
www.ijecs.in
International Journal Of Engineering And Computer Science ISSN: 2319-7242
Volume 5 Issue 1 January 2016, Page No. 15631-15637

Shriram Sharma, IJECS Volume 05 Issue 1 January 2016 Page No.15631-15637 Page 15631

Comparison and Analysis of Document Stored Databases

Shriram Sharma, Atul Chaudhary (Asst. Prof.)

Department of Computer Science & Engineering

Govt. Engineering College, Ajmer, India

grs.sharma@hotmail.com

Department of Information Technology

Govt. Engineering College, Ajmer, India

atul.chaudhary82@gmail.com

ABSTRACT
NoSQL (Not Only SQL) technology includes broad variety of different databases technologies that were developed in response to

storage of large volume of user data, handling high access frequency, performance of system and processing of the data.

Relational databases were not designed to deal with scalable modern real time applications and agility challenges faced by these

applications. RDBMS are used in many applications for long time, the data is stored in tabular form and it is stored in meaningful

way, but now there is need to store and manage large amount of data which cannot be handled by traditional relational databases.

NoSQL technology is used to overcome this feature of the traditional databases by providing efficient way of storing and

managing various types of data with huge amount of dataset. In this report performance analysis is done on document oriented

databases: MongoDB, CouchDB and Cassandra. Document oriented database is category of the NoSQL databases where the data

is stored in JSON like files. This makes the database capable of storing huge amount of data anywhere in the disk.

Index Terms— NoSql Databases, Mongodb, CouchDB,

Cassandra, Big Data.

1. INTRODUCTION

The NoSQL databases provide a medium for storage and

retrieval of large data that is modeled in non-tabular form

instead of tabular relations used in relational databases. The

data structures used in NoSQL databases are of various types

rather than tabular form used by relational database

management systems, eg. document, graph, key-value etc.

These databases are schema less, which makes them

stupendously great in performance.

NoSQL databases are better than relational databases because

these are more scalable and provide extraordinary performance

[1].There are mainly three classifications of data structured,

semi-structured and unstructured data. Relational databases

can only handle structured data; it cannot handle other two

types of data. Relational databases need information of the

data before actually storing it in form of schemas, which fits

poorly with agile development approaches, because there will

be a need to change the schema each time whenever there is

need of new features which slowdowns the process if the

database is large.

This report makes an attempt to analyze the execution time of

queries (of extracting or inserting data) into these document-

oriented databases MongoDB, Cassandra and CouchDB.

1.1 Document Database: Document databases are one of the

mostly used and popular NoSQL systems, where each record

is thought of as a ―document‖. Documents are used to store

group of data that convert some sort of user-readable

information to the standard formats i.e. JSON, XML, BSON

etc. These databases are a subclass of key-value databases. [2]

To maintain locality of data document is the best alternative

because these are independent units which make performance

better because the related data is read contiguously off disk. It

also makes the distribution of data across multiple servers

easy. In these system there is no need to translate objects of

applications to SQL objects. The developer can easily use the

object model directly into a document.

The storage of unstructured data is easy because document

contains only those keys and values which application logic

requires. It also provides great flexibility by not knowing

information schema in advance. [2]

In this report we are going to compare document databases

MongoDB, Cassandra and CouchDB on various parameters.

1.1.1 Mongodb: MongoDB is cross platform NoSQL

document database. MongoDB is written in C,

C++,JavaScript. It was first developed by the software

company 10gen (now MongoDB Inc) and shifted to open

source community in 2009.MongoDB is widely used by many

companies such as Forbes, Bosch, MetLife etc.

MongoDB data model which describes how the semi-

structured data is stored in documents as various fields.

