

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 3 Issue 5 May, 2014 Page No. 5614-5620

Ms. Renu Krishnan IJECS Volume 3 Issue 5 May, 2014 Page No.5614-5620 Page 5614

Survey Paper for Dynamic Resource Allocation using
Migration in Cloud

Ms. Renu Krishnan, Ms. Silja Varghese

Department of Computer Science and Engineering
Nehru College of Engineering and Research Centre, Pampady, Thrissur, University of Calicut, Kerala,

India.
renukrishnan.1990@gmail.com

Department of Computer Science and Engineering

Nehru College of Engineering and Research Centre, Pampady, Thrissur, University of caliicut, Kerala,India.
varghesesilja287@gmail.comg

 ABSTRACT—Cloud Computing is a rampant technology nowadays because of its scalability, flexibility, availability of

resources and the other features. In cloud computing resource multiplexing is done through the virtualization technology.

Virtualization technology is acts as a backbone for provisioning requirements of a cloud based solution. The problems arising in

cloud computing using virtualization must be solved. In present cloud computing environment, load balancing is one of the

challenging issues. To present a better approach for solving the problem of VM resource scheduling in a cloud computing

environment, uses CPU and network usage calculation. A load predictor is used to predict the load in future, according to the this

, it allocate the resources. For multiplexing of virtual machines to physical machines is managed using the Usher framework.

Introducing the skewness algorithm to measure the resource utilization of server and minimizing the skewness can improve

overall utilization of server and for load balancing the migration technology is used. Using this migration, can achieve the green

computing.

Keywords-Cloud computing, Virtualization, Migration, Green
computing

I. INTRODUCTION

Cloud computing [1] is a new technology currently being

studied in the academic world. The definition of the cloud

computing from the Gartner: “A style of computing where

massively scalable IT- related capabilities are provided as a

service across the internet to multiple external customers

using internet technologies”.

The cloud computing platform guarantees subscribes that it

sticks to the service level agreement by providing resources

as service and by needs. However, day by day subscribers‟

needs are increasing for computing resources and their needs

have dynamic heterogeneity and platform irrelevance. But in

cloud computing environment, resources are shared and if

they are not properly distributed then it will result into

resource wastage. Another essential role of cloud computing

platform is to dynamically balance the load amongst different

servers in order to avoid hotspots and improve resource

utilization. Therefore, the main problems to be solved are

how as well as efficiently manage the resources.

Need of resources are increasing drastically day by day. So it

is essential to allocate the resources properly but static

allocations have some boundaries. So moving on to the

dynamic resource allocation [2]. For using the virtualization

techniques [3], can migrate virtual machines to physical

machines effectively. By doing this some machines goes to

the idle state and turning off these machines will lead to save

the energy. So supports the green computing and thus

resources can be dynamically allocated properly. On a cloud

computing platform, dynamic resources can be effectively

managed using virtualization technology. The subscribers

with more demanding SLA can be guaranteed by

accommodating all the required services within a virtual

machine image and then mapping it on a physical server. This

helps to solve problem of heterogeneity of resources and

platform irrelevance. Load balancing of the entire system can

be handled dynamically by using virtualization technology

where it becomes possible to remap virtual machine and

physical resources according to the change in load. Due to

these advantages, virtualization technology is being

comprehensively implemented in cloud computing. However,

in order to achieve the best performance, the virtual machines

have to fully utilize its services and resources by adapting to

the cloud computing environment dynamically. The load

balancing and proper allocation of resources must be

guaranteed in order to improve resource utility. Thus, the

Ms. Renu Krishnan IJECS Volume 3 Issue 5 May, 2014 Page No.5614-5620 Page 5615

important objectives of this research are to be determine how

to improve resource utility, how to schedule the resources

and how to achieve effective load balance in a cloud

computing environment. Dynamic resource allocation is done

by using the virtualization technology. In this virtualization,

migration of the VM‟s to PM‟s is required. For the better

allocation, migration strategy is used here [4]. By defining

the hot spot and cold spot, can balance the load and it avoids

the overloading in the system‟s as well as it keep the energy

efficiency.

