
www.ijecs.in
International Journal Of Engineering And Computer Science ISSN: 2319-7242
Volume 4 Issue 9 Sep 2015, Page No. 14307-14312

Afshan Fathima, IJECS Volume 04 Issue 09 September, 2015 Page No.14307-14312 Page 14307

Analytical Approach For Enhanced Residue Modular Multiplier

For Cryptography

Afshan Fathima (Pg Scholar) 1 B.Sanjai Prasada Rao Associate Professor2

Department of ECE, Lords Institute of Engineering and Technology, Hyderabad, INDIA

Abstract

This paper presents an implementation of VLSI architecture for Dual Field Residue Arithmetic modular multiplier with less delay

based on finite field arithmetic to support all public key cryptographic applications. A new method for incorporating Residue

Number System (RNS) and Polynomial Residue Number system (PRNS) in modular multiplication is derived and then implemented

VLSI Architecture for dual field residue arithmetic modular multiplier with less delay. This architecture supports the conversions,

modular multiplication for polynomials and integers and modular exponentiation in same hardware. This architecture has a carry

save adders (CSAs) and parallel prefix adders in MAC units to speed up the large integer arithmetic operations over GF (P) and

GF (2n), hence this reduces the delay up to 10 percent.

KEYWORDS: Finite field arithmetic, Residue number and Polynomial Residue number systems, modular arithmetic, parallel

arithmetic and logic structures, and Montgomery multiplication

1. INTRODUCTION

Now a days, many of applications including cryptography,

error correction coding, computer algebra, DSP, etc., depends

on the efficient realization of arithmetic over finite fields of

the form GF (2n), where n € Z and n ≥ 1, or the form GF(P) ,

where P is a prime. Special case of multiplications are formed

by Cryptographic applications, since, for security reasons,

they require large integer operands. Almost all public key

cryptography, such as Elliptic Curves Cryptography (ECC)

and RSA cryptography employ modular multiplication with

very large numbers, so faster modular multiplication has

become an important cryptography issue. For achieving

satisfactory cryptosystem performance, efficient field

multiplication with large operands is crucial since

multiplication is the most time and area consuming operation.

Therefore, there is a need for increasing the speed of

cryptosystems employing modular arithmetic with the least

possible area penalty.

 The perfect approach to achieve this would be

through parallelization of their operations. The RNS/PRNS is

a non-weighted number system which speeds up arithmetic

operations by dividing them into smaller parallel operations,

and they provide interesting low power architecture. Since the

RNS/PRNS system is not a positional number system where

each digit corresponds to a certain weight, it is hard to

implement the operations of comparison and division.

RNS/PRNS is one of the most popular techniques for

reducing the power dissipation and the computation load in

VLSI systems design. On the other hand, for RNS/PRNS

implementations, the extra cost of input converters to

translate numbers from a standard binary format into residues

and output converters to translate from RNS/PRNS to binary

representations are needed.

 A new methodology for embedding residue

arithmetic in a dual field Montgomery modular multiplication

algorithm for integers in and for polynomials in is presented

in this paper. The derived architecture is highly parallelizable

http://www.ijecs.in/

DOI: 10.18535/ijecs/v4i9.42

Afshan Fathima, IJECS Volume 04 Issue 09 September, 2015 Page No.14307-14312 Page 14308

and versatile, as it supports binary-to-RNS/PRNS and

RNS/PRNS-to-binary conversions, Mixed Radix Conversion

(MRC) for integers and polynomials, dual-field Montgomery

multiplication and dual-field modular exponentiation in the

same hardware.

2. CONVENTIONAL WORKS

GF (2n) implementation has been progressed a lot in these

days. PRNS incorporation in field multiplication based on a

straightforward implementation of the Chinese Remainder

Theorem (CRT) for polynomials is implemented, requires

large storage resources and many pre-computations. The

multipliers perform multiplication in PRNS are proposed, but

the result is then converted back to polynomial

representation.

 This limitation makes these methods

inappropriate for cryptographic algorithms, since it requires

consecutive multiplications. Finally, algorithm which

employs trinomials for the modulus set and performs PRNS

Montgomery multiplication has been proposed. But has no

reference to conversion methods and the trinomials

requirement may issue limitations in the PRNS data range.

