.

A key decision for the Move operation is where to move

the task. Generally we have two cases: move a task to

another task so that both tasks are assigned to the same

instance type, or to a task with a different instance type. In

the former case, we expect a Merge operation after the

Move operation. In the latter case, a Demote and a

Merge operation need to be performed to reduce cost. Our

cost model is used to guide this decision. Example of the

first case, where task B1 of job B is moved to the end

of task A3. After the Move operation, we can merge A3 and

B1.

Promote (P). The Promote operation is a dual

operation for the Demote operation. It promotes a task to a

better instance at the benefit of reducing the execution

time. The implementation is the same as the Demote

operation.There are mainly two incentives to perform

the Promote operation. The first is to meet deadline

requirement as shown in Figure 2. Second, although

promotion itself is not cost-effective, it creates chances for

main schemes such as the Merge operation to perform.

For example, in Figure 2, we promote task A2 from

instance type i to a better instance type j. After the

Promote operation, A1, A2 and A3 are all assigned to the

same instance type and thus can be merged to fully

utilize instance partial hours.

Split (S). The Split operation splits a task into two,

which is equivalent to suspending a running task so that

we can make room for a more urgent task which is

assigned to the same instance type (with a Merge

operation). With the check pointing technique, the

suspended task can restart after the completion of the

urgent task. The Split operation causes the check

pointing overhead. The Split operation splits a node in

the instance DAG into two sub-nodes, at the time point

when the urgent task starts. We maintain their structural

dependency with other nodes in the DAG. The sub-

nodes can be treated the same as the other instance

nodes for further transformations.Initial instance

assignment. It considers multiple heuristics. We

experimentally evaluate these heuristics, and pick the

one with the best result. In this paper, we present three

initialization heuristics for initial instance assignment,

namely

Best-fit, Worst-fit and Most-efficient. The Best-fit

heuristic assigns each task with the most ex-

pensiveinstance type. This is to maximize performance

but at the cost of a high monetary cost. Ideally, it

should satisfy the deadline. Otherwise, we raise an error to

the user.The Worst-fit heuristic first assigns each task with

the cheapest instance type to minimize the cost. Then,

we apply the GAIN approach [40] to repeatedly re-

assign tasks to a better instance type. GAIN is a greedy

approach which picks the task with the largest benefit in

execution time until the deadline requirement is met.

The Most-efficient heuristic configures each task

according to deadline assignment. It first performs

deadline assignment using an existing approach [41]

and parallelism. Ligo has more parallelism and Montage

has more complicated structure. We generate tasks of

different types from a set of predefined task types. The

execution time of four different types of tasks on the

m1.small instance type are set as 30, 90, 150 and 210

minutes. For each task type, we estimate its execution

time on other instance types according to Amdahl’s law.

Assume the execution time of a task on an instance of type

i is ti. Assume the CPU capability of the type-j instance is

k times as powerful as the type-i instance, we have the

task execution time on the instance of type j to

be tj = Pr ×
t i

+ (1 − Pr) × t , where Pr is the parallel

then assigns each task to the most cost-efficient instance

type. This approach is also used in the previous study

[5].

5. EVALUATION

DOI: 10.18535/ijecs/v4i8.22

S.Neelakandan, IJECS Volume 4 Issue 8 Aug, 2015 Page No.13746-13753 Page 13751

In this section, we present the evaluation results of our

pro-posed approach.

5.1 Experimental setup

We conduct our evaluations on real cloud platforms, including

Amazon EC2 and Rackspace.

Fig. 4. Workflow structures of Ligo and Montage

We have used synthetic workloads based on two real-

world applications, namely Montage and Ligo. Montage

is an astronomical application widely used as a Grid and

parallel computing benchmark. Ligo (Laser

Interferometer Gravitational Wave Observatory) is an

application used to detect gravitational-wave. The

structures of the two workflows are shown in Figure 4.

The two applications have different workflow

structuresrate defined in Amdahl’s law. The I/O and

network time of workloads are included in the sequential

part of the total execution time. In Section 6.3.2, we

vary Pr to study the effectiveness of ToF on workloads

with different I/O and network characteristics. The

performance degradation rate for Co-scheduling

operation is around 1:25 in our study. We define Dmax as

the execution time of a workflow when its tasks are all

assigned to the cheapest instance type while Dmin as the

execution time of a workflow when all tasks are

assigned to the most expensive instance type.

