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Abstract—A general transformation-based optimization framework for workflows in the cloud. Specifically, ToF 

formulates six basic workflow transformation  operations.  An  arbitrary performance and  cost optimization  

process can be represented as a transformation plan (i.e., a sequence of basic transformation operations). All 

transformations form a huge optimization space. We further develop a cost model guided planner to efficiently 

find  the  optimized  transformation for  a predefined goal and our experimental results demonstrate the 

effectiveness of ToF in optimizing the performance and cost in comparison with other existing approaches. cloud 

computing offers its customers an economical and convenient pay-as-you- go service model, known also as usage-

based pricing. Cloud customers pay only for the actual use of computing resources, storage, and band-width, 

according  to  their  changing  needs,  utilizing  the cloud’s  scalable  and  elastic  computational capabilities.  In  

particular,  data transfer costs  (i.e., bandwidth) is an important issue when trying to minimize costs 

 
Index Terms—Cloud computing, monetary cost 

optimizations, workflows. 

 
1.   INTRODUCTION 

 

 

Cloud Computing is a flexible, cost- effective,  and  proven  

delivery  platform for  providing business or consumer IT 

services over the Internet. However, cloud Computing 

presents an added level of 

risk because essential services are often outsourced to a 

third party, which makes it harder to maintain data security 

and  privacy,  support  data and  service availability, and 

demonstrate compliance. Cloud Computing has become 

more like an onset trend in the face of enterprises. It sets a 

milestone in the field of workflow execution  in  business  

process  management. Workflow Management System is 

mainly devoted to support the definition as well as 

execution cum control of business processes. Workflow 

Scheduling is a key to workflow management. For 

efficient Scheduling in workflows, cost-time based 

evaluation of various algorithms has been included in this 

paper. First, users have different requirements on 

performance and cost. Some existing studies [5], [6] have 

focused on minimizing the  cost while satisfying the 

performance requirement, some are aiming to optimize 

performance for a given budget [11] and others are 

considering the trade-off between performance and 

monetary cost [8], [12], [9]. Second, different cloud 

offerings result in significantly different cost structures for 

running the workflow. Even from the same cloud provider, 

there are multiple types of virtual machines (or instances) 

with different prices and computing capabilities. Third, 

workflows have very complicated structures and differ- 

ent computation/IO characteristics, as observed in the 

previous. We review the existing studies and find that 

most of them are ad hoc in the sense that they fail to 

capture the optimization opportunities in different user 

requirements, cloud offerings and workflows. For 

example, Kllapi et al. [8] consider only a single instance 

type. However, previous studies [14], [15] have shown 

that carefully selecting instance types is important 

forthe overall cost. Mao et al. [5] focus on minimizing the 

cost while satisfying the performance requirement of 

individual workflows, and simply use a fixed sequence 

of workflow transformation operations. The fixed 

sequence can be effective for some of the workflows and 

cloud offerings, but ineffective for others. All those studies 

potentially lose optimization opportunities for 

performance and cost. We have identified three design 
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principles.   First,   the   framework   should   have   an 

extensible design on the workflow optimizations, which 

adapts to different cloud offerings and workflow 

structures. Second, the framework should have a general 

optimization process for different requirements on 

performance and cost constraints. Last, the framework 

should be light weight for on-line decision making. 

 
With these three design principles in mind, we propose 

ToF, a transformation-based optimization framework for 

optimiz-ing the performance and cost of workflows in 

the  cloud.  A  workflow  is  generally  modeled  as  a 

Directed Acyclic Graph (DAG) of tasks. ToF guides the 

scheduling  of  each  task  in  the  workflow,  including 

which instance to assign to and when to start execution. 

When a workflow is submitted to the cloud, each task is 

initially assigned to a certain type of instance for 

execution. Based on the initial instance assignment, we 

perform transformations on the DAG. We categorize the 

transformation operations into two kinds, namely main 

schemes  and  auxiliary  schemes.  The  main  schemes 

reduce monetary cost while auxiliary schemes transform 

workflows into a DAG that is suitable for main schemes to 

perform cost reduction. Specifically, we have formulated 

six basic workflow transformation operations (Merge, 

Demote, Split, Promote, Move and Co- scheduling). The 

former two are categorized as  main schemes and the 

latter four are auxiliary schemes. Although there are many 

benefits to adopting Cloud Computing, there are also some 

significant barriers to adoption.   One   of   the   most   

significant   barriers   to adoption is security, followed by 

issues regarding compliance,  privacy  and  legal  matters  

[8].  Because Cloud Computing represents a relatively 

new computing model, there is a great deal of uncertainty 

about how security at all levels (e.g., network, host, 

application, and data levels) can be achieved and how 

applications security is moved to Cloud Computing [9]. 

