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Abstract: Web log is a pouch of valuable information that records users search queries and related actions on the internet. By mining the 

recorded information, it is possible to exploit the users underlying goals, interests and search behaviors. In order to mine information from 

web logs, the web logs should be segmented into sessions or tasks by clustering the queries. In this work, Task Trail is introduced to understand 

user search behaviors. A Task can be defined as set of semantically relevant queries issued to satisfy an atomic user information need. A task 

trail represents all user activities within the particular task, such as query reformulations, URL clicks. In most of the previous works, web 

search logs have been studied mainly at session or query level where users may submit several queries within one task and handle several tasks 

within one session. Although previous studies have addressed the problem of task identification, little is known about the advantage of using 

task over session or query for search applications. Instead of analyzing Session Trails or Query Trails, Task Trails can be analysed to determine 

the user search behaviour much more efficiently. By separating different task trails from a session, it can be used in several search applications 

such as determining user satisfaction, predicting user search interests, and suggesting related queries. 
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1. Introduction 

Web logs[1] are a pouch of valuable information that records 

search queries and related actions of a user on internet. Web logs 

can be categorized into two types such as Search logs and 

Browse logs. Search logs are collected from search engines and 

record the interaction details between search engines and users. 

These details include queries submitted to search engines, 

search results returned to users, and clicks made by users. 

Browse logs are usually collected from client-side browser plug-

ins or proxies of Internet Service providers. They record all 

URLs visited by users, irrespective of search engines and web 

servers. Web log query clustering is a technique for discovering 

similar queries on a search engine. The  driving force of the 

development of query clustering techniques comes from the 

requirements of modern web searching. The web log query 

clustering techniques can be mainly of Query-level, Session-

level and Task-level. The Query level clustering analyses each 

query in the web log separately. The session-level query 

clustering technique clusters a set of queries issued by the user 

of a web search engine within a particular time period. Task-

level query clustering clusters a set of non-contiguous queries 

issued by a user to carry out a particular task. After clustering 

the queries into sessions or tasks, the web log can be analysed 

and required knowledge can be extracted. The need of web log 

analysis is to determine the user behaviour such as user 

satisfaction, to predict user search interest and to suggest related 

queries on internet. 

2. Related works 

Researches are always been conducted to improve the efficiency 

of web log segmentation with maximum accuracy. This chapter 

briefly presents some of such effective approaches to 

segmentation of web log.  
Neha Bagoria, and Nirmala Huidrom proposed a threshold 

based algorithm[2] for Web log clustering. It is a session-level 

clustering of web log. Threshold based algorithm is the simplest 

and very basic method that was used for the identification of 

user-session. The algorithm depends on the proper selection of 

the threshold value. Based on the threshold value, the sessions 

are identified. The procedure starts with the proper selection of 

threshold value. Based on this value, the following condition is 

checked:  

● If the inter-arrival time between the consecutive queries from 

a web log is less than the threshold value, then the two queries 

are considered to be in the same session.  

● If the inter-arrival time between the consecutive queries is 

greater than the threshold value, then the two queries are 

considered to be in different sessions i.e. the first query is the 

last element of the current session and the second query is the 

first element of the next session.  

Zhenshan Hou, Mingliang Cui [3] proposed a hierarchical 

conceptual clustering algorithm, COBWEB. The root node is the 

highest level concepts of the conceptual frame work; while the 

root node contains the information of all instances. The input 

objects of the algorithm are described with categorical attribute-

value pairs. The COBWEB algorithm adopts the category utility 

to instruct the tree construction. 

 D. Beeferman and A. Berger et.al, proposed an  

agglomerative clustering algorithm[4] for the segmentation of 
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web search log. It is a task-level segmentation method. The first 

step of this method is to construct a query-page bipartite graph 

with one set of the nodes corresponding to the set of queries 

submitted by the user, and the other set of nodes corresponding 

to the sets of clicked pages. When a user clicks on a page, a link 

is created between the query and the page on the bipartite graph. 

After the bipartite graph is obtained, an agglomerative clustering 

algorithm is used to discover similar queries and similar pages. 

During the clustering process, the algorithm iteratively 

combines the two most similar queries into one query node, then 

the two most similar pages into one page node. This process of 

combination of queries and pages is repeated until a termination 

condition is satisfied. The main reason for not clustering all the 

queries first and then all the pages next are that two queries may 

seem unrelated prior to page clustering because they link to two 

different pages but they may become similar to each other if the 

two pages have a high enough similarity to each other and are 

merged later. After the bipartite graph is constructed, the 

agglomerative clustering algorithm is applied to obtain clusters 

of similar queries and similar pages. 