Collection is a group of documents whereas database is a

group of collections. This simplifies the understanding of the

databases. [4]

MongoDB stores the data in documents similar to JSON. It is

very flexible document data model which contains one or

more fields. These fields can include arrays, binary data, and

sub-documents. The selection of fields in a application can

vary according to the requirement. This feature allows

developers to change the data model frequently as their

application requires. Documents can be accessed through rich

drivers available in almost all popular programming languages

http://www.ijecs.in/
mailto:grs.sharma@hotmail.com
mailto:atul.chaudhary82@gmail.com

DOI: 10.18535/ijecs/v5i1.29

Shriram Sharma, IJECS Volume 05 Issue 1 January 2016 Page No.15631-15637 Page 15632

such as Java, PHP etc. MongoDB removes the need of

separate ORM layer which means developers need not to

handle mapping of objects from database to application which

makes them more productive.

MongoDB allows auto-sharding for horizontal scaling of

database. To provide high availability across data centres it

provides replication. Replication means storing copy of data

(secondary set) in servers. If at any time primary set of data

goes down, the secondary set automatically takes over as

primary set of data. MongoDB also provides in-memory

mechanism to speed up the operation by extensive use of

RAM (Random Access Memory).The working of MongoDB

further can be explained by the following fig.

Fig.1 Working of MongoDB

The fig shown above shows the typical auto-sharding used by

MongoDB to ensure high availability of data. It also shows

replication process which is used for storing same data copy in

one or more servers.

1.1.2 CouchDB: CouchDB is document oriented database that

completely embraces the web. It was first released in 2005 and

later in 2008 became Apache project. It is written in Erlang

programming language. CouchDB stores user’s data with

JSON documents. It uses JavaScript for MapReduce indexes

which behave as a query language to the database. It provides

HTTP for an API (Application Programming Interface).

CouchDB can be queried with web browser via HTTP. An

application may access user’s mobile database or database on

server as per the requirement. [5]

CouchDB removes the need for a server side middle layer

which allows a client application to talk directly to the

CouchDB, results in reduced development time. Demands can

be handled by adding more replication nodes. Replication of

database can be done at the client side which means users can

perform the operation offline.

Fig. 2 CouchDB on Single Machine

The main components of CouchDB are B-tree and MapReduce

for querying. B-tree is a sorted data structure on which

insertion, deletion, and searching can be performed in

logarithmic time. CouchDB uses B-tree storage everywhere,

also for internal data, and documents.

CouchDB uses views to create relationships among documents

and it also provides aggregation with reporting feature. The

reason behind using views is that the database works in

schema-free manner. [6]

Relational databases sometimes use locking mechanism to

maintain the concurrency during transactions. Locking

mechanism prevents one user from accessing data while

another user is updating the same data at same time. This

prevents multiple users from making changes to the same set

of data at the same time but if the there are many user using

the system concurrently, it becomes common that the database

can get stuck in finding out which user should receive the lock

and maintaining the lock queue.

CouchDB solves this problem by using Multi-Version

Concurrency Control (MVCC) where snapshot of the latest

version of the database is provided to each user. The changes

are seen by other users only when the transaction is committed

successfully by a user. There are many modern databases

(Oracle, MySQL (with InnoDB engine) and SQL Server 2005

and later versions) have started using MVCC rather locking

mechanism.[7]

1.1.3 Apache Cassandra: Cassandra a type of NoSQL

database which is massively scalable. As technical aspects

Cassandra can be found at companies recognized for their

ability to manage big data effectively –Amazon, Google and

Facebook.

In today’s environment Cassandra is used for modern

businesses to handle their critical data infrastructure, and

known for being the solution for the technical professionals

when they require a NoSQL database that gives high

performance at massive scale, that never degrades the

performance of operations. Cassandra is used for unstructured

data as big data application, which are mostly used across

nearly every industry.
This model is a partitioned in row store with consistency. [8]

These are arranged into tables, primary key is assigned always

as first component and rows are clustered in the remaining

fields of the key. Columns are indexed through primary key.

Tables may be structured, deleted, and modified at runtime

without blocking updates and queries. [8]

DOI: 10.18535/ijecs/v5i1.29

Shriram Sharma, IJECS Volume 05 Issue 1 January 2016 Page No.15631-15637 Page 15633

Joins and sub queries are not supported by the Cassandra

except for batch analysis via Hadoop, rather it performs

denormalization through features like collections.