That uncertainty has consistently led information 

executives to state that security is their number one 

concern with Cloud Computing [10]. 

Security concerns relate to risk areas such as externaldata 

storage, dependency on the ―public‖ internet, lack of 

control, multi-tenancy and integration with internal security. 

Compared to traditional technologies, the cloud has many 

specific features, such as its large scale and the fact that 

resources belonging to cloud providers are completely 

distributed, heterogeneous and totally virtualized. 

Traditional security mechanisms such as identity, 

authentication, and authorization are no longer enough for 

clouds in their current form [11]. This paper makes the 

following two key contributions. First, we propose a 

transformation-based workflow optimization system to 

address the performance and monetary cost optimizations in 

the cloud. Second, we develop and deploy the workflow 

optimization system in real cloud environments, and 

demonstrate its effectiveness and efficiency with extensive 

experiments. To the best of our knowledge,   this   work   is   

the   first   of   its   kind   in developing  a  general  

optimization  engine  for minimizing the monetary cost of 

running workflows in the cloud. 

The rest of this paper is organized as follows. We 

introduce the background on cloud offerings and 

application scenarios, and review the related work in 

Section  2.  Section  3  gives  a  system  overview.  We 

present our workflow transformation operations in Section 

4, followed by the cost model guided planner in Section  

5.  We  present  the  experimental  results  in Section 6 and 

conclude the paper in Section 7. 

 
2.   PRELIMINARY AND RELATED WORK 

 

 

In this section, we first describe cloud computing 

environments mainly from users’ perspective. Next, we 

present the security issues and review the related work. 

2.1 Cloud Environments 

Cloud providers offer multiple types of instances with 

different capabilities such as CPU speed, RAM size, I/O 

speed and network bandwidth to satisfy different 

application   demands.   Different   instance   types   are 

charged with different prices. Tables 1 and 2 show the 

prices and capabilities of four on-demand instance types 

offered by Amazon EC2 and Rack space, respectively. 

Amazon EC2 mainly charges according to the CPU, 

whereas  Rack  space  mainly  on  the  RAM  size.  Both 

cloud providers adopt the instance hour billing model, 

whereby partial instance hour usage is rounded up to one 

hour. Each instance has a non-ignorable instance 

acquisition time. Users usually have different 

requirements  on  performance  and  monetary  cost  [8]. 

One  may  want  to  minimize  the  monetary  cost  of 

2.3 Security Requirements 
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Confidentiality: outsourced data must be protected from 

the TTP, the CSP, and users that are not granted access. 

Integrity: outsourced data are required to remain intact on 

cloud servers. The data owner and authorized users must 

be enabled to recognize data corruption over the CSP 

side. Newness: receiving the most recent version of the 

outsourced  data  file  is  an  imperative  requirement  of 

cloud-based storage systems. There must be a detection 

mechanism if the CSP ignores any data-update requests 

issued  by  the  owner.  Access  control:  only  authorized 

users are allowed to access the outsourced data. Revoked 

users can read unmodified data, however, they must not 

be able to read updated/new blocks. 

2.4 Cost optimization for workflows 

Performance and cost optimizations are a classic research 

topic for decades. Many scheduling and provisioning 

algorithms have been proposed leveraging market-based 

techniques [12], rule-based techniques [9] and models [7] 

for cost, performance and other optimization objectives. 

Different applications re-quire different performance and 

cost optimizations. Many relevant performance and cost 

optimizations can be found in databases [19], Internet 

[20], distributed systems [21] and so on. Performance and 

cost optimizations for workflows have been well studied 

on grid [22], cloud [12] and heterogeneous computing 

environments [23]. Specifically, we review the most 

relevant workflow optimizations in the grid and in the 

cloud.  Performance  and  cost  optimization  techniques 

have been developed for a single cloud provider and 

multiple cloud providers. There have been much more 

research  studies  on  a  single  cloud  than  on  multiple 

clouds. 

