
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN: 2319-7242

Volume 4 Issue 8 Aug 2015, Page No. 13674-13677

1Hima G., IJECS Volume 4 Issue 8 Aug, 2015 Page No.13674-13677 Page 13674

Identification of User Search Behavior through Task Trail

Clustering

1Hima G., 2Jasila E.K.

1 M-Tech Student, Computer Science and Engineering, MES college of Engineering

Malappuram, Kerala, India

himagnair@gmail.com

2 Assistant Professor, Computer Science and Engineering, MES college of Engineering

Malappuram, Kerala, India

jasilaabhilash@gmail.com

Abstract: Web log is a pouch of valuable information that records users search queries and related actions on the internet. By mining the

recorded information, it is possible to exploit the users underlying goals, interests and search behaviors. In order to mine information from

web logs, the web logs should be segmented into sessions or tasks by clustering the queries. In this work, Task Trail is introduced to understand

user search behaviors. A Task can be defined as set of semantically relevant queries issued to satisfy an atomic user information need. A task

trail represents all user activities within the particular task, such as query reformulations, URL clicks. In most of the previous works, web

search logs have been studied mainly at session or query level where users may submit several queries within one task and handle several tasks

within one session. Although previous studies have addressed the problem of task identification, little is known about the advantage of using

task over session or query for search applications. Instead of analyzing Session Trails or Query Trails, Task Trails can be analysed to determine

the user search behaviour much more efficiently. By separating different task trails from a session, it can be used in several search applications

such as determining user satisfaction, predicting user search interests, and suggesting related queries.

Keywords: Query clustering, Search engine, Task- based clustering, User search interest, Web log.

1. Introduction

Web logs[1] are a pouch of valuable information that records

search queries and related actions of a user on internet. Web logs

can be categorized into two types such as Search logs and

Browse logs. Search logs are collected from search engines and

record the interaction details between search engines and users.

These details include queries submitted to search engines,

search results returned to users, and clicks made by users.

Browse logs are usually collected from client-side browser plug-

ins or proxies of Internet Service providers. They record all

URLs visited by users, irrespective of search engines and web

servers. Web log query clustering is a technique for discovering

similar queries on a search engine. The driving force of the

development of query clustering techniques comes from the

requirements of modern web searching. The web log query

clustering techniques can be mainly of Query-level, Session-

level and Task-level. The Query level clustering analyses each

query in the web log separately. The session-level query

clustering technique clusters a set of queries issued by the user

of a web search engine within a particular time period. Task-

level query clustering clusters a set of non-contiguous queries

issued by a user to carry out a particular task. After clustering

the queries into sessions or tasks, the web log can be analysed

and required knowledge can be extracted. The need of web log

analysis is to determine the user behaviour such as user

satisfaction, to predict user search interest and to suggest related

queries on internet.

2. Related works

Researches are always been conducted to improve the efficiency

of web log segmentation with maximum accuracy. This chapter

briefly presents some of such effective approaches to

segmentation of web log.
Neha Bagoria, and Nirmala Huidrom proposed a threshold

based algorithm[2] for Web log clustering. It is a session-level

clustering of web log. Threshold based algorithm is the simplest

and very basic method that was used for the identification of

user-session. The algorithm depends on the proper selection of

the threshold value. Based on the threshold value, the sessions

are identified. The procedure starts with the proper selection of

threshold value. Based on this value, the following condition is

checked:

● If the inter-arrival time between the consecutive queries from

a web log is less than the threshold value, then the two queries

are considered to be in the same session.

● If the inter-arrival time between the consecutive queries is

greater than the threshold value, then the two queries are

considered to be in different sessions i.e. the first query is the

last element of the current session and the second query is the

first element of the next session.

Zhenshan Hou, Mingliang Cui [3] proposed a hierarchical

conceptual clustering algorithm, COBWEB. The root node is the

highest level concepts of the conceptual frame work; while the

root node contains the information of all instances. The input

objects of the algorithm are described with categorical attribute-

value pairs. The COBWEB algorithm adopts the category utility

to instruct the tree construction.