A warm spot is defined which is below the hot spot and

above the cold spot. Warm spot will balance the load and if

allocate resources in as the warm spot condition, it will never

goes to overload and the ideal condition. Here servers as a

cold spot if the utilization of all its resources are below a cold

threshold. This indicates that the server is mostly idle and a

potential candidate to turnoff to save energy. After the

allocation, the cloud controller finds idle system and by

turning off this idle system, preserves the energy.

II. RELATED WORK

Survey includes the relative mechanisms and the methods

which are implemented earlier and also the advantages and

disadvantages of each method is described briefly. According

to the survey of the earlier mechanism, it finds that the

current system implemented has more advantages.

Ying Song et al. [5] A two-tiered on-demand resource

allocation mechanism, including the local and global resource

allocation, based on a two-level control model. A well-

designed on demand resource allocation algorithm may

minimize the waste of resources as well as guarantee the

quality of the hosted applications. The local on-demand

resource allocation on each server optimizes the resource

allocation to VMs within a server taking the allocation

threshold into account, while the global on-demand resource

allocation optimizes the resource allocation among

applications at the macro level by adjusting the allocation

threshold of each local resource allocation.

A novel two-tiered on-demand resource allocation

mechanism with feedback to optimize the resource allocation

for VM-based data centers. In order to guide the design of the

on-demand resource allocation algorithm, model the resource

allocation using optimization theory. Base on the two-tiered

on-demand resource allocation mechanism and model, local

and global resource allocation algorithms to optimize the

dynamic resource provision for VMs.

The local and lazy on-demand memory allocation algorithm,

based on the static priority and the periodically collected idle

memory of each VMi, MemFlow-L determines whether there

is memory overload in a VM or not. The activity refers to the

threshold of idle memory for memory overload. If idle

memory of each VM is higher than, no memory needs to be

reallocated. If IMi is lower than, MemFlow-L increases

memory for VMi, as long as there is another VM that can

give some of its memory to VMi.

To address the single-point failure problem of the global

scheduler running the global resource allocation algorithm,

dynamically select a server to run it. If the server running the

global scheduler fails, randomly select another server to run

this scheduler. Even if the global scheduler fails and no other

global scheduler replaces it to work, all the local schedulers

could continue working to allocation resource to the hosted

VMs without the optimization at the macro level by the

global scheduler. In a word, the global scheduler‟s failure

could not lead to the failure of the resource allocation in the

system. As to the scalability problem, the computation scale

of the global scheduler is in direct proportion to the number

of applications corresponding to i in the K-VM-1-PMmodel,

because the constrained optimization in the K-VM-1-PM

model is linear. Thus, the global scheduler is not the

bottleneck even in a large-scale computing environment.

Christopher Clark et al. [6] Live OS migration is a extremely

powerful tool for cluster administrators, allowing separation

of hardware and software considerations, and consolidating

clustered hardware into a single coherent management

domain. If a physical machine needs to be removed from

service an administrator may migrate OS instances including

the applications that they are running to alternative

machine(s), freeing the original machine for maintenance.

Similarly, OS instances may be rearranged across machines

in a cluster to relieve load on congested hosts. In the

situations, the combination of virtualization and migration

significantly improves manageability.

Here achieve this by using a pre-copy approach in which

pages of memory are iteratively copied from the source

machine to the destination host, all without ever stopping the

execution of the virtual machine being migrated. Page level

protection hardware is used to ensure a consistent snapshot is

transferred, and a rate-adaptive algorithm is used to control

the impact of migration traffic on running services. The final

phase pauses the virtual machine, copies any remaining pages

to the destination, and resumes execution there. Here eschew

a „pull‟ approach which faults in missing pages across the

network since this adds a residual dependency of arbitrarily

long duration, as well as providing in general rather poor

performance.

Live migration refers to the process of making running virtual

machines or applications between different physical

machines without disconnecting the client or application.

Memory, storage and network connectivity of the virtual

machines are transferred from the original host machine to

the destination.

Migration processes have certain steps to perform.

Stage 0: Pre-Migration Begin with an active VM on

physical host A. To speed any future migration, a target host

may be preselected where the resources required to receive

migration will be guaranteed.

