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Abstract 

This paper presents an implementation of VLSI architecture for Dual Field Residue Arithmetic modular multiplier with less delay 

based on finite field arithmetic to support all public key cryptographic applications. A new method for incorporating Residue 

Number System (RNS) and Polynomial Residue Number system (PRNS) in modular multiplication is derived and then implemented 

VLSI Architecture for dual field residue arithmetic modular multiplier with less delay. This architecture supports the conversions, 

modular multiplication for polynomials and integers and modular exponentiation in same hardware. This architecture has a carry 

save adders (CSAs) and parallel prefix adders in MAC units to speed up the large integer arithmetic operations over GF (P) and 

GF (2n), hence this reduces the delay up to 10 percent. 
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1. INTRODUCTION 

Now a days, many of applications including cryptography, 

error correction coding, computer algebra, DSP, etc., depends 

on the efficient realization of arithmetic over finite fields of 

the form GF (2n), where n € Z and n ≥ 1, or the form GF(P) , 

where P is a prime. Special case of multiplications are formed 

by Cryptographic applications, since, for security reasons, 

they require large integer operands. Almost all public key 

cryptography, such as Elliptic Curves Cryptography (ECC) 

and RSA cryptography employ modular multiplication with 

very large numbers, so faster modular multiplication has 

become an important cryptography issue. For achieving 

satisfactory cryptosystem performance, efficient field 

multiplication with large operands is crucial since 

multiplication is the most time and area consuming operation. 

Therefore, there is a need for increasing the speed of 

cryptosystems employing modular arithmetic with the least 

possible area penalty.  

 The perfect approach to achieve this would be 

through parallelization of their operations. The RNS/PRNS is 

a non-weighted number system which speeds up arithmetic 

operations by dividing them into smaller parallel operations, 

and they provide interesting low power architecture. Since the 

RNS/PRNS system is not a positional number system where 

each digit corresponds to a certain weight, it is hard to 

implement the operations of comparison and division. 

RNS/PRNS is one of the most popular techniques for 

reducing the power dissipation and the computation load in 

VLSI systems design. On the other hand, for RNS/PRNS 

implementations, the extra cost of input converters to 

translate numbers from a standard binary format into residues 

and output converters to translate from RNS/PRNS to binary 

representations are needed. 

 A new methodology for embedding residue 

arithmetic in a dual field Montgomery modular multiplication 

algorithm for integers in and for polynomials in is presented 

in this paper. The derived architecture is highly parallelizable 
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and versatile, as it supports binary-to-RNS/PRNS and 

RNS/PRNS-to-binary conversions, Mixed Radix Conversion 

(MRC) for integers and polynomials, dual-field Montgomery 

multiplication and dual-field modular exponentiation in the 

same hardware. 

2. CONVENTIONAL WORKS 

GF (2n) implementation has been progressed a lot in these 

days. PRNS incorporation in field multiplication based on a 

straightforward implementation of the Chinese Remainder 

Theorem (CRT) for polynomials is implemented, requires 

large storage resources and many pre-computations. The 

multipliers perform multiplication in PRNS are proposed, but 

the result is then converted back to polynomial 

representation.  

 This limitation makes these methods 

inappropriate for cryptographic algorithms, since it requires 

consecutive multiplications. Finally, algorithm which 

employs trinomials for the modulus set and performs PRNS 

Montgomery multiplication has been proposed. But has no 

reference to conversion methods and the trinomials 

requirement may issue limitations in the PRNS data range.  

GF (P) implementations have also withstood great analysis, 

with the Montgomery algorithm being used in the majority of 

them. Montgomery multiplication designs fall into two 

categories. The first includes fixed-precision input operand 

implementations, in which the multiplicand and modulus are 

processed in full world length, while multiplier is handled bit-

by-bit. These designs are optimized for certain word lengths 

and do not scale efficiently for departures from these word 

lengths. Their performance has been improved by high-radix 

algorithms and architectures.  