1.2 JSON: JavaScript Object Notations (JSON) is an open

standard format which gives a way to transmit data objects

consisting of attribute-value pairs in form of human readable

text. It is used as an alternative to Extensible Markup

Language (XML).It is a way of sending and receiving data

between web applications and servers. JSON was first

specified by Douglas Crockford.

The data is stored in files with .json extension. [8]There is a

rise of websites which are able to load data quickly and

asynchronously. These sites are powered by AJAX. These

sites work without delaying page rendering process. This

allows switching up the content of particular element within

out layouts without the need of refreshing the page.

In recent years the increase in popularity of social media, may

websites rely on the content provided by Facbook, Twiter,

Flickr and others. These websites provide RSS feed, which are

not easy to work with AJAX. JSON solves the cross-domain

issue. This capability of JSON makes it as incredibly useful as

it opens up a lot of doors.

{

c_id:"1",

c_name:"Ashu",

value:700,

status:"1"

}{

c_id:"2",

c_name:"Ankit",

price:800,

status:"1"

}.

Above document file is json format and having information of

customer. These are separated in row format by using curly

braces. It is easy to read and understand.

1.3 MapReduce: MapReduce is programming model for

solving problems in parallel manner across huge sets of data

using large number of nodes (referred to as cluster).There are

two steps involved in this processing. First of all users specify

a map function that processes a key/value pair which then

generate a set of intermediate key-value pairs. Now the reduce

function performs merging of all the values associated with the

same key. [10]

These Programs are written in functional style of

programming which are executed in parallel manner on cluster

of nodes. Partitioning of input data, order of execution across

several nodes and handling failures are done by run time

system. That allows developers to program it without having

experience in distributed and parallel systems.

Fig 3. MapReduce Architecture

The MapReduce function is carried out in two basic

operations: Map and Reduce. The Map function reads sets of

data and performs computations on it. Then the resulted

intermediate (key, value) pairs are further passed to Reduce

function. Reduce function groups all the values for a each

unique key generated by Map function .The keys are presented

in sorted manner.

To understand the functioning, the example MapReduce

function is shown above. This example counts the sum of

occurrences of each word in large set of documents. Map

function reads the data of the document and parses out the

words. In map step for each word, (key, value) pair is

generated i.e. (word,1). Here word is a key and value 1 shows

number of occurrence of word is one in the document. [10]

Then the keys/pairs are sorted according to the keys and

reduce operation is called for each unique key. Reduce

function merges all the values of each unique word in

collection of documents. This shows the total count of

occurrence of each word in all documents.

1.3.1 MapReduce using MongoDB

Consider the following document which is storing the

information of customer. The document stores c_id, name,

price and status of the customer.

{

c_id:"2",

c_name:"Ravi",

price:652,

status:"1"

}

{

c_id:"5",

c_name:"Hari",

price:522,

status:"1"

}

Now, we will execute a mapReduce query on document to

select all the customer’s information who has active status,

group them on the basis of c_id and then calculate the sum of

values of data by each user using the following code:

db.data.mapReduce

(

 function()

 {

 emit (this.c_id, this.value);

 },

DOI: 10.18535/ijecs/v5i1.29

Shriram Sharma, IJECS Volume 05 Issue 1 January 2016 Page No.15631-15637 Page 15634

 function(key, values) {return Array.sum(values)},

 {

 query: { status:"1"},

 out:"sum"

 }

)

This operation will return the following output.

1.3.2 MapReduce with CouchDB

For Relational Databases if the data is structured then we can

query anything we want. The problem arises when the data is

unstructured. Then we need a different approach to solve this

problem. CouchDB uses MapReduce approach to solve this

issue. MapReduce is a programming model which performs

computations on data in basically two steps: map and reduce.

In CouchDB the combination of map and reduce is called a

view. These functions make CouchDB very flexible:

MapReduce can adapt to variety of documents. [10]

Map function is applied to all documents and then it has emit

function which generates zero or more key-value pairs (view

rows).Views can be generated in parallel because the map

function does not depend on outside information from the

document. Views are stored as rows in sorted manner by keys

in B-Tree. It makes the data retrieval efficient. The goal of

writing map function should be to build an index that stores

related data records by using nearby keys.