GF (P) implementations have also withstood great analysis,

with the Montgomery algorithm being used in the majority of

them. Montgomery multiplication designs fall into two

categories. The first includes fixed-precision input operand

implementations, in which the multiplicand and modulus are

processed in full world length, while multiplier is handled bit-

by-bit. These designs are optimized for certain word lengths

and do not scale efficiently for departures from these word

lengths. Their performance has been improved by high-radix

algorithms and architectures.

 The second category includes scalable

architectures for variable word-length operands, based on

algorithms, in which the multiplicand and modulus are

processed word by word; while the multiplier is consumed bit

by bit. Montgomery’s algorithm has also become a predicate

for dual-field implementations. The Montgomery

architectures perform well for RSA key word lengths, by

processing word size data, since RSA key sizes (512, 1024,

2048, etc.) are always multiples of word size. However, in

ECC, key sizes are not integer multiples of word size,

meaning that, if this architecture were to be used in ECC,

architecture configured at bit-level overcomes this problem.

3. RESIDUE NUMBER SYSTEM

In recent years, we have experienced a great development in

the field of digital communication technologies which

brought together a great concern about security in computers

and communications systems. Several public-key

cryptosystems were proposed in order to enable the

encryption of messages using a public encryption key ‘e’

without a prior communication of a secret key. The secrecy

relies on the fact that decryption key is computationally

infeasible to deduce from the public encryption key. Then,

the only person who can decrypt the cipher-text is the

receiver, who knows the secret decryption key.

 Public-key cryptography plays an important role

in digital communication and storage systems. Processing

public-key cryptosystems requires huge amount of

computation, and, there is therefore, a great demand for

developing dedicated hardware to speed up the computations.

Speeding up the computation using specialized hardware

enables the use of larger keys in public-key cryptosystems.

This is translated into an increase of the security of the

system. Also, this enables the speedup of a secure link

between two distant points using an insecure channel, which

is critical in real-time systems. The reduction of the hardware

amount is another important aspect when implementing in

dedicated hardware because it allows for the miniaturization

of portable devices and reduces fabrication costs.

 The Residue Number System (RNS) is a non-

weighted number system that can map large numbers to

smaller residues, without any need for carry propagations .Its

most important property is that additions, subtractions, and

multiplications are inherently carry-free. These arithmetic

operations can be performed on residue digits concurrently

and independently. Thus, using residue arithmetic, would in

principle, increase the speed of computations RNS has shown

high efficiency in realizing special purpose applications such

DOI: 10.18535/ijecs/v4i9.42

Afshan Fathima, IJECS Volume 04 Issue 09 September, 2015 Page No.14307-14312 Page 14309

as digital filters , image processing , RSA cryptography and

specific applications for which only additions, subtractions

and multiplications are used and the number dynamic range

is specific. Special moduli sets have been used extensively to

reduce the hardware complexity in the implementation of

converters and arithmetic operations. Among which the triple

moduli set {2n+1, 2n, 2n-1} have some benefits. Since the

operation of multiplication is of major importance for almost

all kinds of processors, efficient implementation of

multiplication modulo 2n-1 is important for the application of

RNS.

4. PROPOSED METHOD

4.1 Residue number system

RNS consists of a pair wise relatively prime integers set 𝒜 =

(𝑚1,𝑚2, … . , 𝑚𝐿) and simultaneously RNS range is computed

as 𝐴 = ∏ 𝑚𝑖
𝐿
𝑖=1 . A unique RNS representation 𝑍𝒜which

denotes the two integers a, b in RMS format i.e., 𝑎𝐴 =

(𝑎1, 𝑎2,…,𝑎𝐿) and 𝑏𝐴 = (𝑏1, 𝑏2,…,𝑏𝐿)given by

𝑍𝒜=(𝑧1, 𝑧2, … . , 𝑧𝐿)=((𝑧)𝑚1,(𝑧)𝑚2,…,,(𝑧)𝑚𝐿,), then at the

end, one can accomplished the process in parallel was as

shown below

𝑎𝒜 ⊗ 𝑏𝒜 = (〈𝑎1 ⊗ 𝑏1〉𝑚1,〈𝑎2 ⊗ 𝑏2〉𝑚1,….,〈𝑎𝐿 ⊗ 𝑏𝐿〉𝑚𝐿,) (1)

