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Abstract 

In 21st the role of wireless communications is huge in daily life applications but still power consumption by the applications is still 

concerned area in field of digital signal processing. Low power DSP architecture is required in all applications. Wireless 

communication exhibits the highest energy consumption in wireless sensor nodes. Given their limited energy supply from batteries 

or scavenging, these nodes must trade data communication for on-the-node computation. Due to the increasing complexity of 

VLSI circuits and their frequent use in portable applications, energy losses in the interconnections of such circuits have become 

significant. In the light of this, an efficient routing of these interconnections becomes important. In the implemented design 

describes the design and implementation of the newly proposed folded-tree architecture for on-the-node data processing in 

wireless sensor networks, in addition of add the routing technique for the high communication. Measurements of the silicon 

implementation show an improvement of 10–20× in terms of energy as compared to traditional modern micro-controllers found in 

sensor nodes. 
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1. INTRODUCTION 

Wireless Sensor Network (WSN) applications range from 

medical monitoring to environmental sensing, industrial 

inspection, and military surveillance. WSN nodes essentially 

consist of sensors, a radio, and a microcontroller combined 

with a limited power supply, e.g., battery or energy 

scavenging. Since radio transmissions are very expensive in 

terms of energy, they must be kept to a minimum in order to 

extend node lifetime. The ratio of communication-to 

computation energy cost can range from 100 to 3000. In 

addition, the lack of task-specific operations leads to 

inefficient execution. The data-driven nature of WSN 

applications requires a specific data processing approach. 

Previously, we have shown how parallel prefix 

computations can be a common denominator of many WSN 

data processing algorithms. 

It is possible to say that history of sensor network 

technology originates in the first distributed sensing idea 

implementations. The continuous work of researchers and 

engineers over sensor networks which lately became 

wireless sensor networks (WSNs) has started exactly with 

this idea. Like many other technologies, distributed sensing 

was firstly introduced by the military. The first system 

which has all the characteristics of sensor networks 

(distribution, hierarchical data processing system) is Sound 

Surveillance System (SOSUS), which was made to detect 

and track submarines. SOSUS consisted of the acoustic 

sensors (hydrophones) settled on the ocean bottom. In 1980s 

Defense Advanced Research Projects Agency (DARPA) is 

working over Distributed Sensor Networks (DSN) program.  

The main task of the program was to test 

applicability of a new approach to machine 

communications, introduced for the first time in Arpanet 
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(predecessor of the Internet). The task of researchers was to 

engineer a network of area-distributed sensors. At the same 

time, sensors had to be inexpensive, work autonomously and 

exchange data independently. Such demands are still made 

for developing sensor networks for modern applications. 

Hence, it is possible to say that the DARPA research was a 

base for modern WSNs. A sensor network of acoustic 

sensors tracking aircrafts appeared as a result of 

collaboration of researchers from Carnegie Mellon 

University (CMU), Pittsburgh, PA, and Massachusetts 

Institute of Technology (MIT), Cambridge. For a 

demonstration there was a platform made to passively detect 

and track low-flying aircraft. Connection between mobile 

nodes and a central computer was implemented through 

wireless transmission channel. Certainly, this system 

included not so many wireless nodes, and it was necessary 

to transport mobile nodes in the lorries, also system was able 

to track only low-flying objects with simple trajectory in 

rather short distance. However, this work was well in 

advance of that time and gave a considerable impetus to 

sensor networks developing. 

The goal of this paper is to design an ultralow-

energy WSN digital signal processor by further exploiting 

this and other characteristics unique to WSNs. 

2. CHARACTERISTICS OF WSN 

Several specific characteristics, unique to WSNs, need to be 

considered when designing a data processor architecture for 

WSNs.  

2.1 Data-Driven 

WSN applications are all about sensing data in an 

environment and translating this into useful information for 

the end-user, so virtually all WSN applications are 

characterized by local processing of the sensed data. 

2.2 Many-to-Few 

Since radio transmissions are very expensive in terms of 

energy, they must be kept to a minimum in order to extend 

node lifetime. Data communication must be traded for on-

the-node computation to save energy, so many sensor 

readings can be reduced to a few useful data values.  