Stage 1: Reservation A request is issued to migrate an from

host A to host B. Initially confirm that the necessary

resources are available on B and reserve a VM container of

Ms. Renu Krishnan IJECS Volume 3 Issue 5 May, 2014 Page No.5614-5620 Page 5616

that size. Failure to secure resources here means that the VM

simply continues to run on A unaffected.

Stage 2: Iterative Pre-Copy During the first iteration, all

pages are transferred from A to B. Subsequent iterations copy

only those pages dirtied during the previous transfer phase.

Stage 3: Stop-and-Copy Suspend the running OS instance at

A and redirect its network traffic to B. CPU state and any

remaining inconsistent memory pages are then transferred. At

the end of this stage there is a consistent suspended copy of

the VM at both A and B. The copy at A is still considered to

be primary and is resumed in case of failure.

Stage 4: Commitment Host B indicates to A that it has

successfully received a consistent OS image. Host A

acknowledges this message as commitment of the migration

transaction: host A may now discard the original VM, and

host B becomes the primary host.

Stage 5: Activation The migrated VM on B is now activated.

Post-migration code runs to reattach device drivers to the new

machine and advertise moved IP addresses.

Marvin McNett et al. [7] Usher balances these imposing

requirements using a combination of abstraction and

architecture. Usher provides a simple abstraction of a logical

cluster of virtual machines, or virtual cluster. Usher users can

create any number of virtual clusters of arbitrary size, while

Usher multiplexes individual virtual machines on available

physical machine hardware. The Usher core implements

basic virtual cluster and machine management mechanisms,

such as creating, destroying, and migrating VMs. Usher

clients use this core to manipulate virtual clusters. These

clients serve as interfaces to the system for users as well as

for use by higher-level cluster software. For example, an

Usher client called ush provides an interactive command

shell for users to interact with the system. And also

implemented an adapter for a high-level execution

management system, which operates as an Usher client that

creates and manipulates virtual clusters on its own behalf.

Two modules are there, first modules enable Usher to

interact with broader site infrastructure, such as

authentication, storage, and host address and naming

services. Usher implements default behavior for common

situations, e.g., newly created VMs in Usher can use a site‟s

DHCP service to obtain addresses and domain names.

Additionally, sites can customize Usher to implement more

specialized policies; at UCSD, an Usher VM identity module

allocates IP address ranges to VMs within the same virtual

cluster. Second, pluggable modules enable system

administrators to express site-specific policies for the

placement, scheduling, and use of VMs. As a result, Usher

allows administrators to decide how to configure their virtual

machine environments and determine the appropriate

management policies.

On the other hand, Usher provides a framework that allows

system administrators to express site-specific policies

depending upon their needs and goals. By default, the Usher

core provides, in essence, a general-purpose, best-effort

computing environment. It imposes no restrictions on the

number and kind of virtual clusters and machines, and

performs simple load balancing across physical machines.

Here believe this usage model is important because it is

widely applicable and natural to use. Requiring users to

explicitly specify their resource requirements for their needs,

for example, can be awkward and challenging since users

often do not know when or for how long they will need

resources. Further, allocating and reserving resources can

limit resource utilization; guaranteed resources that go idle

cannot be used for other purposes. However, sites can specify

more elaborate policies in Usher for controlling the

placement, scheduling, and migration of VMs if desired.

Such policies can range from batch schedulers to allocation

of dedicated physical resources. Usher maintains a clean

separation between policy and mechanism. The Usher core

provides a minimal set of mechanisms essential for virtual

machine management. Usher provides a set of hooks to

integrate with existing infrastructure. A Plugin API to

enhance Usher functionality.

A running Usher system consists of three main components:

local node managers, a centralized controller, and clients. A

client consists of an application that utilizes the Usher client

library to send virtual machine management requests to the

controller. One LNM runs on each physical node and

interacts directly with the VMM to perform management

operations such as creating, deleting, and migrating VMs on

behalf of the controller. The local node managers also collect

resource usage data from the VMMs and monitor local

events. LNMs report resource usage updates and events back

to the controller for use by plugins and clients.

The controller is the central component of the Usher system.