On  a  single  cloud,  the  research  can  be  generally 

divided into three categories. The first category is auto- 

scaling (e.g., [5], [6]). The studies in this category are 

usually based on heuristics, applying a fixed sequence of 

transformations   on   the   workflow.   Mao   et   al.   [5] 

performed the following operations one by one: merge 

(―task bundling‖ in their paper), deadline assignment and 

allocating cost-efficient machines, scaling and 

consolidation. This fixed sequence of workflow 

transformations is ad hoc in the sense that there are many 

possible sequences of transformations. The authors have 

not justified or prove the applicability of this fixed 

sequence.  As  demonstrated  in  our  experiments, 

workflows can have  very different transformations for 

minimizing the monetary cost. The second category is 

dynamic provisioning with prediction models (e.g., [33], 

[34], [7]). Building prediction models is orthogonal to 

this study. The last category is workflow scheduling [8], 

[9] with performance and cost constraints. Kllapi et al. 

consider  the  trade-off  between  completion  time  and 

money cost for data processing flows [8]. Malawski et al. 

[9] proposed task scheduling and provisioning methods 

for grouped scientific workflows called ensembles, 

considering both budget and deadline constraints. This 

paper belongs to this category, but goes beyond the 

existing studies in two major aspects. First, we formally 

formulate the performance and cost optimization process 

with workflow transformation models. Second, we 

develop a cost model guided optimization framework to 

optimally utilize the transformation operations. 

2.5 Application security 

These applications are typically delivered via the Internet 

through a Web browser [12,22]. However, flaws in web 

applications may create vulnerabilities for the SaaS appli- 

cations.   Attackers   have   been   using   the   web   to 

compromise user’s computers and perform malicious 

activities such as steal sensitive data [31]. Security 

challenges in SaaS applications are not different from any 

web application technology, but traditional security 

solutions do not effectively protect it from attacks, so 

new approaches are necessary [21]. The Open Web 

Application Security Project (OWASP) has identified the 

ten most critical web applications security threats [32]. 

There are more security issues, but it is a good start for 

securing web applications. Infrastructure-as-a-service 

(IaaS) security issues 

IaaS provides a pool of resources such as servers, 

storage, networks, and other computing resources in the 

form of virtualized systems, which are accessed through 

the Internet [24]. Users are entitled to run any software 

with full control and management on the resources allo- 

cated to them [18]. With IaaS, cloud users have better 

control over the security compared to the other models as 

long there is no security hole in the virtual machine 

monitor [21]. They control the software running in their 

virtual machines, and they are responsible to configure 

se-curity policies correctly [41]. However, the underlying 

compute, network, and storage infrastructure is controlled 

by cloud providers. IaaS providers must undertake a sub- 

stantial effort to secure their systems in order to minimize 
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these threats that result from creation, communication, 

monitoring, modification, and mobility [42]. 

3 Transformation Based Optimization 

ToF has two major components for performance and cost 

optimizations: transformation model and planner. The 

trans-formation model defines the set of transformation 

operations for a workflow, and the planner performs 

thetransformation on the workflow according to the cost 

model. Figure 1 shows the application model of ToF. 

 

 
 
The planner is ran periodically. The period is denoted as 

the plan period. The workflows submitted during the 

epoch are temporarily stored in a queue, and then the 

planner performs optimization for all the workflows in 

the queue at the begin-ning of a plan period. This batch 

processing has two major benefits: first, maximizing the 

instance sharing and reuse so that the cost is reduced; 

second, reducing the planner overhead. 

In each plan period, after all the workflows in the 

queue have been optimized, they are submitted to the 

cloud with their execution plan for execution. The 

execution plan is a set of instance requests. Each request 

includes the instance type, the starting and ending time 

of the requested instance and the task(s) scheduled to the 

instance. 

To enable instance reuse at runtime, we maintain a 

pool of running instances, organized in lists according to 

different instance types. During runtime, instances in the 

pool which reach hourly running time and are currently 

idle will be turned off. An instance request is processed 

at the instance starting time by first looking into the 

instance pool for an idle instance of the requested type. 