To assess our framework under the context of

different workflow types, we study the workload with

continuous sub-missions of one workflow type (either

Montage or Ligo), as well as a mixed workload of the

two applications. In the mixed workload, the workflow

type is randomly selected between Montage and Ligo.

We assume the workflow submission rate follows

Poisson distribution. By default, the arrival rate of

workflows is 0:1 per minute. For each workload, we

submit around 100 jobs which is sufficiently large for

measuring the stable performance.

5.2 Evaluations on Cost Estimation

In this section, we evaluate the accuracy of our cost

estimation model. The real and estimated monetary cost

saving of specific operations on Ligo and Montage

work-flows in one plan period. The estimated monetary

cost saving is returned by our cost estimation model and

the real cost saving is calculated by differentiating the

total monetary cost before and after performing an

operation. The estimated cost is almost the same as the

real cost on both workflows except for some outliers.

The further cost change caused by other tasks dependent

on the operated task is ignored in estimation. The

optimization overhead of ToF is 0.4 seconds and 0.2

seconds for one Montage job and one Ligo job,

respectively.

 5.3 Results on Cost Optimizations

In this section, we first present the overall comparison

re-sults of ToF with other optimization methods on

minimizing monetary cost and then conduct sensitivity

studies of ToF on different parameters. The optimization

goal is to minimize the monetary cost given a deadline

to each workflow the overall monetary cost results of ToF,

Auto-scaling and Greedy methods on the Montage, Ligo

and mixed workload using the pricing scheme of Amazon

EC2. The standard errors of the overall monetary

cost of ToF, Auto-scaling and Greedy are

0.01–0.05, 0.01–0.06 and 0.03–0.06 respectively on the

tested workloads. On average, ToF obtains the smallest

monetary cost in all three workloads, meaning the

designed transformation set is suitable for different

structures of workflows. ToF saves more monetary cost

than Baseline, Auto-scaling and Greedy by 21–27%, 21–

30% and 15–17%, respectively. Auto-scaling has similar

monetary cost result as Baseline. This means Auto-

scaling has missed a great number of optimization

opportunities that can be discovered by our transformation

operations. Figure 5(b) shows the average execution

DOI: 10.18535/ijecs/v4i8.22

S.Neelakandan, IJECS Volume 4 Issue 8 Aug, 2015 Page No.13746-13753 Page 13752

time results. The standard errors of the average

execution time of ToF, Auto-scaling and Greedy are 0.02–

0.08, 0.02–0.07 and 0.05–0.1 respectively on the tested

workloads. Although the average execution time of ToF is

longer than the other algorithms, it guarantees the deadline

requirement in all cases.

5.4 Results on Performance Optimizations

In this section, we evaluate ToF with the goal of

minimizing workflow execution time given a budget on

each workflow. The extension is simple. First, in the

initialization step, the three initialization heuristics are

extended to satisfy budget requirement. The Best-fit and

Most-efficient heuristics adopt the GAIN [40] approach to

make sure of budget while the Worst-fit heuristic simply

assigns each task to the cheapest instance type. The

planner guides the optimization process with a time- based

rule. Since Auto-scaling was not proposed to optimize

execution time, we also modified it in the following way:

starting from a tight deadline, each task is configured

with the most cost-efficient instance type according to

deadline assignment. According to the current task

configuration, if the total cost is larger than budget, we

loose the deadline a bit and re-run the task configuration

until the total cost is less than budget. We resume the rest

of the auto-scaling optimizations from this preprocessed

state.

6. CONCLUSION

Performance and monetary cost optimizations for

running workflows from different applications in the cloud

have be-come a hot and important research topic.