It receives authenticated requests from clients and issues

authorized commands to the LNMs. It also communicates

with the LNMs to collect usage data and manage virtual

machines running on each physical node. The controller

provides event notification to clients and plugins registered to

receive notification for a particular event. Plugin modules can

perform a wide range of tasks, such as maintaining persistent

system-wide state information, performing DDNS updates, or

doing external environment preparation and cleanup.

The client library provides an API for applications to

communicate with the Usher controller. Essentially, clients

submit requests to the controller when they need to

manipulate their VMs or request additional VMs. The

controller can grant or deny these requests as its operational

policy dictates. One purpose of clients is to serve as the user

interface to the system, and users use clients to manage their

VMs and monitor system state. More generally, arbitrary

applications can use the client library to register call backs

for events of interest in the Usher system.

Typically, a few services also support a running Usher

system. Depending upon the functionality desired and the

infrastructure provided by a particular site, these services

might include a combination of the following: a database

server for maintaining state information or logging, a NAS

server to serve VM file systems, an authentication server to

provide authentication for Usher and VMs created by Usher,

a DHCP server to manage IP addresses, and a DNS server for

name resolution of all Usher created VMs. Note that an

Ms. Renu Krishnan IJECS Volume 3 Issue 5 May, 2014 Page No.5614-5620 Page 5617

administrator may configure Usher to use any set of support

services desired, not necessarily the preceding list.

Xiaoyun Zhu et al. [8] AutoControl a resource control system

that automatically adapts to dynamic changes in a shared

virtualized infrastructure to achieve application SLOs.

AutoControl is a combination of an online model estimator

and a novel multi-input, multi-output resource controller. The

model estimator captures the complex relationship between

application performance and resource allocation, while the

MIMO controller allocates the right amount of resources to

achieve application SLOs. Virtualization is causing a

disruptive change in enterprise data centers and giving rise to

a new paradigm: shared virtualized infrastructure. In this new

paradigm, multiple enterprise applications share dynamically

allocated resources. These applications are also consolidated

to reduce infrastructure and operating costs while

simultaneously increasing resource utilization. As a result,

data center administrators are faced with growing challenges

to meet service level objectives in the presence of dynamic

resource sharing and unpredictable interactions across many

applications. These challenges include:

Complex SLOs: It is non-trivial to convert individual

application SLOs to corresponding re-source shares in the

shared virtualized platform.

Changing resource requirements over time: The intensity and

the mix of enterprise application workloads change over time.

As a result, the demand for individual resource types changes

over the lifetime of the application. The utilization for both

resources varies over time considerably, and the peaks of the

two resource types occurred at different times of the day.

This implies that static resource allocation can meet

application SLOs only when the resources are allocated for

peak demands, wasting resources.

Distributed resource allocation: Multi-tier applications

spanning across multiple nodes require resource allocations

across all tiers to be at appropriate levels to meet end-to-end

application SLOs.

Resource dependencies: Application-level performance often

depends on the application‟s ability to simultaneously access

multiple system-level resources. Ina virtualized

infrastructure, performance of a given application depends on

other applications sharing resources, making it difficult to

replicate its behavior in pre-production environments.

Address the problem of managing the allocation of

computational resources in a shared, virtualized infrastructure

to achieve application-level SLOs.

Solution to this problem is AutoControl, an automated

resource control and adaptation system. Main contributions

are twofold: First, design an online model estimator to

dynamically determine and capture the relationship between

application level performance and the allocation of individual

resource shares. Adaptive modeling approach captures the

complex behavior of enterprise applications including

varying resource demands overtime, resource demands from

distributed application components, and shifting demands

across multiple resources types. Second, design a two-

layered, multi-input, multi output controller to automatically

allocate multiple types of resources to multiple enterprise

applications to achieve their SLOs. The first layer consists of

a set of application controllers that automatically determines

the amount of resources necessary to achieve individual

application SLOs, using the estimated models and a feedback

approach. The second layer is comprised of a set of node

controllers that detect resource bottlenecks on the shared

nodes and properly allocate resources of multiple types to

individual applications. In overload cases, the node

controllers can provide service differentiation by prioritizing

allocation among different applications. AutoControl can

detect and adapt to bottlenecks happening in both CPU and

disk across multiple nodes. The AutoControl architecture

allows the placement of AppControllers and NodeControllers

in a distributed fashion. Node Controllers can be hosted in the

physical node they are controlling. AppControllers can be

hosted in a node where one of the application tiers is located.