Map function has one parameter ―doc‖, which refers to a

document from the database. Map function contains emit

function which can be called any number of time. The result

from the emit function is stored in the B-Tree like documents

but in their own files. Map Function can return keys or list of

several keys.

After map function returns the group of key-value pairs, a

series of reduce functions are called for each key. These

functions are executed on sorted rows emitted by map

function. CouchDB functions takes advantage of storing data

in B-tree like documents. The view result is achieved by

preorder traversal of the tree. The reduce function are

computed from the leaf nodes to the root. So the result of this

traversal is cache which can be updated incrementally as data

changes. In this procedure first the map results are recalculated

and then reduce function is operated. Caching of reduce results

are done in the intermediate nodes of the tree.

2. LITERATURE SURVEY

In 2013, Sanobar Khan and Prof.Vanita Mane, in their research

paper with title "SQL Support over MongoDB using Metadata"

have given the comparison between RDBMS and MongoDB.

From their research they found that still RBMS has its own

significance but not best for large amount of data. MongoDB is

better than RDBMS it is very easy to use and give best

performance at large scale. they found that if your database is

having large datasets then choose MongoDB for better

performance [9].

3. PROPOSED APPROACH

Mongodb, CouchDB and Cassandra are NoSQL databases

which are used when data is huge. Here JSON file is used to

store large amount of data. On which Mongodb operations are

performed such as MapReduce with several conditions.

There are for collections created in Mongodb. First collection

contains 50k records, second collection contains 100k records,

third collection contains 500k reocrds and fourth collection

contains the 1000k records in it.

CouchDB and Cassandra follow the same scenario that same

amount of records as Mongodb has.

Ubuntu platform is used to perform the operations on

Cassandra, Mongodb and CouchDB. These databases provide

the high speed and high throughput as compare to relational

databases.

4. EXPERIMENTAL SETUP

In this research, all the tests are performed under following

specifications:

1) Host System: Intel i5 core processor with 6 GB RAM

and 1000 GB Hard disk.

2) Operating System: Ubuntu

3) Mongo DB

4) CouchDB

5) Cassandra

a) Execution Time: Execution time can be defined in

terms of time consumed by an algorithm in order to solve a

problem using processor p.

5. RESULTS AND ANALYSIS

Experiemnt-1: This experiment finds out the find out the

number of customers and group by customer id. This operation

can be performed in MongoDB, , Cassandra and CouchDB

databases.

 db.data100k.aggregate

(

[{

$group : {_id : "$cust_id", count : {$sum : 1}}

}]

)

This operation can be perform in Couchdb as following query

 // Map Function

function(doc) {

for (var x = 0, len = doc.People.length; x <len;

x++)

 {

emit(doc.People[x].cust_id, 1);

 }

}

// Reduce Function

function(keys, values, rereduce) { return sum(values);}

In case of Cassandra the following code will perform this

operation.

Select cust_id from data100k group by cust_id

Table: 1

DOI: 10.18535/ijecs/v5i1.29

Shriram Sharma, IJECS Volume 05 Issue 1 January 2016 Page No.15631-15637 Page 15635

EXECUTION TIME FOR MONGODB, CASSANDRA AND

COUCHDB FOR EXPERIMENT-1

Data

Records

Mongodb

Time

Couchdb

Time

Cassandra

Time

50k 0.523 0.75 0.253

100k 1.457 2.36 0.759

500k 4.933 5.726 2.96

1000k 7.653 10.559 6.42

Fig 4. Execution Time for MongoDB, Cassandra & Couchdb

for Data Retrieval

From the figure 4 it is clear that execution time taken by

Cassandra is better than CouchDB and MongoDB for different

numbers of records. As the number of records increases

performance of Cassandra is also increased for the data

retrieval operation in comparison to CouchDB and MongoDB.

Experiment-2:- This experiment finds out the sum of prices

of all customers. We can use mapReduce function on

document to select all the customers and find out the sum of

prices of each user.