However, most existing studies fail to offer general

optimizations to cap-ture optimization opportunities in

different user requirements, cloud offerings and

workflows. To bridge this gap, we pro-pose a workflow

transformation-based optimization frame-work namely

ToF. We formulate the performance and cost

optimizations of workflows in the cloud as

transformation and optimization. We further develop a

cost model guided planner to efficiently and effectively

find the suitable transformation sequence for the given

performance and cost goal. We evaluate our framework

using real-world scientific workflow applications and

compare with other state-of-the-art scheduling

algorithms. Results show our frame-work outperforms

the state-of-the-art Auto-scaling algorithm by 30% for

monetary cost optimization, and by 21% for the

execution time optimization. Moreover, the planner is

lightweight for online optimization in the cloud

environments. As for future work, we consider ToF on

multiple clouds. Still, there are many practical and

challenging issues for current multi-cloud environments

[42]. Those issues include relatively limited cross-cloud

network bandwidth and lacking of cloud standards

among cloud providers.

REFERENCES

[1] Amazon Case Studies, ―http://aws.amazon.com/solutions/case-

studies/.‖

[2] Windows Azure Case Studies,

―http://www.microsoft.com/azure/ casestudies.mspx.‖
[3] S. Ibrahim, B. He, and H. Jin, ―Towards pay-as-you-consume

cloud computing,‖ in SCC, 2011, pp. 370–377.
[4] C. Chen and B. He, ―A framework for analyzing monetary cost

of database systems in the cloud,‖ in WAIM’13, 2013, pp. 118–
129.

[5] M. Mao and M. Humphrey, ―Auto-scaling to minimize cost and

meet application deadlines in cloud workflows,‖ in SC, 2011,

pp. 49:1–49:12.

[6] M. Mao, J. Li, and M. Humphrey, ―Cloud auto-scaling with
deadline and budget constraints,‖ in GRID, 2010, pp. 41–48.

[7] E.-K. Byun, Y.-S. Kee, J.-S. Kim, and S. Maeng, ―Cost

optimized provisioning of elastic resources for application

workflows,‖ Future Gener. Comput. Syst., vol. 27, no. 8, pp.

1011 – 1026, 2011.

[8] H. Kllapi, E. Sitaridi, M. M. Tsangaris, and Y. Ioannidis,

―Schedule optimization for data processing flows on the cloud,‖

in SIGMOD, 2011.

[9] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, ―Cost-
and deadline-constrained provisioning for scientific workflow
ensembles in iaas clouds,‖ in SC, 2012, pp. 22:1–22:11.

[10] Y. Gong, B. He, and J. Zhong, ―Network performance
awarempi collective communication operations in the cloud,‖ IEEE
Trans. Parallel Distrib. Syst, vol. 99, no. PrePrints, 2013.

[11] M. Mao and M. Humphrey, ―Scaling and scheduling to
maximize application performance within budget constraints in
cloud workflows,‖ in IPDPS, 2013.

[12] H. M. Fard, R. Prodan, and T. Fahringer, ―A truthful dynamic

workflow scheduling mechanism for commercial multicloud

environments,‖ IEEE Trans. Parallel Distrib. Syst., vol. 24, no.

6, pp. 1203–1212, 2013.

[13] Q. Zhu, J. Zhu, and G. Agrawal, ―Power-aware consolidation of

scientific workflows in virtualized environments,‖ in SC, 2010,

pp. 1–12.

[14] H. Wang, Q. Jing, R. Chen, B. He, Z. Qian, and L. Zhou,
―Distributed systems meet economics: pricing in the cloud,‖ in
HotCloud, 2010, pp. 6–6.

[15] H. Herodotou and S. Babu, ―Profiling, what-if analysis, and
cost-based optimization of mapreduce programs,‖ PVLDB, vol.
4, no. 11, pp. 1111– 1122, 2011.

[16] J. C. Jacob, D. S. Katz, G. B. Berriman, J. C. Good, A. C. Laity, E.
Deelman, C. Kesselman, G. Singh, M. Su, T. A. Prince, and R.
Williams, ―Montage: a grid portal and software toolkit for science,

http://aws.amazon.com/solutions/case-
http://www.microsoft.com/azure/

DOI: 10.18535/ijecs/v4i8.22

S.Neelakandan, IJECS Volume 4 Issue 8 Aug, 2015 Page No.13746-13753 Page 13753

grade astronomical image mosaicking,‖ Int. J. Comput. Sci. Eng.,
vol. 4, no. 2, pp. 73–87, Jul. 2009.