Here do not mandate this placement, how-ever, and the data

center operator can choose to host a set of controllers in a

node dedicated for control operations.

A model estimator that automatically learns in real time a

model for the relationship between an application‟s resource

allocation and its performance. An optimizer that predicts the

resource allocation required for the application to meet its

performance target based on the estimated model.

The main goal of the optimizer is to determine the source

allocation required (ura) in order for the application to meet

its target performance. An additional goal is to accomplish

this in a stable manner, without causing large oscillations in

the resource allocation.

Gong Chen et al. [9] Load skewing algorithms that allow

significant amount of energy saving without sacrificing user

experiences, i.e. maintaining very small number of SIDs.

Understanding how power is consumed by connection servers

provides insights on energy saving strategies. Connection

servers are CPU, network, and memory intensive servers.

There is almost no disk IO in normal operation, except

occasional log writing. Since memory is typically pre-

allocated to prevent run-time performance hit, the main

contributor to the power consumption variations of a server is

the CPU utilization .if pack connections and login requests to

a portion of servers, and keep the rest of servers hibernating,

here it can achieve significant power savings. However the

consolidation of login requests results in high utilization of

those servers, which may downgrade performance and user

experiences. Hence, it is important to understand the user

experience model before address the power saving schemes

for large-scale Internet service.

The load of processing transactions is well under control

when the number of connection and the login rates are

bounded. So, will not consider transaction delays as a quality

of service metric here. From this architectural description, it

is clear that the DS and its load dispatching algorithm play a

critical role in the shape of the load in connection servers. It

motivates to focus on the interaction between CS and DS, the

provisioning algorithms and load dispatching algorithms to

achieve power saving while maintaining user experiences in

terms of SNA and SID.A better alternative is to schedule

Ms. Renu Krishnan IJECS Volume 3 Issue 5 May, 2014 Page No.5614-5620 Page 5618

draining before turning a server off. More specifically, the

dispatcher identifies servers that have the least amount of

connections, and schedules them to connect to other servers

at a controlled much slower pace that will not generate any

significant burden for remaining active servers. In order to

reduce the number of SIDs, also starve the servers for a

period of time before doing scheduled draining or shutting it

down. For Messenger servers, the natural departure rate

caused by normal user log offs results in an exponential

decay of the number of connections, with a time constant

slightly less than an hour, meaning that the number of

connections on a server decreases by half every hour. A two-

hour starving time leads to number of SIDs less than a quarter

of that without starving. The trade-off is that adding starving

time reduces efficiency in saving energy. The goal is to

maintain a small number of tail servers that have small

number of connections. When user login requests ramp up,

these servers will be used as reserve to handle login increases

and surge, and give time for new servers to be turned on.

When user login requests ramp down, these servers can be

slowly drained and shut down. Since only tail servers are shut

down, the number of SIDs can be greatly reduced, and no

artificial surge of re-login requests or connection migrations

will be created. On the hardware side, frequently turning on

and off servers may raise reliability concern. Here it wants to

avoid always turning on and off the same machines. This is

where load prediction can help by looking ahead and

avoiding short term decisions. A better solution is to rotate

servers in and out of the active clusters deliberately.

Comparisons of above described papers are shown in

the table 1 below.

EXISTING

SYSTEM

METHODS ADVANTAGES DISADVANTAGES

A Two Tired On-

Demand Resource

Allocation

Mechanism for VM-

Based Data Centers.

Two Tiered Allocation

Mechanism

1)Local resource

scheduler

2)Global resource

scheduler

It address the problems of

availability and scalability.

If global resource allocation

failure occurs then the local

resource allocation will work,

vice versa.

So no failure of resource

allocation is occurred.

Application workload scheduling is

not considered.

Mismatch between the on demand

resource and workload dispatch.

Live Migration of

Virtual machines.

Live migration:

Migrating application

into another system.

It is extremely powerful tool for

clusters administrators.

It will freeing the original

machine for maintenance.

Relieve the load on the congest

hosts.

Sending of the VM‟s memory will

consume the entire bandwidth.