To reconstruct the integer from its residues, two methods may

be employed. The first is through the CRT according to

𝓏 = ∑ 〈𝓏𝑖 . 𝐴𝑖
−1〉𝑚𝑖

𝐿
𝑖=1 . 𝐴𝑖−𝛾𝐴 (2)

Where 𝐴𝑖 − 𝐴
𝑚,𝑖⁄ , 𝐴𝑖

−1
 is the inverse of 𝐴𝑖 modulo 𝑚𝑖 , and

𝛾 is an integer correction factor

The second method is through the MRC. The MRC of an

integer with an RNS representation 𝑍𝒜=(𝑧1, 𝑧2, … . , 𝑧𝐿) is

given by

𝓏 = 𝑈1 + 𝑊2𝑢2 + ⋯ + 𝑊𝐿𝑈𝐿 (3)

Where 𝑊𝑖 − ∏ 𝑚𝑗 , ∀𝑖𝜖[2, 𝐿]𝑖−1
𝑗=1 and 𝑈𝑖𝑠 are4 according to the

𝑈1 = 𝑍1

𝑈2 = 〈〈𝑍2 − 𝑍1〉〉𝑚2

𝑈3 = 〈𝑧3 − 𝑧1 − 𝑊2𝑈2〉𝑚3

⋮

𝑈𝐿 = 〈𝑧𝐿 − 𝑧1 − 𝑊2𝑈2 − 𝑊3𝑈3−. . . −𝑊𝐿−1𝑈𝐿−1〉𝑚𝐿 (4)

4.2 Polynomial Residue Number System

Similar to RNS, a Polynomial Residue Number System

(PRNS) is defined through a set of pair wise relatively prime

polynomials𝐴 = 𝑚1𝑥, 𝑚2𝑥, … … … … . . 𝑚𝐿𝑥. We denote by

𝐴(𝑥) = ∏ 𝑚𝑖
𝐿
𝑖=1 (𝑥) the dynamic range of the PRNS. In

PRNS, every polynomial has a unique PRNS representation:

𝑍𝒜=(𝑧1, 𝑧2, … . , 𝑧𝐿) such as 𝑧𝑖 = 𝑧(𝑖)𝑚𝑜𝑑mod mi x, i ∈ [1,

L], denoted as < 𝑧 > 𝑚𝑖.In the rest of the paper, the notation

“(𝑥)” to denote polynomials shall be omitted, for simplicity.

The notation z will be used interchangeably to denote either

an integer or a polynomial, according to context according to

the context. In the PRNS representation all operations can be

performed in parallel. Conversion from PRNS to weighted

polynomial representation is identical to the MRC for

integers. The only difference is that, the subtractions in () are

substituted by polynomial additions.

4.3 Montgomery Multiplication

A.GF (P) arithmetic

Field elements GF (P) in are integers in [0 to P-1] and

arithmetic is performed modulo P. Since Montgomery’s

method was originally devised to avoid divisions, it is well

suited to RNS implementations, considering that RNS

division are inefficient to perform.

Algorithm 1 Montgomery Modular Multiplication

Input: a, b, p, R,𝑅−1 ∗ 𝑎, 𝑏 <⁄ p

Output: c≡ 𝑎𝑏𝑅−1 mod p, l* c < 2p

1: s ← 𝑎 ∙ 𝑏

2: t← 𝑠 ∙ (− 𝑝−1) mod R

3: u ← 𝑡 ∙ 𝑝

4: v ← 𝑠 + 𝑢

DOI: 10.18535/ijecs/v4i9.42

Afshan Fathima, IJECS Volume 04 Issue 09 September, 2015 Page No.14307-14312 Page 14310

