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Abstract 

Hiding the information is a vital issue in the 21st century in the field of Data Communication security .Its an important issue 

because the virtual and digital information transmission faces critical setbacks due to hacking and hackers threats. The 

transmission of information via the Internet may expose it to detect and theft.  The data embedding technologies are developed 

to provide personal privacy, commercial and national security interests. In this work we consider the problem of extracting 

blindly data embedded over a wide band in a spectrum (transform) domain of a digital medium (image, audio, video).We 

develop a novel multicarrier/signature iterative generalized least-squares (M-IGLS) core procedure to seek unknown data 

hidden in hosts via multicarrier spread-spectrum embedding. Here the original host and the embedding carriers both are 

assumed as not available. Experimental results shows the proposed algorithm can achieve recovery probability of error close to 

what may be attained with known embedding carriers and host autocorrelation matrix. 
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1. INTRODUCTION 

 In the field of Data Communication, security-issues 

have the major problem. The transmission of information 

via the Internet may uncover it to detect and theft. In the 

field of information technology Digital data embedding in 

digital media is rapidly growing commercial as well as 

national security interest. The main Applications of data 

hiding are annotation, copyright-marking, and 

watermarking, single-stream media merging (text, audio, 

image) and Steganography.  

 In annotation the secondary data are embedded into 

digital multimedia to provide a way to deliver side 

information for various purposes such as copyright-marking 

it shows the ownership by act as permanent “iron branding”; 

fragile watermarking may be intended to detect future 

tampering; hidden low-probability-to-detect (LPD) 

watermarking mainly used to identify the confidential data 

validation and digital fingerprinting for tracing purposes.  

 Steganography or Covert communication, 

steganography is a Greek Latin word which means “covered 

writing” , it is the process of hiding  the data under a cover 

medium or host such as image, audio, or video to establish 

secret communication between trusting parties and hide the 

existence of embedded data.  This paper mainly focus on the 

blind recovery of secret data hidden in medium hosts via 

spread-spectrum (DS-SS) transform domain 

multicarrier/signature direct-sequence Embedding. The 

original host and the embedding carriers (signatures or 

spreading sequences) both are assumed to be not known 

(fully blind data extraction). This blind hidden data 

extraction problem has also been referred to as 

“Watermarked content Only Attack” (WOA) in the 

watermarking security context.  
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 In blind extraction of SS embedded data, the 

unknown host acts as a source of interference/disturbance to 

the data to be recovered and, in a way, the problem parallels 

blind signal separation (BSS) applications as they arise in 

the fields of array processing, biomedical signal processing, 

and code-division multiple-access (CDMA) communication 

systems. Under the assumption that the embedded secret 

messages are independent identically distributed (I.I.D.) 

random sequences and independent to the cover host, 

independent component analysis (ICA) may be utilized to 

pursue hidden data extraction. 

 However, ICA-based BSS algorithms are not 

effective in the presence of correlated signal interference as 

is the case in SS multimedia embedding and degrade rapidly 

as the dimension of the carrier (signature) decreases relative 

to the message size. An iterative generalized least squares 

(IGLS) procedure was developed to blindly recover 

unknown messages hidden in image hosts via SS 

embedding. This algorithm has low complexity and strong 

recovery performance. But the scheme is designed solely for 

single-carrier SS embedding where messages are hidden 

with one signature only and is not generalizable to the 

multicarrier case. Realistically, an embedded would favor 

multicarrier SS transform-domain embedding to increase 

security and/or payload rate. 

 In this paper, we develop a novel multicarrier 

iterative generalized least squares (M-IGLS) algorithm for 

SS hidden data extraction for improved recovery 

performance, in particular for small hidden messages that 

pose the greatest challenge, experimental studies indicate 

that a few independent M-IGLS reinitializations and 

executions on the host can lead to hidden data recovery with 

probability of error close to what may be attained with 

known embedding carriers and known original host 

autocorrelation matrix and the proposed algorithm can be 

treated as a tool to test security robustness of SS data hiding 

schemes. 