If only consider the live migration

among the well-connected data

center.

Usher:An Extensive

Framework for

Managing Clusters

of Virtual

Machines.

Usher Framework:

Plugin API is for

adding modules.

Provide a best effort computing

environment.

Performs load balancing across

physical machines.

Usher can be used for controlling

the placement scheduling, and

migration of VM‟s if desired.

For using other sites in usher,

existing plugin‟s are not matching

for this.

For using the usher in another site

needs to modify the existing plugin

or rewrite it.

No plugin‟s for managing clusters

of physical machines is written.

Automated Control

of Multiple

Virtualized

Resource.

AutoControl: An

automatic control

system

Performance assurance: All

Applications can be meet their

performance.

Without human intervention allocation decision should be made

automatically.

Various workloads can be

adopted.

Scalability can be achieved.

AutoControl only does not deal the

bottleneck problems.

It does not control any memory

control.

Energy-Aware

Server Provisioning

and Load

Dispatching for

Connection-

Intensive Internet

Services.

Skewness algorithm

Load prediction will help to

reduce the frequently turning on

and off servers.

Load prediction will reduce the

power consumption .

Load balancing is considered.

Sometimes load prediction may

cause the failure. Migration of the

load is not considered.

Power is only considered as the

parameter.

Table 1: Comparison table of existing systems

Ms. Renu Krishnan IJECS Volume 3 Issue 5 May, 2014 Page No.5614-5620 Page 5619

III. GENERAL SYSTEM MODEL

The architecture of the system is presented in Fig. 1. Each

PM runs the Xen hypervisor (VMM) which supports a

privileged domain 0 and one or more domain U.

 Each VM in domain U encapsulates one or more

applications such as Web server, remote desktop, DNS, Mail,

Map/ Reduce, etc. We assume all PMs share a backend

storage. The multiplexing of VMs to PMs is managed using

the Usher framework. The main logic of our system is

implemented as a set of plug-ins to Usher. Each node runs an

Usher local node manager (LNM) on domain 0 which

collects the usage statistics of resources for each VM on that

node. The CPU and network usage can be calculated by

monitoring the scheduling events in Xen. The memory usage

within a VM, however, is not visible to the hypervisor. One

approach is to infer memory shortage of a VM by observing

its swap activities. Unfortunately, the guest OS is required to

install a separate swap partition. Furthermore, it may be too

late to adjust the memory allocation by the time swapping

occurs. Instead we implemented a working set prober (WS

Prober) on each hypervisor to estimate the working set sizes

of VMs running on it. We use the random page sampling

technique as in the VMware ESX Server. The VM Scheduler

is invoked periodically and receives from the LNM the

resource demand history of VMs, the capacity and the load

history of PMs, and the current layout of VMs on PMs. The

scheduler has several components. The predictor predicts the

future resource demands of VMs and the future load of PMs

based on past statistics. We compute the load of a PM by

aggregating the resource usage of its VMs. The details of the

load prediction algorithm will be described in the next

section. The LNM at each node first attempts to satisfy the

new demands locally by adjusting the resource allocation of

VMs sharing the same VMM. Xen can change the CPU

allocation among the VMs by adjusting their weights in its

CPU scheduler. The MM Allotter on domain 0 of each node

is responsible for adjusting the local memory allocation. The

hot spot solver in our VM Scheduler detects if the resource

utilization of any PM is above the hot threshold (i.e., a hot

spot). If so, some VMs running on them will be migrated

away to reduce their load. The cold spot solver checks if the

average utilization of actively used PMs (APMs) is below the

green computing threshold. If so, some of those PMs could

potentially be turned off to save energy. It identifies the set of

PMs whose utilization is below the cold threshold (i.e., cold

spots) and then attempts to migrate awayall their VMs. It then

compiles a migration list of VMs and passes it to the Usher

CTRL for execution.

The summation of all the running VM‟s on a physical

machine can be termed as the load of physical machine. If we

assume that the T is the best time duration to monitor

historical data i.e, from current time to the last T minutes will

be the historical data zone, which will be used to solve the

load balancing problem. By using the variation law of the

physical machine load, we can split T into n subsequent time

intervals. Therefore, T becomes [(t1- t0), (t2 - t1),…, (tn - tn-1)].