5: c ← 𝑣 𝑅⁄

B. GF (𝟐𝒏) arithmetic

In GF (2n) arithmetic, field elements are polynomials are

represented as vectors with dimension n ,relative to a given

polynomial basis 1, α, α2 , … … . . , αn−1, where α is a root of

an irreducible polynomial p of degree n over GF(2). The

addition of two polynomials a and b in GF (2 n) is performed

by adding the their coefficients i.e., modulo 2.The

multiplication of two polynomials is

c = a. b mod p

Algorithm 2 RNS Montgomery Multiplication (RMM)

Input: 𝑎T, 𝑏 𝑇, (−𝑝−1)𝐵 , 𝑄𝐴
−1, 𝑝𝐴, ∗ 𝑎, 𝑏 <⁄ 2p

Output: cT , l* c < 2p and c ≡ 𝑎𝑏𝑄−1 mod p

1: 𝑠T ← 𝑎T ∙ 𝑏T

2: 𝑡B ← 𝑠B ∙ (− 𝑝−1)𝐵

3: 𝑡A ← 𝑡𝐵/* base conversion step

4: 𝑢A ← 𝑡𝐴 . 𝑝A

5: 𝑣A ← 𝑠𝐴 + 𝑢A

6: 𝑐A ← 𝑣𝐴 . 𝑄𝐴
−1

7: 𝑐𝐵 ← 𝑐𝐴/* base conversion step

5. CONVERSIONS

Let us consider A= (𝑝1 , 𝑝2 , 𝑝3 … … … … …., 𝑝𝐿) as base,

this shall be used to analyze the Conversions to/from residue

representations.

1. Binary-to-Residue Conversion

A radix- representation of an integer z as an L- tuple

(𝑍(𝐿−1)… (𝑍(0)) satisfies

z = ∑ 𝑧(𝑖)2𝑟𝑖𝐿−1
𝑖=0 (5)

Where, 0 ≤ 𝑧(𝑖) ≤ 2𝑟 − 1

To compute 𝑧𝐴a method is devised, the multiply and

Accumulate structure in DRAMM is implemented for this

method. By applying the modulo pj operation, we obtain

<𝑧 >𝑃𝑗
 = <∑ 𝑧(𝑖)𝐿−1

𝑖=0 < 2𝑟𝑖 >𝑃𝑗
>𝑃𝑗

 ,∀ 𝑗 ∈ [1, 𝐿] (6)

If constants <2𝑟𝑖 >𝑃𝑗
are precomputed, this computation is

well suited to the proposed MAC structure and can be

computed in L steps, when executed by units in parallel.

Similar to the integer case, a polynomial lz(x) ∈ GF (2𝑛) can

be written as

z = ∑ 𝑧(𝑖)𝑥𝑟𝑖𝐿−1
𝑖=0 (7)

Applying the modulo 𝑃𝑗 operation in the above equation

< 𝑧 >𝑃𝑗
 = <∑ 𝑧(𝑖)𝐿−1

𝑖=0 < 𝑥𝑟𝑖 >𝑃𝑗
>𝑃𝑗

 ,∀ 𝑗 ∈ [1, 𝐿] (8)

Which is a similar operation to operation for integers, if

𝑥𝑟𝑖 >𝑃𝑗
are pre-computed. From the above analysis

conversions in both fields can be unified into a common

conversion method, if dual-field circuitry is employed.

2. Residue-to-Binary Conversion

As all operands in (4) are of word length, they can be

efficiently handled by an rbit MAC unit. However, employs

multiplications with large values, namely the WI s. To

overcome this problem can be rewritten as matrix notation.

The inner products of a row are calculated in parallel in each

MAC unit. Each MAC then propagates its result to

subsequent MACs, so that at the end the last MAC (L) outputs

the radix- 2 rdigit z (i) of the result. In parallel with this

summation, inner products of the next row i+1 can be

formulated, since the adder and multiplier of the proposed

MAC architecture may operate in parallel.