Claudio Lucchese et.al proposed Query Clustering using 

Weighted Connected Component (QC-WCC) method[5]. QC-

WCC is a graph based algorithm. Upon the query similarity 

function, an undirected graph is built for queries within a 

session. The vertices of the graph are queries and the edges are 

similarity scores between queries. The weighting function is a 

similarity function that can be easily instantiated in terms of the 

distance functions. After removing the suspicious edges with 

scores below a threshold, any connected component of the 

remain graph is identified as a task. There are mainly two types 

of similarity measures considered such as Content-based 

similarity $(\mu_{Content})$ and Semantic-based similarity 

$(\mu_{Semantic})$. Two queries are considered as similar in 

content if they share some common terms. Semantic-based 

similarity is the similarity in the meanings of two queries.  

Claudio Lucchese et.al proposed QC-HTC algorithm[5] for 

task-level web log segmentation. QC-HTC is a variation of the 

QC-WCC algorithm, which does not need to compute the full 

similarity graph. Since queries are submitted one after the other 

by the user, the QC-HTC algorithms takes advantage of this 

sequentiality to reduce the number of similarity computations 

needed by QC-WCC. The first step of the algorithm aims at 

creating an approximate fine-grained clustering of the given 

time-gap session. Every single web-mediated task generates a 

sequence of queries and each web-mediated task is observed as 

a set of fragments, i.e. smaller sets of consecutive queries, and 

fragments of different tasks are interleaved in the query log 

because of multi-tasking. The algorithm exploits the 

sequentiality of user queries, and tries to detect the above 

fragments, by partitioning the given time-gap session into 

sequential clusters. The second step of the algorithm merges 

together the set of fragments (tasks) when they are related, 

trying to overcome the interleaving of different tasks. Here, the 

assumption is that a cluster of queries can be described well by 

just the chronologically first and last (head and tail) of its 

queries. It reduces the computational cost of the algorithm.  

Zhen Liao and Yang Song et.al proposed Query Task 

Clustering algorithm (QTC)[6] for task-level clustering of web 

search log. QTC Algorithm is based on the observation that 

consecutive query pairs are more likely belonging to same task 

than non-consecutive ones. QTC prefers to first compute the 

similarities for consecutive query pairs by time stamps. For 

example, given a sequence of  4 queries  𝑞1, 𝑞2, 𝑞3, 𝑞4 , QC-

WCC needs 6 times of pair-wise relevance computations.  For 

QTC, if 𝑞1is similar to 𝑞2 and 𝑞2 is similar to 𝑞3, there is no need 

to compute the relevance between 𝑞1 and 𝑞3 any more. If 𝑞1 is 

similar to 𝑞2 but 𝑞2  is not similar to 𝑞3 , QTC still has to compute 

the relevance between 𝑞1 and 𝑞3 to avoid the task interleaving. 

For sessions having multiple tasks, if some tasks have more than 

two consecutive queries, the time cost can still be reduced for 

the same reason. In the worst case that all tasks are short and 

interleaved with each other, QC-SP has the same time 

complexity as QC-WCC. 

In this paper a new approach for web log segmentation is 

proposed by following the task trail. 

3. Proposed work 

In this section a new and efficient web log segmentation method 

is introduced. The main concept of steps involved in the web log 

segmentation process is explained here.  

3.1 Task Definition 

Web log contains users search queries and related actions on the 

internet. Web logs also contains a set of users, and each user has 

a sequence of consecutive behaviors  𝑒1, 𝑒2, …𝑒𝑛 where each 

𝑒𝑖 can be a search behavior or a browse behavior[7]. A search 

behavior is a single query submitted to a search engine. A 

browse behavior belongs to one of the following activities: 1) 

user starts to surf from the homepage of the browser; 2) user 

types a URL address in the browser; 3) user pastes the URL 

address from other place into browser; 4) user clicks a bookmark 

or favourite page in the browser; 5) user clicks the “back” or 

“forward” button in the browser; 6) user clicks an anchor link or 

a search result.  A Query-Trail q represents a sequence of user 

behaviors  𝑒1
𝑞, 𝑒2

𝑞,… 𝑒𝑚
𝑞 of one user u, starting from a query, 

followed by a sequence of browsing behaviors triggered by this 

query. A Session Trail s is a sequence of user behaviors  𝑒1
𝑠, 

𝑒2
𝑠,… 𝑒𝑚

𝑠 of one user u, where user behaviors are consecutive 

in search logs and any two consecutive behaviors  𝑒𝑖, 
𝑒𝑖+1 occurred within time threshold ɵwhere Task Trail t is a 

sequence of user behaviors 𝑒1
𝑡, 𝑒2

𝑡,… 𝑒𝑚
𝑡  of one user u 

occurred within one session, where all user behaviors 

collectively define an atomic user information need. 