If such an instance is found, it will be selected for 

workflow execution. Otherwise, a new instance of the 

requested  type  is  acquired  from  the  cloud  provider. 

Thus, the instances started during workflows execution 

can be properly reused and their utilizations are 

improved. Additionally, if we can reuse the instances, 

the instance acquisition time is eliminated. 

In current ToF, we have developed six basic 

transformation  operations,  namely  Merge,  Split, 

Promote, Demote, Move and 

4.   SCHEDULING 

Co-scheduling.   These   basic   transformations   are 

simple and lightweight. Moreover, they can capture the 

current cloud features considered in this paper. They are 

the most common operations and widely applicable to 

workflow structures. For example, the operations of all the 

comparison algorithms used in the experiments can be 

represented using those transfor-mations. However, we 

do not claim they form a complete set. Users can extend 

more transformation operations into the transformation   

set.   Based   on   their   capabilities   in reducing  

monetary  cost,  we  categorize  the transformation 

operations into two kinds, namely main schemes and 

auxiliary schemes. A main scheme can reduce the 

monetary cost while an auxiliary scheme simply 

transforms the workflows so that the transformed 

workflow is suitable for main schemes to reduce cost. 

By definition, Merge and Demote are main schemes, 

and the other four operations are auxiliary schemes. 

4.1 Main Schemes 

Merge (M). The Merge operation performs on two vertices  

when  they are  assigned  to  the  same  type  of instances 

and one vertex is assigned to start (shortly) after the 

completion of the other one. Through merge, the two 

tasks are assigned to the same instance, and the two 

instance nodes in the instance DAG are merged to form a 

super-node, which maintains the hierarchical relationship 

among the merged nodes and also the structural  

dependency  with  other  nodes  in  the  DAG. This super-

node can be treated the same as the other instance  nodes  

for  further transformations. This operation   increases   

the   usage   of   partial   hours   of instances. Take Figure 

2 for example. Task A1 and A2 are assigned   to   the   same   

instance   type   but   different instances. In our 

implementation, after the Merge operation,  the  two  tasks  

are  running  on  the  same instance. There is no need to 

adjust other vertices in the instance assignment DAG. 
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Demote (D). Demote operation performs on a single 

vertex by demoting the execution to a cheaper instance. 

That can reduce the cost at the risk of a longer execution 

time. In our implementation, we not only need to change 

the demoted vertex, but also need to delay the starting 

time of all vertices that have dependencies on the demoted 

vertex. 

4.2 Auxiliary Schemes 

Move (V). The Move operation moves a task afterward 

to the end of another task in order to make chances for 

main schemes to further reduce cost. Note, the instance 

DAG uses the earliest start time and thus there is 

no―move forward‖  transformation. In our 

implementation, we not only need to change the moved 

vertex, but also need to delay the starting time of all 

vertices that are dependent on the moved vertex. 

A key decision for the Move operation is where to move 

the task. Generally we have two cases: move a task to 

another task so that both tasks are assigned to the same 

instance type, or to a task with a different instance type. In 

the former case, we expect a Merge operation after the 

Move operation. In the latter case, a Demote and a 

Merge operation need to be performed to reduce cost. Our 

cost model is used to guide this decision. Example of the 

first case, where task B1   of job B is moved to the end 

of task A3. After the Move operation, we can merge A3 and 

B1. 

 
Promote   (P).   The   Promote   operation   is   a   dual 

operation for the Demote operation. It promotes a task to a 

better instance at the benefit of reducing the execution 

time. The implementation is the same as the Demote 

operation.There are mainly two incentives to perform 

the Promote operation. The first is to meet deadline 

requirement as shown in Figure 2. Second, although 

promotion itself is not cost-effective, it creates chances for  

main  schemes  such  as  the  Merge  operation  to perform. 

For example, in Figure 2, we promote task A2 from 

instance type i to a better instance type j. After the 

Promote operation, A1, A2  and A3  are all assigned to the 

same  instance  type  and  thus  can  be  merged  to  fully 

utilize instance partial hours. 