This operation in MongoDB can be performed using following

code.

db.posts.mapReduce(

function() { emit(this.cust_id, this.price); },

function(key, values) {return Array.sum(values)},

 {

out:"total_price"

 }

)

In CouchDB code as follows

// Map Function

function(doc) {

for (var x = 0, len = doc.People.length; x <len; x++)

{

emit(doc._id, doc.People[x].price);

}

}

// Reduce Function

function(keys, values, rereduce) {

return sum(values);

}

In case of Cassandra the following code will perform this

operation.

Select SUM(price) from data50k

Table: 2

EXECUTION TIME FOR MONGODB, CASSANDRA AND

COUCHDB FOR EXPERIMENT-2

Data

Records

Mongodb

Time

Couchdb

Time

Cassandra

Time

50k 0.365 0.533 0.374

100k 0.844 1.87 0.644

500k 1.475 2.1 0.866

1000k 2.632 3.88 1.398

Fig 5. Execution Time for MongoDB, Cassandra & CouchDB

for Experiment-2

From the figure 5 it is easy to analysis execution time taken by

Cassandra is better than CouchDB and MongoDB for different

numbers of records. As the number of records increases

performance of Cassandra is also increased for the data

operation in comparison to CouchDB and MongoDB.

Experiment-3:- This experiment finds out the sum of prices

by customers which are grouped by customer id. This

operation can be performed in MongoDB, Cassandra and

CouchDB databases. In this experiment MapReduce function

is used to achieve the task.

This operation in MongoDB can be performed using following

code.

db.posts.mapReduce(

function() { emit(this.cust_id, this.price); },

function(key, values) {return Array.sum(values)},

 {

out:"total_price"

 }

)

in CouchDB CQL code will be as

0

5

10

15

50k 100k 500k 1000k

Number of customer by cust_id

Mongodb Time Couchdb Time Cassandra Time

0

1

2

3

4

5

50k 100k 500k 1000k

Sum of price of all customers

Mongodb Time Couchdb Time Cassandra Time

DOI: 10.18535/ijecs/v5i1.29

Shriram Sharma, IJECS Volume 05 Issue 1 January 2016 Page No.15631-15637 Page 15636

// Map Function

function(doc) {

for (var x = 0, len = doc.People.length; x <len; x++)

 {

emit(doc._id, doc.People[x].price);

 }

}

// Reduce Function

function(keys, values, rereduce) {

return sum(values);}

In case of Cassandra the following code will perform this

operation.

Select cust_id, SUM(price) from data50k group by cust_id

Table: 3

EXECUTION TIME FOR MONGODB, CASSANDRA AND

COUCHDB FOR EXPERIMENT-3

Data

Records

Mongodb

Time

Couchdb

Time

Cassandra

Time

50k 0.307 0.41 0.233

100k 0.536 0.887 0.256

500k 0.863 1.741 0.376

1000k 2.44 3.86 0.985

Fig 6. Execution Time for MongoDB, Cassandra & CouchDB

for Experiment-3

From the figure 6 we can analysis that for less number of

records the execution time for CouchDB and MongoDB is not

very different but as the number of records increases

performance of Cassandra is increased for the data extraction

in comparison to MongoDB and Couchdb.

Experiment-4:- This experiment finds out the count of all

customers in the database. This operation can be performed in

MongoDB, Cassandra and CouchDB databases. MapReduce

function is used to achieve this task. We can use mapReduce

function on collection of documents to select all the customers

and count the total number of customers.

This operation in MongoDB can be performed using following

code.

db.posts.mapReduce(

function() { emit(this.cust_id,1); },

function(key, values) {return Array.sum(values)},

 {

out:"total_customers"

 }

)

in CouchDB CQL code will be as

// Map Fucntion

function(doc) {

for (var x = 0, len = doc.People.length; x <len; x++)

 {

emit(doc._id, 1);

 }

}

// Reduce Function

function(keys, values, rereduce) {

return sum(values);

}

In case of Cassandra the following code will perform this

operation.