[17] E. Deelman, C. Kesselman, G. Mehta, L. Meshkat, L. Pearlman,

and S. Koranda, ―Griphyn and ligo, building a virtual data grid for

gravitational wave scientists,‖ in HPDC, 2002.
[18] J.-S. Vockler,¨ G. Juve, E. Deelman, M. Rynge, and B.

Berriman, ―Ex-periences using cloud computing for a scientific
workflow application,‖ in ScienceCloud, 2011, pp. 15–24.

[19] G. Graefe and J. Gray, ―The five-minute rule ten years later, and
other computer storage rules of thumb,‖ Microsoft Research,
Tech. Rep. MSR-TR-97-33, 1997.

[20] R. T. B. Ma, D.-M. Chiu, J. C. S. Lui, V. Misra, and D.

Rubenstein, ―Internet economics: the use of shapley value for

isp settlement,‖ in

CoNEXT, 2007.
[21] J. Gray, ―Distributed computing economics,‖ Microsoft, Tech.

Rep. tr-2003-24, 2003.
[22] S. Abrishami, M. Naghibzadeh, and D. H. J. Epema, ―Cost-

driven scheduling of grid workflows using partial critical

paths,‖ IEEE Trans. Parallel Distrib. Syst., vol. 23, no. 8, pp.

1400–1414, Aug. 2012.

[23] H. M. Fard, R. Prodan, J. J. D. Barrionuevo, and T. Fahringer,

―A multi-objective approach for workflow scheduling in
heterogeneous environments,‖ in CCGRID, 2012, pp. 300–309.

[24] J. Yu and R. Buyya, ―A taxonomy of workflow management
systems for grid computing,‖ JGC, Tech. Rep., 2005.

[25] R. Sakellariou and H. Zhao, ―A hybrid heuristic for dag
scheduling on heterogeneous systems,‖ in IPDPS, 2004.

[26] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C.
Kesselman, G. Mehta, K. Vahi, G. B. Berriman, J. Good, A. Laity,
J. C. Jacob, and D. S. Katz, ―Pegasus: A framework for mapping
complex scientific workflows onto distributed systems,‖ Sci.
Program., vol. 13, no. 3, pp. 219–237, 2005.

[27] Y. C. Lee, R. Subrata, and A. Y. Zomaya, ―On the performance of
a dual-objective optimization model for workflow applications
on grid platforms,‖ IEEE Trans. Parallel Distrib. Syst., vol. 20,
no. 9, pp. 1273– 1284, sep 2009.

[28] J. Yu and R. Buyya, ―Scheduling scientific workflow
applications with deadline and budget constraints using genetic
algorithms,‖ Sci. Program., vol. 14, no. 3,4, pp. 217–230, 2006.

[29] G. Mateescu and G. Mateescu, ―Quality of service on the grid
via metascheduling with resource co-scheduling and co-
reservation,‖ Int. J. High Perform. Comput. Appl., vol. 17, pp.
209–218, 2003.

[30] K. Yoshimoto, P. Kovatch, and P. Andrews, ―Co-scheduling
with user-settable reservations,‖ in JSSPP, 2005, pp. 146–156.

[31] R. Buyya, C. S. Yeo, and S. Venugopal, ―Market-oriented cloud
computing: Vision, hype, and reality for delivering it services as

computing utilities,‖ in HPCC, 2008, pp. 5–13.

[32] I. Foster, Y. Zhao, I. Raicu, and S. Lu, ―Cloud computing and
grid computing 360-degree compared,‖ in GCE, 2008, pp. 1–10.

[33] M. D. de Assuncao, A. di Costanzo, and R. Buyya, ―Evaluating
the cost-benefit of using cloud computing to extend the capacity

of clusters,‖ in HPDC, 2009, pp. 141–150.
[34] H. C. Lim, S. Babu, J. S. Chase, and S. S. Parekh, ―Automated

control in cloud computing: challenges and opportunities,‖ in
ACDC, 2009, pp. 13–18.

[35] J. Lucas Simarro, R. Moreno-Vozmediano, R. Montero, and I.

Llorente, ―Dynamic placement of virtual machines for cost

optimization in multi-cloud environments,‖ in HPCS, 2011, pp.

1–7.