Split (S). The Split operation splits a task into two, 

which is equivalent to suspending a running task so that 

we  can  make  room for  a  more  urgent  task which is 

assigned to the same instance type (with a Merge 

operation). With the check pointing technique, the 

suspended task can restart after the completion of the 

urgent  task.  The  Split  operation  causes  the  check 

pointing overhead. The Split operation splits a node in 

the instance DAG into two sub-nodes, at the time point 

when the urgent task starts. We maintain their structural 

dependency  with  other  nodes  in  the  DAG.  The  sub- 

nodes  can  be  treated  the  same  as  the  other  instance 

nodes for further transformations.Initial instance 

assignment. It considers multiple heuristics. We 

experimentally evaluate these heuristics, and pick the 

one with the best result. In this paper, we present three 

initialization heuristics for initial instance assignment, 

namely 

Best-fit, Worst-fit and Most-efficient. The Best-fit 

heuristic  assigns  each  task  with  the  most  ex-

pensiveinstance type. This is to maximize performance 

but at the  cost  of  a  high  monetary  cost.  Ideally,  it  

should satisfy the deadline. Otherwise, we raise an error to 

the user.The Worst-fit heuristic first assigns each task with 

the cheapest instance type to minimize the cost. Then, 

we  apply  the  GAIN  approach  [40]  to  repeatedly  re- 

assign tasks to a better instance type. GAIN is a greedy 

approach which picks the task with the largest benefit in 

execution time until the deadline requirement is met. 

The  Most-efficient  heuristic  configures  each  task 

according  to  deadline  assignment.  It  first  performs 

deadline assignment using an existing approach [41] 

and parallelism. Ligo has more parallelism and Montage 

has more complicated structure. We generate tasks of 

different types from a set of predefined task types. The 

execution time of four different types of tasks on the 

m1.small instance type are set as 30, 90, 150 and 210 

minutes. For each task type, we estimate its execution 

time on other instance types according to Amdahl’s law. 

Assume the execution time of a task on an instance of type 

i is ti. Assume the CPU capability of the type-j instance is 

k times as powerful as the type-i instance, we have the 

task execution time on the instance of type j to 

be tj  = Pr × 
t i  

+ (1 − Pr) × t , where Pr is the parallel
 

then assigns each task to the most cost-efficient instance 

type. This approach is also used in the previous study 

[5]. 

 
5.   EVALUATION 
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In this section, we present the evaluation results of our 

pro-posed approach. 

5.1  Experimental setup 
 

 

We conduct our evaluations on real cloud platforms, including 

Amazon EC2 and Rackspace. 
 

 
 
 

 
 
 

Fig. 4. Workflow structures of Ligo and Montage 
 

 

We have used synthetic workloads based on two real- 

world applications, namely Montage and Ligo. Montage 

is an astronomical application widely used as a Grid and 

parallel computing benchmark. Ligo (Laser 

Interferometer Gravitational Wave Observatory) is an 

application used to detect gravitational-wave. The 

structures of the two workflows are shown in Figure 4. 

The two applications have different workflow 

structuresrate defined in Amdahl’s law. The I/O and 

network time of workloads are included in the sequential 

part of the total execution time. In Section 6.3.2, we 

vary Pr to study the effectiveness of ToF on workloads 

with different I/O and network characteristics. The 

performance  degradation  rate  for  Co-scheduling 

operation is around 1:25 in our study. We define Dmax as 

the execution time of a workflow when its tasks are all 

assigned to the cheapest instance type while Dmin as the 

execution  time  of  a  workflow  when  all  tasks  are 

assigned to the most expensive instance type. 

To   assess   our   framework   under   the   context   of 

different workflow types, we study the workload with 

continuous sub-missions of one workflow type (either 

Montage or Ligo), as well as a mixed workload of the 

two applications. In the mixed workload, the workflow 

type is randomly selected between Montage and Ligo. 

We  assume  the  workflow  submission  rate  follows 

Poisson distribution. By default, the arrival rate of 

workflows is 0:1 per minute. For each workload, we 

submit around 100 jobs which is sufficiently large for 

measuring the stable performance. 