Select count(cust_id) from data50k

Table: 4

EXECUTION TIME FOR MONGODB, CASSANDRA AND

COUCHDB FOR EXPERIMENT-4

Data

Records

Mongodb

Time

Couchdb

Time

Cassandra

Time

50k 0.354 0.477 0.241

100k 0.647 0.841 0.375

500k 0.745 1.968 0.522

1000k 1.863 2.74 0.842

Fig 7. Execution Time for MongoDB, Cassandra & CouchDB

for Data Retrieval

From the fig 7 we can analysis that execution time taken by

Cassandra is better than CouchDB and MongoDB for different

numbers of records. As the number of records increases

0

1

2

3

4

5

50k 100k 500k 1000k

Sum of price by Cust_id

Mongodb Time Couchdb Time Cassandra Time

0

1

2

3

50k 100k 500k 1000k

Count of all customers

Mongodb Time Couchdb Time Cassandra Time

DOI: 10.18535/ijecs/v5i1.29

Shriram Sharma, IJECS Volume 05 Issue 1 January 2016 Page No.15631-15637 Page 15637

performance of Cassandra is also increased for the data

retrieval operation in comparison to CouchDB and MongoDB.

6. CONCLUSION

As the number of records in database increases, the difference

between the execution time taken by Cassandra for the

computation of different database operations is better in

comparison to CouchDB & MongoDB.

For finding the number of customer which can be seen as data

retrieval operation, the performance of Cassandra is about 35%

better in comparison with CouchDB & MongoDB, for the

different numbers of records.

For finding the sum of prices of all customers which can be

seen as performing total operation on the data Cassandra seems

better in comparison with CouchDB & MongoDB significantly.

Collectively we can say that for all database operations

Cassandra is much better than CouchDB & MongoDB, whether

the number of records are less or large.

7. FUTURE SCOPE

The present and future scope of NoSQL Databases are bright.

There are many opportunities and big challenges which need

to be overcome.

In future we can perform the analysis on different databases

like graph databases and key value databases.

8. REFERENCES

[1] http://nosql-database.org/

[2] Dominik Bruhn, ―Comparison of Distribution

Technologies in Different NoSQL Database

Systems‖.Available:http://files.dbruhn.de/pub/Comparison_of

_Distribution_Technologies_in_Different_NoSQL_Database_

Systems-SA_Dominik_Bruhn.pdf

[3] NoSQL databases by Christof Strauch.

Available:http://www.christof-strauch.de/nosqldbs.pdf

[4] Hsinchun Chen and Roger H. L. Chiang, "Business

Intelligence and Analytics: From Big Data To Big Impact",

MIS Quarterly Vol. 36 No. 4/December 2012 BIGDATA

MongoDB, http://www.mongodb.org big data

[5] http://couchdb.apache.org/

[6] Taylor, R. C. (2010) An overview of the

Hadoop/MapReduce/HBase framework and its current

applications in bioinformatics, Proc. 11th Annual

Bioinformatics Open Source Conference (BOSC).

[7] Oliver Schmitt and Tim A. Majchrzak of University of

Münster, Germany, ―Using Document-Based Databases for

Medical Information Systems in Unreliable Environments‖.

[8] Eben Hewitt, Apache cassandra project chair "cassandra

the definitive guide" Published by O’Reilly Media November

2010.

[9] Sanobar Khan - Department of Computer Engineering,

RAIT, and Prof.Vanita Mane - Department of Computer

Engineering, RAIT ―SQL Support over MongoDB using

Metadata ―,International Journal of Scientific and Research

Publications, Volume 3, Issue 10, October 2013.

[10] J. Dean and S. Ghemawat, ―Mapreduce: simplified data

processing on large clusters‖, Commune. ACM, Pages:107-

113, 2008.

[11] Kai Orend, ―Analysis and Classification of NoSQL

Databases and Evaluation of their Ability to Replace an

Object-relational Persistent Layer‖.

[12] Massimo Carro, NoSQL Databases,

http://arxiv.org/abs/1401.2101. CoRR, 2014.

[13] Robin Henricsson, Blekinge Institute of Technology, in

2011