 D. Beeferman and A. Berger et.al, proposed an

agglomerative clustering algorithm[4] for the segmentation of

http://www.ijecs.in/
mailto:binilanto@gmail.com
mailto:Syed.dimple@gmail.com

DOI:10.18535/ijecs/v4i8.09

1Hima G., IJECS Volume 4 Issue 8 Aug, 2015 Page No.13671-13677 Page 13675

web search log. It is a task-level segmentation method. The first

step of this method is to construct a query-page bipartite graph

with one set of the nodes corresponding to the set of queries

submitted by the user, and the other set of nodes corresponding

to the sets of clicked pages. When a user clicks on a page, a link

is created between the query and the page on the bipartite graph.

After the bipartite graph is obtained, an agglomerative clustering

algorithm is used to discover similar queries and similar pages.

During the clustering process, the algorithm iteratively

combines the two most similar queries into one query node, then

the two most similar pages into one page node. This process of

combination of queries and pages is repeated until a termination

condition is satisfied. The main reason for not clustering all the

queries first and then all the pages next are that two queries may

seem unrelated prior to page clustering because they link to two

different pages but they may become similar to each other if the

two pages have a high enough similarity to each other and are

merged later. After the bipartite graph is constructed, the

agglomerative clustering algorithm is applied to obtain clusters

of similar queries and similar pages.

Claudio Lucchese et.al proposed Query Clustering using

Weighted Connected Component (QC-WCC) method[5]. QC-

WCC is a graph based algorithm. Upon the query similarity

function, an undirected graph is built for queries within a

session. The vertices of the graph are queries and the edges are

similarity scores between queries. The weighting function is a

similarity function that can be easily instantiated in terms of the

distance functions. After removing the suspicious edges with

scores below a threshold, any connected component of the

remain graph is identified as a task. There are mainly two types

of similarity measures considered such as Content-based

similarity $(\mu_{Content})$ and Semantic-based similarity

$(\mu_{Semantic})$. Two queries are considered as similar in

content if they share some common terms. Semantic-based

similarity is the similarity in the meanings of two queries.

Claudio Lucchese et.al proposed QC-HTC algorithm[5] for

task-level web log segmentation. QC-HTC is a variation of the

QC-WCC algorithm, which does not need to compute the full

similarity graph. Since queries are submitted one after the other

by the user, the QC-HTC algorithms takes advantage of this

sequentiality to reduce the number of similarity computations

needed by QC-WCC. The first step of the algorithm aims at

creating an approximate fine-grained clustering of the given

time-gap session. Every single web-mediated task generates a

sequence of queries and each web-mediated task is observed as

a set of fragments, i.e. smaller sets of consecutive queries, and

fragments of different tasks are interleaved in the query log

because of multi-tasking. The algorithm exploits the

sequentiality of user queries, and tries to detect the above

fragments, by partitioning the given time-gap session into

sequential clusters. The second step of the algorithm merges

together the set of fragments (tasks) when they are related,

trying to overcome the interleaving of different tasks. Here, the

assumption is that a cluster of queries can be described well by

just the chronologically first and last (head and tail) of its

queries. It reduces the computational cost of the algorithm.

Zhen Liao and Yang Song et.al proposed Query Task

Clustering algorithm (QTC)[6] for task-level clustering of web

search log. QTC Algorithm is based on the observation that

consecutive query pairs are more likely belonging to same task

than non-consecutive ones. QTC prefers to first compute the

similarities for consecutive query pairs by time stamps. For

example, given a sequence of 4 queries 𝑞1, 𝑞2, 𝑞3, 𝑞4 , QC-

WCC needs 6 times of pair-wise relevance computations. For

QTC, if 𝑞1is similar to 𝑞2 and 𝑞2 is similar to 𝑞3, there is no need

to compute the relevance between 𝑞1 and 𝑞3 any more. If 𝑞1 is

similar to 𝑞2 but 𝑞2 is not similar to 𝑞3 , QTC still has to compute

the relevance between 𝑞1 and 𝑞3 to avoid the task interleaving.

For sessions having multiple tasks, if some tasks have more than

two consecutive queries, the time cost can still be reduced for

the same reason. In the worst case that all tasks are short and

interleaved with each other, QC-SP has the same time

complexity as QC-WCC.

In this paper a new approach for web log segmentation is

proposed by following the task trail.

3. Proposed work

In this section a new and efficient web log segmentation method

is introduced. The main concept of steps involved in the web log

segmentation process is explained here.