6. SIMULATION RESULTS

DOI: 10.18535/ijecs/v4i9.42

Afshan Fathima, IJECS Volume 04 Issue 09 September, 2015 Page No.14307-14312 Page 14311

Figure 1: SIMULATION RESULT OF MULTI

RESIDUE TEST

Figure 2: SIMULATION RESULT OF DUAL CLA

TEST

Figure 3: SIMULATION RESULT OF DUAL FIELD

MULTI TEST

Figure 4: SIMULATION RESULT OF FOUR MAC

TEST

Figure 5: SIMULATION RESULT OF MODULAR

REDUCTION TEST

Figure 6: SIMULATION RESULT OF MUX LOGIC

TEST

7. CONCLUSION

An Efficient high speed RNS modular multiplier

implemented in this paper ,that operates in both GF p and

GF(2 n) arithmetic fields and necessary conditions for the

system parameters are mentioned. The DRAMM architecture

supports all operations of Montgomery multiplication,

residue-to-binary conversion and binary-to-residue

conversion, MRC for polynomials and integers and modular

exponentiation in same hard ware. The MAC units in

DRAMM architecture reduces the delay, hence this is suited

for high speed applications like all types of public key

cryptography and DSP etc.

REFERENCES

[1] N. Szabo and R. Tanaka, Residue arithmetic and its

applications to computer technology. McGraw-Hill, 1967.

[2] R. Szerwinski and T. G ¨ uneysu, “Exploiting the power

of GPUs for asymmetric cryptography,” Cryptographic

Hardware and Embedded Systems–CHES 2008, pp. 79–99,

2008.

[3] P. Montgomery, “Modular multiplication without trial

division,” Mathematics of computation, vol. 44, no. 170, pp.

519– 521, 1985.

[4] S. Kawamura, M. Koike, F. Sano, and A. Shimbo, “Cox-

rower architecture for fast parallel Montgomery

multiplication,” in Advances in Cryptology EUROCRYPT

2000, ser. LNCS. Springer Berlin / Heidelberg, 2000, pp.

523–538.

[5] H. Nozaki, M. Motoyama, A. Shimbo, and S. Kawamura,

“Implementation of RSA algorithm based on RNS

Montgomery multiplication,” in Cryptographic Hardware

DOI: 10.18535/ijecs/v4i9.42

Afshan Fathima, IJECS Volume 04 Issue 09 September, 2015 Page No.14307-14312 Page 14312

and Embedded Systems CHES 2001, ser. LNCS. Springer

Berlin / Heidelberg, 2001, pp. 364–376.

[6] J.-C. Bajard, L.-S. Didier, and P. Kornerup, “An RNS

Montgomery modular multiplication algorithm,” Computers,

IEEE Transactions on, vol. 47, no. 7, pp. 766 –776, jul. 1998.

[7] J.-C. Bajard, L. S. Didier, and P. Kornerup, “Modular

multiplication and base extensions in residue number

systems,” in Computer Arithmetic, 2001. Proceedings. 15th

IEEE Symposium on, 2001, pp. 59–65.

[8] A. Shenoy and R. Kumaresan, “Fast base extension using

a redundant modulus in RNS,” Computers, IEEE

Transactions on, vol. 38, no. 2, pp. 292–297, Feb 1989.

[9] J.-C. Bajard and L. Imbert, “A full RNS implementation

of RSA,” Computers, IEEE Transactions on, vol. 53, no. 6,

pp. 769–774, June 2004.

[10] N. Guillermin, “A high speed coprocessor for elliptic

curve scalar multiplications over Fp,” in Workshop on

Cryptographic Hardware and Embedded Systems 2010

(CHES 2010), ser. LNCS. Springer Berlin / Heidelberg, 2010,

pp. 48–64.

[11] F. Gandino, F. Lamberti, J.-C. Bajard, and P. Montuschi,

“Preprocessing in RNS Montgomery multiplication,” Tech.

Rep., 2010.

[12] M. Pohst and H. Zassenhaus, Eds., Algorithmic algebraic

number theory. New York, NY, USA: Cambridge

UniversityPress, 1989, ch. 2.2.5.

[13] J. Bajard, N. Meloni, and T. Plantard, “Efficient RNS

bases for cryptography,” in IMACS’05 : World Congress:

Scientific Computation, Applied Mathematics and

Simulation, July 2005.

[14] D. Gajski, Principles of Digital Design. Prentice-Hall,

1997.