2. The Multicarrier Spread Spectrum Secret Data 

Embedding and Extraction Approaches and Its 

Problem Formulation 

Let consider a hosts image  H ∈ ℳN1×N2    where ℳthe 

finite image alphabet is and  N1 × N2  is the image size in 

pixels. The image is partitioned into ℳ local no overlapping 

blocks of size 
N1N2

M
  but without loss of generality. Each 

block, H1, H2, … . , HM, is to carry hidden information bits 

(kM bits total image payload). Here embedding is performed 

in a 2-D transform domain (such as the Discrete Cosine 

Transform (DCT) and Wavelet Transform (WT), etc.). After 

transform calculation and vectorization (for example by 

conventional zig-zag scanning), we obtain T(Hm) ∈ R
N1N2

M  

m = 1,2, … , M . From the transform domain vectors  T(Hm)  

we choose a fixed subset of L ≤
N1N2

M
  coefficients (bins) to 

form the final host vectors X(m)ϵ RL, m = 1,2, … . , M.It is 

common and appropriate to avoid the dc coefficient (if 

applicable) due to high perceptual sensitivity in changes of 

the dc value. For our developments the autocorrelation 

matrix of the host data  X is an important statistical quantity 

it defined as 

Rx ≜ E{XXT} =
1

M
∑ X(m)X(m)X(m)T

M

m=1
 

 Generally it is easily verified that Rx is not constant- value 

diagonal or “white” in field language. 

2.1 Multicarrier SS Embedding 

We consider K distinct message bit sequences 

{bk(1), bk(2), … . , bk(M)}, k = 1,2, … . , K, bk(m) ∈

{±1} , m = 1, … . , M and each of length  M bits. The K 

message sequences may be to be delivered to Kdistinct 

corresponding recipients or they are just K portions of one 

large message sequence to be transmitted to one recipient. In 

particular, the mth bit from each of the K 

sequences,b1(m), … . , bk(m),is simultaneously hidden in the 

mth transform-domain host vector X(m) via additive SS 

embedding by means of  K spreading sequences (carriers) 

sk ∈ RL, ∥ sk ∥= 1, k = 1,2, … , K , 

y(m) = ∑ Akbk(m)sk + X(m) + n(m), m = 1,2, … , M,k
k=1                      

(1) 

With corresponding amplitudes. For the sake of generality, 

n(m) represents potential external white Gaussian noise1 of 

mean 0 and autocorrelation matrix  σn
2IL , σn

2  > 0  It is 

assumed that   bk(m) behave as equi-probable binary 
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random variables that are independent in m message bit 

sequence) and  k (across messages). The contribution of 

each individual embedded message bit   bk   to the 

composite signal is Akbksk  and the block mean-squared 

distortion to the original host data x due to the embedded k 

message alone is 

Dk = E{∥   Akbksk ∥ 2} = Ak
2 , k =  1,2, … . K.                       

(2) 

Under statistical independence of messages, the block mean 

squared distortion of the original image due to the total, 

multi message, insertion of data is 

D = ∑ Ak
2

k

K=1
 

The intended recipient of the th message with knowledge of 

the   kthcarrier  sk can perform embedded bit recovery by 

looking at the sign of the output of the minimum-mean-

square-error(MMSE)filter  

WMMSE,k = Ry
−1sk 

bk
^(m) = sgn{WMMSE,k  

T y(m)} = sgn{sk
TRy

−1y(m)}                 

(3) 

Where  Ry   is the autocorrelation matrix of the host-plus-

data plus- noise vectors 

Ry ≜ E{yyT} = Rx + ∑ Ak
2 sksk

TK
k=1 + σn

2IL                                

(4) 

The autocorrelation matrix Ry  can be estimated by sample 

averaging over the set of M received vectors 

{y(m)}Mm=1,Ry =
1

M
∑ y(m)y(m)T

M

m=1
 

     . Using  Ry
^  in (3) in place of Ry  , we obtain which is 

known as the sample-matrix-inversion MMSE (SMI-

MMSE) detector implementation. 

2.2 Formulation of Extraction Problem 

From a given host image to blindly extract spread-spectrum 

embedded data, first the analyst needs convert the host to 

observation vectors of the form of y(m) , m = 1,2, … , M in 

(1). This requires knowledge of partition, transform domain, 

subset of coefficients, and number of carriers used by the 

embedder. The host image partition (and block size  
N1N2

M
 in 

our notation) may be estimated by neighboring- pixels 

difference techniques as in [27]. Regarding the subset of 

coefficients used in embedding, the conservative approach is 

to assume that all coefficients are used, except may be the 

dc value, and set accordingly. Finally, determination of the 

transform domain used in embedding seems to be a hurdle 

not yet tackled by current research. The natural approach 

would be to consider individually and exhaustively one 

transform at a time starting from the most common (for 

example, 2D-DCT, common wavelet transforms, and so on). 

This paper focus the technical presentation solely after the 

point that the analyst obtains transform-domain observations 

in the form of in y(m) (1), upon performing appropriate 

image  parted3rd3dsw2sw2ition and transform calculation. 