 The second category includes scalable 

architectures for variable word-length operands, based on 

algorithms, in which the multiplicand and modulus are 

processed word by word; while the multiplier is consumed bit 

by bit. Montgomery’s algorithm has also become a predicate 

for dual-field implementations. The Montgomery 

architectures perform well for RSA key word lengths, by 

processing word size data, since RSA key sizes (512, 1024, 

2048, etc.) are always multiples of word size. However, in 

ECC, key sizes are not integer multiples of word size, 

meaning that, if this architecture were to be used in ECC, 

architecture configured at bit-level overcomes this problem. 

3. RESIDUE NUMBER SYSTEM 

In recent years, we have experienced a great development in 

the field of digital communication technologies which 

brought together a great concern about security in computers 

and communications systems. Several public-key 

cryptosystems were proposed in order to enable the 

encryption of messages using a public encryption key ‘e’ 

without a prior communication of a secret key. The secrecy 

relies on the fact that decryption key is computationally 

infeasible to deduce from the public encryption key. Then, 

the only person who can decrypt the cipher-text is the 

receiver, who knows the secret decryption key.   

 Public-key cryptography plays an important role 

in digital communication and storage systems. Processing 

public-key cryptosystems requires huge amount of 

computation, and, there is therefore, a great demand for 

developing dedicated hardware to speed up the computations. 

Speeding up the computation using specialized hardware 

enables the use of larger keys in public-key cryptosystems. 

This is translated into an increase of the security of the 

system. Also, this enables the speedup of a secure link 

between two distant points using an insecure channel, which 

is critical in real-time systems. The reduction of the hardware 

amount is another important aspect when implementing in 

dedicated hardware because it allows for the miniaturization 

of portable devices and reduces fabrication costs. 

 The Residue Number System (RNS) is a non-

weighted number system that can map large numbers to 

smaller residues, without any need for carry propagations .Its 

most important property is that additions, subtractions, and 

multiplications are inherently carry-free. These arithmetic 

operations can be performed on residue digits concurrently 

and independently. Thus, using residue arithmetic, would in 

principle, increase the speed of computations RNS has shown 

high efficiency in realizing special purpose applications such 
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as digital filters , image processing , RSA cryptography and 

specific applications for which only additions, subtractions 

and multiplications are used and the number dynamic range 

is specific. Special moduli sets have been used extensively to 

reduce the hardware complexity in the implementation of 

converters and arithmetic operations. Among which the triple 

moduli set {2n+1, 2n, 2n-1} have some benefits. Since the 

operation of multiplication is of major importance for almost 

all kinds of processors, efficient implementation of 

multiplication modulo 2n-1 is important for the application of 

RNS. 

4. PROPOSED METHOD 

4.1 Residue number system 

RNS consists of a pair wise relatively prime integers set 𝒜 =

(𝑚1,𝑚2, … . , 𝑚𝐿) and simultaneously RNS range is computed 

as  𝐴 = ∏ 𝑚𝑖
𝐿
𝑖=1  . A unique RNS representation 𝑍𝒜which 

denotes the two integers a, b in RMS format i.e., 𝑎𝐴 =

(𝑎1, 𝑎2,…,𝑎𝐿)  and 𝑏𝐴 = (𝑏1, 𝑏2,…,𝑏𝐿)given by 

𝑍𝒜=(𝑧1, 𝑧2, … . , 𝑧𝐿)=((𝑧)𝑚1,(𝑧)𝑚2,…,,(𝑧)𝑚𝐿,), then at the 

end, one can accomplished the process in parallel was as 

shown below 

𝑎𝒜 ⊗ 𝑏𝒜  = (〈𝑎1 ⊗ 𝑏1〉𝑚1,〈𝑎2 ⊗ 𝑏2〉𝑚1,….,〈𝑎𝐿 ⊗ 𝑏𝐿〉𝑚𝐿,)   (1) 

To reconstruct the integer from its residues, two methods may 

be employed. The first is through the CRT according to  

𝓏 = ∑ 〈𝓏𝑖 . 𝐴𝑖
−1〉𝑚𝑖

𝐿
𝑖=1 . 𝐴𝑖−𝛾𝐴   (2)  