3.1 Task Definition

Web log contains users search queries and related actions on the

internet. Web logs also contains a set of users, and each user has

a sequence of consecutive behaviors 𝑒1, 𝑒2, …𝑒𝑛 where each

𝑒𝑖 can be a search behavior or a browse behavior[7]. A search

behavior is a single query submitted to a search engine. A

browse behavior belongs to one of the following activities: 1)

user starts to surf from the homepage of the browser; 2) user

types a URL address in the browser; 3) user pastes the URL

address from other place into browser; 4) user clicks a bookmark

or favourite page in the browser; 5) user clicks the “back” or

“forward” button in the browser; 6) user clicks an anchor link or

a search result. A Query-Trail q represents a sequence of user

behaviors 𝑒1
𝑞, 𝑒2

𝑞,… 𝑒𝑚
𝑞 of one user u, starting from a query,

followed by a sequence of browsing behaviors triggered by this

query. A Session Trail s is a sequence of user behaviors 𝑒1
𝑠,

𝑒2
𝑠,… 𝑒𝑚

𝑠 of one user u, where user behaviors are consecutive

in search logs and any two consecutive behaviors 𝑒𝑖,
𝑒𝑖+1 occurred within time threshold ɵwhere Task Trail t is a

sequence of user behaviors 𝑒1
𝑡, 𝑒2

𝑡,… 𝑒𝑚
𝑡 of one user u

occurred within one session, where all user behaviors

collectively define an atomic user information need.

3.2 Task Extraction

A task can be defined as a set of semantically relevant query

trails within a session. Two queries can be grouped into same

task if they satisfy any of the following: (1) they are identical;

(2) one is a part of the other (e.g., “sea” and “sea food”); (3) two

partially agree to each other (e.g., gate result” and “gate score”);

(4) one is a typo of the other (e.g., “machnie learning” and

“machine learning”). These rules can be used in the annotation

process and propose an efficient clustering framework to group

queries into tasks. The basic ideas of our clustering framework

are described as follows. First, since tasks are extracted out from

each session, we follow the time threshold method to segment

logs into sessions by choosing a time threshold u. we

quantitatively compute the similarity between any two queries.

Last, queries similar to each other are clustered into the same

task. A SVM classifier can be used to learn the weights of

various features of query similarity function.

3.3 Query Similarity

A linear SVM can be used to compute the similarity between

two queries. A labelled data set should be constructed to learn a

good query similarity function for task classification. The labels

include same task and different task. 11 features are used to

measure the similarity between queries. These features can be

DOI:10.18535/ijecs/v4i8.09

1Hima G., IJECS Volume 4 Issue 8 Aug, 2015 Page No.13671-13677 Page 13676

categorized into two groups such as time based (temporal) and

query word based. The details of these features are given in the

following table. Where frequently searched but meaningless

words are selected as stop words. The column weight in the table

lists the weight of each feature for similarity function. The

whole labeled data set can be split into five folds for cross

validation. Each time three folds can be used for training, one

fold used for tuning parameter, and the rest one fold can be used

for testing. Studies on these features showed that using temporal

features can only achieve about 70 percent accuracy, using word

features can achieve 91 percent accuracy, and combining them

can achieve 93 percent accuracy.

3.4 Semantic Similarity Computation Method

WordNet[8] is a semantic database used to establish the

connections between four types of Parts of Speech (POS) -

noun, verb, adjective, and adverb. The smallest unit in a

Wordnet is synset, which represents a specific meaning of a

word. It includes the word, its explanation, and its synonyms. So

using wordnet is an effective method to find the semantic

similarity between two words. Sentences are made up of words,

so it is reasonable to represent a sentence using the words in the

sentence. This method dynamically forms the semantic vectors

solely based on the compared sentences. Recent research

achievements in semantic analysis are also adapted to derive an

efficient semantic vector for a sentence. Given two sentences,

𝑇1 and 𝑇2, a joint word set is formed:

 T = 𝑇1 U 𝑇2

 = (𝑤1 𝑞2… 𝑤𝑚)

The joint word set T contains all the distinct words from 𝑇1 and

𝑇2. Since inflectional morphology may cause a word to appear

in a sentence with different forms that convey a specific

meaning for a specific context, the word form is used as it

appears in the sentence. The joint word set, T, can be viewed as

the semantic information for the compared sentences. Each

sentence is readily represented by the use of the joint word set

as follows: The vector derived from the joint word set is called

the lexical semantic vector, denoted by s͂ . Each entry of the

semantic vector corresponds to a word in the joint word set,

so the dimension equals the number of words in the joint word

set. The value of an entry of the lexical semantic vector,

𝑠͂ 𝑖(i=1,2,…m) is determined by the semantic similarity of the

corresponding word to a word in the sentence. The information

content of a word is derived from its probability in a corpus.