We denote the combined “disturbance” to the hidden data 

(host plus noise) by partition and transform calculation. We 

denote the combined “disturbance” to the hidden data (host 

plus noise) by 

z(m) ≜ X(m) + n(m) and rewrite SS embedding by (1) as 

y(m) = ∑ Akbk(m)sk + z(m), m = 1, … . , M,K
k=1                 

(5) 

Where z(m)  is modeled as a sequence of zero-mean 

(without loss of generality) vectors with auto covariance 

matrix  

Rz = E{zzT} = Rx + σn
2I. Let Vk ≜ AkSk ∈ RL, k = 1, … . , K 

be the amplitude-including embedding carriers. Then, we 

can further reformulate SS embedding as 

y(m) = ∑ bk(m)Vk + z(m)K
k=1     (6)                                   

       = Vb(m) + z(m), m = 1, … . , M,   (7)                                                                                   

whereV ≜       [ V1 ,…, VK] ∈ RL×K is the amplitude-including 

carrier matrix and       

b(m) ∈ {±1}K×u is the vector of bits embedded in the  mth  

host block. For notational simplicity, we can write the whole 

observation data in the form of one matrix 

Y = VB + Z                     (8) 

Where 

 Y ≜ [y(1) y(2) … y(M)] ∈ RL×M , B ≜ [b(1) b(2) … b(M)]

∈  {±1}K×M 

and  

Z ≜ [z(1) z(2) … z(M)] ∈  RL×M 

Our main objective is to blindly extract the unknown hidden 

data B from the observation matrix Y without prior 

knowledge of the embedding carriers  sk and amplitudes 
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Ak    k = 1, … . , K, in   V = [A1s1, … , AKsK]  or the host 

medium itself X(1), … . , X(M) in  

Z = [X(1) + n(1), … . , X(M) + n(M)] 

 

2.3 EXTRACTION OF HIDDEN DATA 

If Z were to be modeled as Gaussian distributed, the joint 

maximum-likelihood (ML) estimator of and decoder of V 

and decoder of B would be 

V̂, B̂ = arg min
B∈{±1}K×M

V∈RL×K

∥ R
Z

−
1
2(Y − VB) ∥F

2 

Where multiplication by  RZ

−
1

2    can be interpreted as Pre 

whitening of the compound observation data. 

If Gaussianity of Z  is not to be invoked, then (9) can be 

simply referred to as the joint generalized least-squares 

(GLS) solution2 of V and B .The global GLS-optimal 

message matrix B̂  in (9) can be computed independently of  

V̂  by exhaustive search over all possible choices under the 

criterion function 

∥ RZ

−
1
2YP ⊥ B ∥F

2 

B̂ = arg min
B∈{±1}K×M

∥   RZ

−
1
2  YP ⊥ B ∥F

2 

(10) 

Whe

re 

 P ⊥

B ≜

I −

BT(BBT)−1

B 

2.4 

The 

Mul

ticarrier Iterative Generalized Least-Squares Data 

Extraction 

 In this approach the unacceptable and attempt to 

reach a quality approximation of the solution of (10) (or (9), 

to that Respect) by alternating generalized least-squares 

estimates of V and B, iteratively, as described below. 

Pretend B is known. The generalized least-squares estimate 

Of V is 

V̂GLS = arg min
V∈RL×K

∥ RZ

−
1

2(Y − VB ∥F
2= YBT(BBT)−1           

(11) 

Pretend, in turn, that is V is known. Then, the least-squares 

estimate of  B over the real field is 

B̂GLS
real = arg min

B∈RK×M
∥ RZ

−
1

2(Y − VB) ∥F
2 =

(VTRZ
−1V)−1VTRZ

−1Y             (12) 

Observing that 

(VTRZ
−1V)−1VTRZ

−1 = (VTRy
−1V)

−1
VTRy

−1                  (13) 

We rewrite 

B̂GLS
real = (VTRy

−1V)
−1

VTRy
−1Y  

and suggest the approximate binary message solution 

B̂GLS
realV̂GLS = arg min

B∈{±}K×M
∥ RZ

−
1

2(Y − VB ∥F
2   ≃

sgn{(VTRy
−1Y )VTRZ

−1Y}            (15) 

 The multicarrier iterative generalized least-squares 

(M-IGLS) procedure suggested by the two equations (11) 

and (15) is now straightforward. Initialize B arbitrarily and 

alternate iteratively between (11) and (15) to obtain at each 

step conditionally generalized least squares estimates of one 

matrix parameter given the other. Stop when convergence is 

observed. Notice that (15) utilizes knowledge of the 

autocorrelation matrix Ry , which can be estimated by 

sample averaging over the received data observations  

 

R̂y =
1

M
∑ y(m)y(m)T

M

m=1
 

 

 The M-IGLS extraction algorithm Is O(2K3 +

2LMK + K2(3L + M) + L2K Summarized in Table I. 