3.2 Task Extraction  

A task can be defined as a set of semantically relevant query 

trails within a session. Two queries can be grouped into same 

task if they satisfy any of the following: (1) they are identical; 

(2) one is a part of the other (e.g., “sea” and “sea food”); (3) two 

partially agree to each other (e.g., gate result” and “gate score”); 

(4) one is a typo of the other (e.g., “machnie learning” and 

“machine learning”). These rules can be used in the annotation 

process and propose an efficient clustering framework to group 

queries into tasks. The basic ideas of our clustering framework 

are described as follows. First, since tasks are extracted out from 

each session, we follow the time threshold method to segment 

logs into sessions by choosing a time threshold u. we 

quantitatively compute the similarity between any two queries. 

Last, queries similar to each other are clustered into the same 

task. A SVM classifier can be used to learn the weights of 

various features of query similarity function. 

 

3.3 Query Similarity 

A linear SVM can be used to compute the similarity between 

two queries. A labelled data set should be constructed to learn a 

good query similarity function for task classification. The labels 

include same task and different task. 11 features are used to 

measure the similarity between queries. These features can be 
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categorized into two groups such as time based (temporal) and 

query word based. The details of these features are given in the 

following table. Where frequently searched but meaningless 

words are selected as stop words. The column weight in the table 

lists the weight of each feature for similarity function. The 

whole labeled data set can be split into five folds for cross 

validation. Each time three folds can be used for training, one 

fold used for tuning parameter, and the rest one fold can be used 

for testing. Studies on these features showed that using temporal 

features can only achieve about 70 percent accuracy, using word 

features can achieve 91 percent accuracy, and combining them 

can achieve 93 percent accuracy.  

3.4 Semantic Similarity Computation Method 

WordNet[8] is a semantic database used to establish the 

connections between four types of Parts of  Speech (POS) - 

noun, verb, adjective, and adverb. The smallest unit in a 

Wordnet is synset, which represents a specific meaning of a 

word. It includes the word, its explanation, and its synonyms. So 

using wordnet is an effective method to find the semantic 

similarity between two words. Sentences are made up of words, 

so it is reasonable to represent a sentence using the words in the 

sentence. This method dynamically forms the semantic vectors 

solely based on the compared sentences. Recent research 

achievements in semantic analysis are also adapted to derive an 

efficient semantic vector for a sentence. Given two sentences, 

𝑇1 and 𝑇2, a joint word set is formed: 

                             T = 𝑇1 U 𝑇2 

                                = (𝑤1 𝑞2… 𝑤𝑚) 

The joint word set T contains all the distinct words from 𝑇1 and 

𝑇2. Since inflectional morphology may cause a word to appear 

in a sentence with different forms that convey a specific 

meaning for a specific context, the word form is used as it 

appears in the sentence. The joint word set, T, can be viewed as 

the semantic information for the compared sentences. Each 

sentence is readily represented by the use of the joint word set 

as follows: The vector derived from the joint word set is called 

the lexical semantic vector, denoted by  s͂ . Each entry of the 

semantic vector corresponds to a word in the joint word set, 

so the dimension equals the number of words in the joint word 

set. The value of an entry of the lexical semantic vector, 

𝑠͂ 𝑖(i=1,2,…m) is determined by the semantic similarity of the 

corresponding word to a word in the sentence. The information 

content of a word is derived from its probability in a corpus. 

Each cell is weighted by the associated information I(𝑤𝑖) and 

I(𝑤𝑖   ). Finally, the value of an entry of the semantic vector is: 

 

                              𝑠͂𝑖 = 𝑠͂  . I(𝑤𝑖) . I(𝑤𝑖  ) 
 

where 𝑤𝑖  is a word in the joint word set, 𝑤𝑖 ͂  is its associated 

word in the sentence. The use of  I(𝑤𝑖) and I(𝑤𝑖   ) allows the 

concerned two words to contribute to the similarity based on 

their individual information contents. The semantic similarity 

between two sentences is defined as the cosine coefficient 

between the two vectors: 

 

                            𝑆𝑠𝑖𝑚 =
𝑠1.𝑠2

‖𝑠1‖‖𝑠2‖
 

3.5 Clustering Queries into Tasks 

From the intuition that consecutive queries more likely belong 

to the same task than non-consecutive ones, a better 

approximation is to compute the pair-wise similarity for all 

consecutive query pairs. In this work,  a clustering algorithm 

Query Clustering using Modified Bounded Spread method 

(QC-MBSP) is proposed for task extraction, as shown in 

Algorithm 1. 

 

Algorithm 1 

 

Input : Query set Q, Cut-off threshold b, Bounded length bl 

Output : A set of tasks Θ 

Initialization: Θ = ϕ; Query to task table L=ϕ, M=ϕ 

Steps:  

1. // Initialize same queries into one task. 