Each cell is weighted by the associated information I(𝑤𝑖) and

I(𝑤𝑖). Finally, the value of an entry of the semantic vector is:

 𝑠͂𝑖 = 𝑠͂ . I(𝑤𝑖) . I(𝑤𝑖)

where 𝑤𝑖 is a word in the joint word set, 𝑤𝑖 ͂ is its associated

word in the sentence. The use of I(𝑤𝑖) and I(𝑤𝑖) allows the

concerned two words to contribute to the similarity based on

their individual information contents. The semantic similarity

between two sentences is defined as the cosine coefficient

between the two vectors:

 𝑆𝑠𝑖𝑚 =
𝑠1.𝑠2

‖𝑠1‖‖𝑠2‖

3.5 Clustering Queries into Tasks

From the intuition that consecutive queries more likely belong

to the same task than non-consecutive ones, a better

approximation is to compute the pair-wise similarity for all

consecutive query pairs. In this work, a clustering algorithm

Query Clustering using Modified Bounded Spread method

(QC-MBSP) is proposed for task extraction, as shown in

Algorithm 1.

Algorithm 1

Input : Query set Q, Cut-off threshold b, Bounded length bl

Output : A set of tasks Θ

Initialization: Θ = ϕ; Query to task table L=ϕ, M=ϕ

Steps:

1. // Initialize same queries into one task.

2. cid = 0;

3. for i=1:|Q|-len do

4. if M[𝑄𝑖] exists then

5. add 𝑄𝑖 into Θ(M[𝑄𝑖])

6. else

7 M[𝑄𝑖]=cid++

8. if |Θ|=1 return Θ

9. for len=1:bl do

10. for i=1:|Q|-len do

11. // if two queries are not in the same task,

12. if L[𝑄𝑖] ≠ L[𝑄𝑖] then

13. // Compute lexical similarity

14. 𝑆1 ← lsim(L[𝑄𝑖],L[𝑄𝑖+𝑙𝑒𝑛])

15. // Compute semantic similarity

16. 𝑆2 ← ssim(L[𝑄𝑖],L[𝑄𝑖+𝑙𝑒𝑛])

17. S = 𝑆1 + 𝑆2

18. if S ≥ b then

19. merge Θ(𝑄𝑖) and Θ(𝑄𝑖+𝑙𝑒𝑛)

20. modify L;

21. // Break if there is only one task

22. if |Θ| =1 break;

23. return Θ;

3.6 User Satisfaction Determination

After the search process, to understand whether a user was

satisfied or not in search process, several indirect feedback

signals can be used as measures.

● Clicks: The total number of clicks to perform a particular task

can be taken as a signal of user satisfaction on that task. Clicking

on search results often indicates the relevance between queries

and clicked pages.

● Dwell time: Dwell time can also be considered as a signal of

user satisfaction. It is because users are more likely to stay on

useful pages.

● Markov Model Success Score: The Markov model can be used

to model the user’s search activities as a sequential process. The

Markov model takes queries, clicks, dwelltime(> 30seconds) as

states Q, SR, 𝑆𝑅𝐿𝑜𝑛𝑔, respectively. Two Markov models can be

built to compute the likelihood of user satisfaction and

dissatisfaction. When a new users search activities are given, the

score of Markov Models can be computed to determine the label

of user satisfaction.

3.7 User Interest Prediction

User search interests can be represented by their queries.