The time interval k can be defined as (tk - tk-1). If the load of a

VM is stable in all the periods then V (i, k) refers to the load of

VM i in the interval k . By using the above definition, we can

define the average load of VM on physical server Pi in the time

cycle T is

 ()

∑ () (

)

Utilizing the optimization of genetic algorithm and within

this genetic algorithm we can produce the prediction, for that

we can calculate the rank of each node and thus we can

implement the prediction based algorithm.

By using this algorithm we generate different job scheduling

sequence and select best sequence. Best sequence selection is

based on rank.

IV CONCLUSION

Most of the firms are moving to cloud environment now a

days. Moving to cloud is clearly a better alternative as they

can add resources based on the traffic according to a pay-per-

use model. But for cloud computing to be efficient, the

individual servers that make up the datacenter cloud will need

to be used optimally. Even an idle server consumes about half

its maximum power. With the emergence of cloud computing

in the past few years, Map Reduce has seen tremendous

growth especially for large-scale data intensive computing.

The lack of a separate power controller in Map Reduce

frameworks post an interesting area of research to work on. It

addresses the issue of job migration for clusters of nodes that

run Map-Join-Reduce jobs. So migration cost based job

reconfiguration algorithm is describes that dynamically

reconfigures the job in accordance with the workload

imposed on it. Currently the base paper has been

implemented, which includes the cloud environment Map

Reduce Framework. The work for implementation of a new

framework Migration based Reconfiguration of nodes, a

system that extends and improves Map Reduce runtime

framework to efficiently process complex data analysis tasks

with migration using Genetic Algorithm to be used for the

future work.

REFERENCES

[1] M. Armbrustet al., “A View of Cloud

Computing,”Commun. ACM, vol. 53, no. 4, 2010, pp.

50–58..

[2] Zhen Xiao, Senior member, IEEE, weijia song and Qi

chen “Dynamic Resource allocation using Virtual

Machines For Cloud Computing Environment,” IEEE

Transaction on parallel and distributed systems,

vol.24, No.6 june 2013.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,

A. Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen

Ms. Renu Krishnan IJECS Volume 3 Issue 5 May, 2014 Page No.5614-5620 Page 5620

and the Art of Virtualization,” Proc. ACM Symp.

Operating Systems Principles (SOSP ‟03), Oct. 2003.

[4] M. Mishra and A. Sahoo, “On Theory of VM

Placement: Anomalies in Existing Methodologies and

Their Mitigation Using a Novel Vector Based

Approach,” Proc. 4
th

Int’l. Conf. Cloud Computing,

2011, pp. 275–82.

[5] Ying Song, Yuzhong Sun, Member, IEEE, and

Weisong Shi, Senior Member, IEEEA” Two-Tiered

On-Demand Resource Allocation Mechanism for VM-

Based Data Centers”, IEEE transactions on services

computing, vol. 6, no. 1, january-march 2013.

[6] Christopher Clark, Keir Fraser, Steven Hand, Jacob

Gorm Hansen, Eric Jul, Christian Limpach, Ian Pratt,

Andrew Warfield “Live Migration of Virtual

Machines”,University of Cambridge Computer

Laboratory 15 JJ Thomson Avenue, Cambridge, UK.

[7] Marvin McNett, Diwaker Gupta, Amin Vahdat, and

Geoffrey M. Voelker “Usher: An Extensible

Framework For Managing Clusters Of Virtual

Machines”, University of California, San Diego.

[8] PradeepPadala, Kai-Yuan Hou Kang G. Shin, Xiaoyun

Zhu, Mustafa Uysal, Zhikui Wang, SharadSinghal,

Arif Merchant “Automated Control of Multiple

Virtualized Resources”, The University of Michigan,

Hewlett Packard Laboratories.

[9] Gong Chen, Wenbo He, Jie Liu, SumanNath, Leonidas

Rigas, Lin Xiao, Feng Zhao “Energy-Aware Server

Provisioning and Load Dispatching for Connection-

Intensive Internet Services”,Dept. of Computer

Science, University of Illinois, Urbana-Champaign, IL

61801