Superscripts denote iteration index. The computational 

complexity of each iteration of the M-IGLS algorithms and, 

experimentally, the number of iterations executed is 

between20 and 50 in general For the sake of mathematical 

accuracy, we recall that in least squares there is always a 

symbol sign (phase in complex domains) ambiguity when 

joint data extraction and carrier estimations pursued (i.e., 

data bits on carrier bK∈{±}M have the same least-squares 

error with data bits on carrier s
K=RL−SK,K=1,….,K.  

 The sign-ambiguity problem can be overcome with 

a few known or guessed data symbols for supervised sign 

 

1) d ≔ 0; Initialize B̂(0) ∈ {±1}K×M 

arbitrarily. 

2) d ≔ d + 1; 

V̂(d) ∶= Y(B̂(d−1))T[(B̂(d−1))((B̂(d−1))T)]
−1

; 

B̂(d)

≔ sgn {((V̂(d))
T

R̂y
−1(V̂(d)))

−1

(V̂(d))
T

R̂y
−1Y}. 

3) Repeat Step 2 until B̂(d) = B̂(d−1) 



DOI: 10.18535/ijecs/v4i9.51 
 

J Srinivasa Naik, IJECS Volume 04 Issue 09 September, 2015 Page No.14363-14370 Page 14367 

correction3 . Moreover, in a multicarrier least-squares 

scenario as the one that we face herein, the index association 

remains unresolved (i.e., given a recovered (message, 

carrier) pair (b,s), the corresponding index  k ∈ {1, … . , K}  

in (1) cannot be obtained). To the extent that the application 

of the work presented in this paper is to simply extract 

blindly the embedded bits with the least possible errors, the 

carrier indexing problem is not dealt with any further. 

Returning to the proposed data extraction algorithm, we 

understand that with arbitrary initialization convergence of 

the M-IGLS procedure described in Table I to the optimal 

GLS solution of (9) is not guaranteed in general. Extensive 

experimentation with the algorithm in Table I indicates that, 

for sufficiently long messages hidden by each carrier (M=4 

Kbits or more, for example), satisfactory quality message 

decisions B can be directly obtained. However, when the 

message size is small, M-IGLS may very well converge to 

inappropriate points/solutions. The quality (generalized-

least-squares fit) of the end convergence point depends 

heavily on the initialization point and arbitrary 

initialization—which at first sight is unavoidable for blind 

data extraction—offers little assurance that the iterative 

scheme will lead us to appropriate, “reliable” (close to 

minimal generalized least-squares fit) solutions. To that 

respect, re initialization and re execution of the M-IGLS 

procedure, say P times, is always possible. To assess which 

of the returned solutions, say {V̂1B̂1), … . (V̂pB̂1) , has 

superior generalized- least-squares fit, we simply feed 

(V̂iB̂i)   to (9) (using Ry in place of Rz ) and choose 

V̂final, B̂final =  min
arg       (V,B)∈{V̂1B̂1),….(V̂pB̂1)}

∥ R
Z

−
1

2(Y − VB ∥F
2                 

(16) 

The computational complexity of the P-times reinitialized 

M-IGLS is, of course 

(PD(2K3 + 2LMK + K2(3L + M) + L2K)) 

  , Where D represents the number of internal iterations in 

Table I.  

3. SIMULATION RESULTS 

 

 

 

 

 

 

 

Figure 1: 512*512 Plane image 

 

Figure 2: 512*512 Plane image BER 

 

Figure 3: 256*256 Plane image 

 

Figure 4: 256*256 plane image BER 

 

Figure 5: 512*512 boat image 
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 Figure 6: 512*512 boat image BER   

 

Figure 7: 256*256 boat image 

 

Figure 8: 256*256 boat image BER 

 

Figure 9: 512*512 baboon image 

 

Figure 10: 512*512 baboon image BER 

 

Figure 11: 256*256 baboon image 

 

Figure 12: 256*256 baboon image BER 

 

Figure 13: Original image 
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Figure 14: Noise image 

 

Figure 15: Watermarked image 

 

Figure 16: Host data auto correlation matrix, 8*8 DCT 

 

 

4. CONCLUSION 

In this paper we considered the problem of blindly 

extracting unknown messages hidden in image hosts via 

multicarrier/signature spread-spectrum embedding In this 

neither the original host nor the embedding carriers are 

assumed available we developed a low complexity 

multicarrier iterative generalized least-squares (M-IGLS) 

core algorithm. Experimental results showed that M-IGLS 

can achieve probability of error rather close to what may be 

attained with known embedding signatures and known 

original host autocorrelation matrix and presents itself as an 

effective countermeasure to conventional SS data 

embedding/ hiding. 
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