Where  𝐴𝑖 − 𝐴
𝑚,𝑖⁄ ,  𝐴𝑖

−1
 is the inverse of 𝐴𝑖 modulo  𝑚𝑖 , and 

𝛾 is an integer correction factor 

The second method is through the MRC. The MRC of an 

integer with an RNS representation 𝑍𝒜=(𝑧1, 𝑧2, … . , 𝑧𝐿) is 

given by  

𝓏 =  𝑈1 + 𝑊2𝑢2 + ⋯ + 𝑊𝐿𝑈𝐿    (3) 

Where 𝑊𝑖 − ∏ 𝑚𝑗 , ∀𝑖𝜖[2, 𝐿]𝑖−1
𝑗=1  and 𝑈𝑖𝑠 are4 according to the 

𝑈1 = 𝑍1 

𝑈2 = 〈〈𝑍2 − 𝑍1〉〉𝑚2 

𝑈3 = 〈𝑧3 − 𝑧1 − 𝑊2𝑈2〉𝑚3 

⋮ 

𝑈𝐿 = 〈𝑧𝐿 − 𝑧1 − 𝑊2𝑈2 − 𝑊3𝑈3−. . . −𝑊𝐿−1𝑈𝐿−1〉𝑚𝐿   (4) 

4.2 Polynomial Residue Number System 

Similar to RNS, a Polynomial Residue Number System 

(PRNS) is defined through a set of pair wise relatively prime 

polynomials𝐴 = 𝑚1𝑥, 𝑚2𝑥, … … … … . . 𝑚𝐿𝑥. We denote by 

𝐴(𝑥) = ∏ 𝑚𝑖
𝐿
𝑖=1 (𝑥) the dynamic range of the PRNS. In 

PRNS, every polynomial has a unique PRNS representation: 

𝑍𝒜=(𝑧1, 𝑧2, … . , 𝑧𝐿) such as 𝑧𝑖 = 𝑧(𝑖)𝑚𝑜𝑑mod mi x, i ∈ [1, 

L], denoted as < 𝑧 > 𝑚𝑖.In the rest of the paper, the notation 

“(𝑥)” to denote polynomials shall be omitted, for simplicity. 

The notation z will be used interchangeably to denote either 

an integer or a polynomial, according to context according to 

the context. In the PRNS representation all operations can be 

performed in parallel. Conversion from PRNS to weighted 

polynomial representation is identical to the MRC for 

integers. The only difference is that, the subtractions in () are 

substituted by polynomial additions. 

4.3 Montgomery Multiplication 

A.GF (P) arithmetic  

Field elements GF (P) in are integers in [0 to P-1] and 

arithmetic is performed modulo P. Since Montgomery’s 

method was originally devised to avoid divisions, it is well 

suited to RNS implementations, considering that RNS 

division are inefficient to perform. 

Algorithm 1 Montgomery Modular Multiplication  

Input: a, b, p, R,𝑅−1 ∗ 𝑎, 𝑏 <⁄  p 

Output: c≡ 𝑎𝑏𝑅−1   mod p, l* c < 2p 

1:  s ← 𝑎 ∙  𝑏 

2:  t← 𝑠 ∙ (− 𝑝−1)    mod R 

3:  u ← 𝑡 ∙  𝑝 

4:  v ← 𝑠 +  𝑢 
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5:  c ← 𝑣 𝑅⁄  

 

B. GF (𝟐𝒏) arithmetic 

In GF (2n) arithmetic, field elements are polynomials are 

represented as vectors with dimension n ,relative to a given 

polynomial basis 1, α, α2 , … … . . , αn−1, where α is a root of 

an irreducible polynomial p of degree n over GF(2). The 

addition of two polynomials a and b in GF (2 n) is performed 

by adding the their coefficients i.e., modulo 2.The 

multiplication of two polynomials is  

c = a. b mod p 

Algorithm 2 RNS  Montgomery Multiplication (RMM)  

Input: 𝑎T, 𝑏 𝑇, (−𝑝−1)𝐵 , 𝑄𝐴
−1, 𝑝𝐴, ∗ 𝑎, 𝑏 <⁄  2p 

Output: cT ,  l* c < 2p and c ≡ 𝑎𝑏𝑄−1   mod p 

1:  𝑠T ← 𝑎T  ∙  𝑏T 

2:  𝑡B ← 𝑠B  ∙ (− 𝑝−1)𝐵     

3:  𝑡A ← 𝑡𝐵/* base conversion step 

4:  𝑢A ← 𝑡𝐴 . 𝑝A 

5:  𝑣A ← 𝑠𝐴 + 𝑢A 

6:  𝑐A ← 𝑣𝐴 . 𝑄𝐴
−1 

7:  𝑐𝐵 ← 𝑐𝐴/* base conversion step 

 

5. CONVERSIONS 

Let us consider   A= (𝑝1 , 𝑝2 , 𝑝3 … … … … …., 𝑝𝐿) as base, 

this shall be used to analyze the Conversions to/from residue 

representations. 