2.3 Applications-Specific 

 A “one-size-fits-all” solution does not exist since a general 

purpose processor is far too power hungry for the sensor 

node’s limited energy budget. ASICs, on the other hand, are 

more energy efficient but lack the flexibility to facilitate 

many different applications. Apart from the above 

characteristics of WSNs, two key requirements for 

improving existing processing and control architectures can 

be identified.  

2.4 Minimize Memory Access 

 Modern micro-controllers (MCU) are based on the 

principles of a divide-and-conquer strategy of ultra-fast 

processors on the one hand and arbitrary complex programs 

on the other hand. But due to this generic approach, 

algorithms are deemed to spend up to 40–60% of the time in 

accessing memory, making it a bottleneck.  

2.5 Data Flow and Control Flow Principles 

 To manage the data stream (to/from data memory) and the 

instruction stream (from program memory) in the core 

functional unit, two approaches exist. Under control flow, 

the data stream is a consequence of the instruction stream, 

while under data flow the instruction stream is a 

consequence of the data stream. Traditional processor 

architecture is a control flow machine, with programs that 

execute sequentially as a stream of instructions. In contrast, 

a data flow program identifies the data dependencies, which 

enable the processor to more or less choose the order of 

execution. The latter approach has been hugely successful in 

specialized high throughput applications, such as 

multimedia and graphics processing. 
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Figure 1: A binary tree (left, 7 PEs) is functionally 

equivalent to the novel folded tree topology (right, 4 PEs) 

used in this architecture 

 

Figure 2: Addition with propagate-generate (PG) logic 

3. PROPOSED METHOD 

3.1 On-The-Node Data Aggregation 

Notwithstanding the seemingly vast nature of WSN 

applications, a set of basic building blocks for on-the-node 

processing can be identified. Common on-the-node 

operations performed on input data collected directly from 

the node’s sensors or through in-the-network aggregation 

include filtering, fitting, sorting ,and searching[7].Prefix 

operations can be calculated in a number of ways, but we 

chose the binary tree approach because its flow matches the 

desired on-the-node data aggregation. This can be visualized 

as a binary tree of processing elements (PEs) across which 

input data flows from the leaves to the root (Fig. 1, left). 

This topology will form the fixed part of our approach, but 

in order to serve multiple applications, flexibility is also 

required. The tree-based data flow will, therefore, be 

executed on a data path of programmable PEs, which 

provides this flexibility together with the parallel prefix 

concept. 

3.2 Parallel Prefix Operations 

In the digital design world, prefix operations are best known 

for their application in the class of carry look-ahead adders. 

The addition of two inputs A and B in this case consists of 

three stages (Fig. 2): a bitwise propagate generate (PG) logic 

stage, a group PG logic stage, and a sum-stage. The outputs 

of the bitwise PG stage (Pi = Ai + Bi and Gi = Ai ・ Bi) are 

fed as (Pi, Gi)-pairs to the group PG logic stage, which 

implements the following expression: 

(Pi, Gi) ◦ (Pi+1, Gi+1) = (Pi ・Pi+1, Gi + Pi ・Gi+1)   (1) 

 

Figure 3: Example of a prefix calculation with sum operator 

using Blelloch’s generic approach 

For example, the binary numbers A = “1001” and B= 

“0101” are added together. The bitwise PG logic of LSB 

first noted A = {1001} and B = {1010} returns the PG-pairs 

for these values, namely, (P, G) = {(0, 1); (0, 0); (1,0); (1, 

0)}.Using these pairs as input for the group PG-network, 

defined by the ◦-operator from (1) to calculate the prefix 

operation, results in the carry-array G = {1, 0, 0, 0} [i.e., the 

second element of each resulting pair from (1)] 

In fact, it contains all the carries of the addition, hence the 

name carry look ahead. Combined with the corresponding 

propagate values Pi, this yields the sum S = {0111}, which 

corresponds to “1110.”  

The group PG logic is an example of a parallel prefix 

computation with the given ◦-operator. The output of this 

parallel prefix PG-network is called the all-prefix set 

defined next.  
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For example, if ◦ is a simple addition, then the next prefix 

element of the ordered set [3, 1, 2, 0, 4, 1, 1, 3] is ∑ai = 

15.Blelloch’s procedure to calculate the prefix operations on 

a binary tree requires two phases (Fig. 3). In the trunk phase, 

the left value L is saved locally as L save and it is added to 

the right value R, which is passed on toward the root. This 

continues until the parallel-prefix element 15 is found at the 

root. 