Summarizing queries into topics can help understanding user

search interests at a higher level. Given two queries submitted

by one user, they may come from: (1) different sessions

(inter-sessions); (2)same session (intra-session); (3) different

tasks in different sessions (inter-tasks among sessions); (4)

different tasks in same session (inter-tasks within sessions);

(5) same task in same session (intra-task). All these five sources

can provide query pairs. Besides, capturing user

search interests at topic level is useful to understand user

DOI:10.18535/ijecs/v4i8.09

1Hima G., IJECS Volume 4 Issue 8 Aug, 2015 Page No.13671-13677 Page 13677

behaviors. For example, average topic similarity between

query pairs from different sessions can help tracing the user

search interests during a relative long period. Topic similarity

between query pairs from same session can reflect user search

interests in a relative short time.

4. Results and Analysis

For the experimental study, one week web log data sets of a

particular user is extracted. The data set consists of user

browsing logs and search logs from a widely used browser plug-

in. It contains URL visits of the user and also contains machine

ID, User clicked/visited URLs, as well as queries related to user

clicks, a referrer URL where current URL comes from and Time

stamps of user events. The web log is segmented at task level,

so that the user search behavior can be easily identified.

Implementations were done in Java. From the experimental

results it can be seen that, the BSP clustering algorithm does not

consider the semantic similarity between the query words. But

in the case of modified BSP algorithm considers the semantic

similarity between the query words also.

 Table 1 represents the task identification for BSP

clustering algorithm corresponds to different query words. From

the table 6.1, it can be observed that the existing BSP algorithm

does not consider the semantic similarity between query words

before clustering. It only consider the lexical similarity between

the query words. That is, the query words with similar spelling

but different meaning and different spelling with same meaning

are clustered together regardless of

their meaning.

 From Table 2, it can be observed that the modified BSP

algorithm also considers the semantic similarity between the

query words. Since it consider both the lexical similarity and

semantic similarity, the query words with same meaning

regardless of its spelling are clustered together.

Table 1: Labelled Query Pairs before using wordnet

Table 2: Labelled Query Pairs after using wordnet

Table 3: Accuracy Comparison

From Table 3, it can be observed that, when all the temporal,

lexical and semantic attributes are used for query similarity

computation, it gives better precision and recall value than using

the temporal attributes and lexical attributes only.

5. Conclusion

Web log segmentation can be done in query level, session level,

or task level. Task trail is a sequence of user behaviors occurred

within one session, where they collectively define an atomic

user information need. Following task trail is an effective

method to segment the web log and also to determine the user

search behaviour. Web logs are segmented into sessions by

choosing a time threshold. Queries similar to each other are

clustered into same task after computing the query similarity.

From the extracted tasks, user search behaviour can be

determined.

References

[1] Ryen W. White, Jeff Huang, "Assessing the Scenic Route:

Measuring the Value of Search Trails in Web Logs", ACM

978-1-60558-896-4/10/07, Geneva, July 2010.

[2] Nirmala Huidrom, Neha Bagoria, “Clustering Techniques

for the identification of Web User Session” , International

Journal of Scientific and Research Publications, Volume 3,

Issue 1, January 2013.

[3] Zhenshan Hou, Mingliang Cui, Ping Li, "Session

Segmentation Method Based on COBWEB", IEEE 2nd

International Conference on Cloud Computing and Intelligence

Systems, 2012.

[4] D. Beeferman, A. Berger, “Agglomerative Clustering of a

Search Engine Query Log”, Proc. ACM SIGKDD,2000.

[5] Lucchese, Claudio, Salvatore Orlando, Raffaele Perego,

Fabrizio Silvestri, Gabriele Tolomei., “Identifying Task-based

Sessions in Search Engine Query Logs”, Proceedings of the

Fourth ACM International Conference on Web Search and Data

Mining – WSDM, 2011.

[6] Claudio Lucchesez, Salvatore Orlando, “Identifying Task

based Sessions in Search Engine Query Logs” , Proc. ACM

978-1-4503-0493-1/11/02, 2011.

[7] Liao, Y. Song, Y. Huang, L. He, Q. He,, " Task Trail: An

Effective Segmentation of User Search Behavior", IEEE

Transactions on Knowledge and Data Engineering, vol. 26, no.

12, pp. 3090-3102, 2014.

[8] Li, D. McLean, Z. Bandar, J. O'Shea and K. Crockett, "

Sentence similarity based on semantic nets and corpus

statistics", IEEE Transactions on Knowledge and Data

Engineering, vol. 18, no. 8, pp. 1138-1150, 2006.