5.2  Evaluations on Cost Estimation 

In this section, we evaluate the accuracy of our cost 

estimation model. The real and estimated monetary cost 

saving  of  specific  operations  on  Ligo  and  Montage 

work-flows in one plan period. The estimated monetary 

cost saving is returned by our cost estimation model and 

the real cost saving is calculated by differentiating the 

total monetary cost before and after performing an 

operation. The estimated cost is almost the same as the 

real cost on both workflows except for some outliers. 

The further cost change caused by other tasks dependent 

on the operated task is ignored in estimation. The 

optimization overhead of ToF is 0.4 seconds and 0.2 

seconds for one Montage job and one Ligo job, 

respectively. 

 5.3  Results on Cost Optimizations 

In this section, we first present the overall comparison 

re-sults of ToF with other optimization methods on 

minimizing monetary cost and then conduct sensitivity 

studies of ToF on different parameters. The optimization 

goal is to minimize the monetary cost given a deadline 

to each workflow the overall monetary cost results of ToF, 

Auto-scaling and Greedy methods on the Montage, Ligo 

and mixed workload using the pricing scheme of Amazon   

EC2.   The   standard   errors   of   the   overall monetary  

cost  of  ToF,  Auto-scaling  and  Greedy  are 

0.01–0.05, 0.01–0.06 and 0.03–0.06 respectively on the 

tested workloads. On average, ToF obtains the smallest 

monetary cost in all three workloads, meaning the 

designed transformation set is suitable for different 

structures of workflows. ToF saves more monetary cost 

than Baseline, Auto-scaling and Greedy by 21–27%, 21– 

30% and 15–17%, respectively. Auto-scaling has similar 

monetary cost result as Baseline. This means Auto- 

scaling has missed a great number of optimization 

opportunities that can be discovered by our transformation   

operations.   Figure   5(b)   shows   the average execution 
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time results. The standard errors of the average 

execution time of ToF, Auto-scaling and Greedy are 0.02–

0.08, 0.02–0.07 and 0.05–0.1 respectively on the tested 

workloads. Although the average execution time of ToF is 

longer than the other algorithms, it guarantees the deadline 

requirement in all cases. 

5.4  Results on Performance Optimizations 
 

 

In this section, we evaluate ToF with the goal of 

minimizing workflow execution time given a budget on 

each workflow. The extension is simple. First, in the 

initialization step, the three initialization heuristics are 

extended to satisfy budget requirement. The Best-fit and 

Most-efficient heuristics adopt the GAIN [40] approach to 

make sure of budget while the Worst-fit heuristic simply 

assigns each task to the cheapest instance type. The 

planner guides the optimization process with a time- based 

rule. Since Auto-scaling was not proposed to optimize 

execution time, we also modified it in the following way: 

starting from a tight deadline, each task is configured 

with the most cost-efficient instance type according to 

deadline assignment. According to the current task 

configuration, if the total cost is larger than budget, we 

loose the deadline a bit and re-run the task configuration 

until the total cost is less than budget. We resume the rest 

of the auto-scaling optimizations from this preprocessed 

state. 

6.   CONCLUSION 
 

 

Performance   and   monetary   cost   optimizations   for 

running workflows from different applications in the cloud 

have be-come a hot and important research topic. 

However, most existing studies fail to offer general 

optimizations to cap-ture optimization opportunities in 

different user requirements, cloud offerings and 

workflows. To bridge this gap, we pro-pose a workflow 

transformation-based optimization frame-work namely 

ToF. We formulate the performance and cost 

optimizations  of  workflows  in  the  cloud  as 

transformation and optimization. We further develop a 

cost model guided planner to efficiently and effectively 

find the suitable transformation sequence for the given 

performance and cost goal. We evaluate our framework 

using real-world scientific workflow applications and 

compare  with  other  state-of-the-art  scheduling 

algorithms. Results show our frame-work outperforms 

the state-of-the-art Auto-scaling algorithm by 30% for 

monetary   cost   optimization,   and   by   21%   for   the 

execution time optimization. Moreover, the planner is 

lightweight for online optimization in the cloud 

environments. As for future work, we consider ToF on 

multiple clouds. Still, there are many practical and 

challenging issues for current multi-cloud environments 

[42]. Those issues include relatively limited cross-cloud 

network  bandwidth  and  lacking  of  cloud  standards 

among cloud providers. 
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