2. cid = 0; 

3. for  i=1:|Q|-len do 

4.     if M[𝑄𝑖] exists then 

5.         add 𝑄𝑖  into Θ(M[𝑄𝑖]) 

6.     else  

7           M[𝑄𝑖]=cid++ 

8. if  |Θ|=1  return Θ 

9. for  len=1:bl  do 

10.     for  i=1:|Q|-len  do 

11.        // if two queries are not in the same task, 

12.        if  L[𝑄𝑖]  ≠ L[𝑄𝑖]  then 

13.            // Compute lexical similarity 

14.            𝑆1 ← lsim(L[𝑄𝑖],L[𝑄𝑖+𝑙𝑒𝑛])  

15.            // Compute semantic similarity 

16.            𝑆2 ← ssim(L[𝑄𝑖],L[𝑄𝑖+𝑙𝑒𝑛])  

17.            S = 𝑆1 + 𝑆2 

18.            if  S  ≥ b  then 

19.                merge Θ(𝑄𝑖)  and Θ(𝑄𝑖+𝑙𝑒𝑛) 

20.                modify L; 

21.    // Break if there is only one task 

22.    if  |Θ| =1  break; 

23. return  Θ; 

 

3.6 User Satisfaction Determination 

After the search process, to understand whether a user was 

satisfied or not in search process, several indirect feedback 

signals can be used as measures. 

● Clicks: The total number of clicks to perform a particular task 

can be taken as a signal of user satisfaction on that task. Clicking 

on search results often indicates the relevance between queries 

and clicked pages. 

● Dwell time: Dwell time can also be considered as a signal of 

user satisfaction. It is because users are more likely to stay on 

useful pages. 

● Markov Model Success Score: The Markov model can be used 

to model the user’s search activities as a sequential process. The 

Markov model takes queries, clicks, dwelltime(> 30seconds) as 

states Q, SR, 𝑆𝑅𝐿𝑜𝑛𝑔, respectively. Two Markov models can be 

built to compute the likelihood of user satisfaction and 

dissatisfaction. When a new users search activities are given, the 

score of Markov Models can be computed to determine the label 

of user satisfaction. 

3.7 User Interest Prediction 

User search interests can be represented by their queries. 

Summarizing queries into topics can help understanding user 

search interests at a higher level. Given two queries submitted 

by one user, they may come from: (1) different sessions 

(inter-sessions); (2)same session (intra-session); (3) different 

tasks in different sessions (inter-tasks among sessions); (4) 

different tasks in same session (inter-tasks within sessions); 

(5) same task in same session (intra-task). All these five sources 

can provide query pairs. Besides, capturing user 

search interests at topic level is useful to understand user 
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behaviors. For example, average topic similarity between 

query pairs from different sessions can help tracing the user 

search interests during a relative long period. Topic similarity 

between query pairs from same session can reflect user search 

interests in a relative short time. 

4. Results and Analysis 

For the experimental study, one week web log data sets of a 

particular user is extracted. The data set consists of user 

browsing logs and search logs from a widely used browser plug-

in. It contains URL visits of the user and also contains machine 

ID, User clicked/visited URLs, as well as queries related to user 

clicks, a referrer URL where current URL comes from and Time 

stamps of user events. The web log is segmented at task level, 

so that the user search behavior can be easily identified. 

Implementations were done in Java. From the experimental 

results it can be seen that, the BSP clustering algorithm does not 

consider the semantic similarity between the query words. But 

in the case of modified BSP algorithm considers the semantic 

similarity between the query words also. 

 Table 1 represents the task identification for BSP 

clustering algorithm corresponds to different query words. From 

the table 6.1, it can be observed that the existing BSP algorithm 

does not consider the semantic similarity between query words 

before clustering. It only consider the lexical similarity between 

the query words. That is, the query words with similar spelling 

but different meaning and different spelling with same meaning 

are clustered together regardless of 

their meaning. 

 From Table 2, it can be observed that the modified BSP 

algorithm also considers the semantic similarity between the 

query words. Since it consider both the lexical similarity and 

semantic similarity, the query words with same meaning 

regardless of its spelling are clustered together. 

  

 

 
Table 1: Labelled Query Pairs before using wordnet 

 

Table 2: Labelled Query Pairs after using wordnet 

 

 

Table 3: Accuracy Comparison 

From Table 3, it can be observed that, when all the temporal, 

lexical and semantic attributes are used for query similarity 

computation, it gives better precision and recall value than using 

the temporal attributes and lexical attributes only.  

5. Conclusion 

Web log segmentation can be done in query level, session level, 

or task level. Task trail is a sequence of user behaviors occurred 

within one session, where they collectively define an atomic 

user information need. Following task trail is an effective 

method to segment the web log and also to determine the user 

search behaviour. Web logs are segmented into  sessions by 

choosing a time threshold. Queries similar to each other are 

clustered into same task after computing the query similarity. 

From the extracted tasks, user search behaviour can be 

determined. 
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