1. Binary-to-Residue Conversion 

A radix- representation of an integer z as an L- tuple  

(𝑍(𝐿−1)… (𝑍(0)) satisfies 

z = ∑ 𝑧(𝑖)2𝑟𝑖𝐿−1
𝑖=0   (5) 

Where, 0 ≤  𝑧(𝑖)  ≤ 2𝑟 − 1 

To compute 𝑧𝐴a method is devised, the multiply and 

Accumulate structure in DRAMM is implemented for this 

method. By applying the modulo pj operation, we obtain 

<𝑧 >𝑃𝑗
 = <∑ 𝑧(𝑖)𝐿−1

𝑖=0  < 2𝑟𝑖 >𝑃𝑗
>𝑃𝑗

 ,∀ 𝑗 ∈ [1, 𝐿]   (6) 

If constants    <2𝑟𝑖 >𝑃𝑗
are precomputed, this computation is 

well suited to the proposed MAC structure and can be 

computed in L steps, when executed by units in parallel. 

Similar to the integer case, a polynomial lz(x) ∈ GF (2𝑛) can 

be written as 

z = ∑ 𝑧(𝑖)𝑥𝑟𝑖𝐿−1
𝑖=0   (7) 

Applying the modulo 𝑃𝑗 operation in the above equation 

< 𝑧 >𝑃𝑗
 = <∑ 𝑧(𝑖)𝐿−1

𝑖=0  < 𝑥𝑟𝑖 >𝑃𝑗
>𝑃𝑗

 ,∀ 𝑗 ∈ [1, 𝐿]   (8) 

Which is a similar operation to operation for integers, if 

𝑥𝑟𝑖 >𝑃𝑗
are pre-computed. From the above analysis 

conversions in both fields can be unified into a common 

conversion method, if dual-field circuitry is employed. 

2. Residue-to-Binary Conversion 

As all operands in (4) are of word length, they can be 

efficiently handled by an rbit MAC unit. However, employs 

multiplications with large values, namely the WI s. To 

overcome this problem can be rewritten as matrix notation. 

The inner products of a row are calculated in parallel in each 

MAC unit. Each MAC then propagates its result to 

subsequent MACs, so that at the end the last MAC (L) outputs 

the radix- 2 rdigit z (i) of the result. In parallel with this 

summation, inner products of the next row i+1 can be 

formulated, since the adder and multiplier of the proposed 

MAC architecture may operate in parallel. 

6. SIMULATION RESULTS 
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Figure 1: SIMULATION RESULT OF MULTI 

RESIDUE TEST 

 

Figure 2: SIMULATION RESULT OF DUAL CLA 

TEST 

 

Figure 3: SIMULATION RESULT OF DUAL FIELD 

MULTI TEST 

 

Figure 4: SIMULATION RESULT OF FOUR MAC 

TEST 

 

Figure 5: SIMULATION RESULT OF MODULAR 

REDUCTION TEST 

 

Figure 6: SIMULATION RESULT OF MUX LOGIC 

TEST 

7. CONCLUSION 

An Efficient high speed RNS modular multiplier 

implemented in this paper ,that operates in both GF p and 

GF(2 n ) arithmetic fields and necessary conditions for the 

system parameters are mentioned. The DRAMM architecture 

supports all operations of Montgomery multiplication, 

residue-to-binary conversion and binary-to-residue 

conversion, MRC for polynomials and integers and modular 

exponentiation in same hard ware. The MAC units in 

DRAMM architecture reduces the delay, hence this is suited 

for high speed applications like all types of public key 

cryptography and DSP etc. 
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