3.3 Folded tree 

However, a straightforward binary tree implementation of 

Blelloch’s approach as shown in Fig.3 costs a significant 

amount of area as n inputs require p= n−1 PEs. To reduce 

area and power, pipelining can be traded for throughput. 

With a classic binary tree, as soon as a layer of PEs finishes 

processing, the results are passed on and new calculations 

can already recommence independently. The idea presented 

here is to fold the tree back onto itself to maximally reuse 

the PEs. In doing so, p becomes proportional to n/2 and the 

area is cut in half. The interconnect is reduced. On the other 

hand, throughput decreases by a factor of log2(n) but since 

the sample rate of different physical phenomena relevant for 

WSNs does not exceed 100 kHz, this leaves enough room 

for this tradeoff to be made. This newly proposed folded tree 

topology is depicted in Fig.1 on the right, which is 

functionally equivalent to the binary tree on the left. 

4. PROGRAMMING THE FOLDED TREE 

Now it will be shown how Blelloch’s generic approach for 

an arbitrary parallel prefix operator can be programmed to 

run on the folded tree. As an example, the sum-operator is 

used to implement a parallel-prefix sum operation on a 4-PE 

folded tree.  

First, the trunk-phase is considered. At the top of 

Fig. 4,a folded tree with four PEs is drawn of which PE3 

and PE are hatched differently. The functional equivalent 

binary tree in the center again shows how data moves from 

leaves to root during the trunk-phase. It is annotated with the 

letters L and R to indicate the left and right input value of 

inputs A and B. In accordance with Blelloch’s approach, L 

is saved as L save and the sum L+R is passed. Note that 

these annotations are not global, meaning that annotations 

with the same name do not necessarily share the same actual 

value. This is tailored toward executing the key store-and-

calculate operation of the parallel prefix algorithm on a tree. 

The PE program for the prefix-sum trunk-phase is 

given at the bottom of Fig. 4. The description column shows 

how data is stored or moves, while the actual operation is 

given in the last column. The write/read register files (RF) 

columns show how incoming data is saved/ retrieved in 

local RF, e.g., X@0bY means X is saved at address 0bY, 

while 0bY@X loads the value at 0bY into X. Details of the 

PE data path and the trigger handshaking, which can make 

PEs wait for new input data. 

 

Figure 4: Implications of using a folded tree (four4-PE 

folded tree shown at the top) 

Now, the twig-phase is considered using Fig. 5. The tree 

operates in the opposite direction, so an incoming value 

(annotated as S) enters the PE through its O port [see Fig. 

4(top)].Following Blelloch’s approach, S is passed to the 

left and the sum S + L save is passed to the right. the 

incoming value is passed to the left, followed by passing the 

sum of this value with Lsave0 to the right. Note that here as 

well none of these annotations are global. The way the PEs 

is activated during the twig-phase again influences how the 

programming of the folded tree must happen. 
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Figure 5: Annotated twig-phase graph of 4-PE folded tree 

5. SIMULATION RESULTS 

Unfolded Kogge Stone Adder Wsn 

 

Figure 6: Simulation result of 8-bit unfolded Kogge-stone 

adder WSN 

Folded Kogge stone adder Single Trunk Phase 

 

Figure 7: Simulation result of 8-bit fold KS adder Trunk 

Phase test bench WSN 

 

Figure 8: Simulation result of 8-bit fold KS adder Trunk 

Phase WSN 

Folded single Twig Phase 

 

Figure 9:  Simulation result of 8-bit fold KS adder Twig 

Phase WSN 

 

Figure 10: Simulation result of 8-bit fold KS adder Twig 

Phase WSN 
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Folded KS adder single twig phase 

 

Figure 11: Simulation result of 8-bit Fold KS adder Single 

Twig Phase 

Folded KS adder Two Trunk Phase 

 

Figure 12: Simulation result of 8-bit Fold KS adder Two 

Trunk WSN 

Fold Sensor Node 

 

Figure 13: Simulation result of 8-bit Folded Sensor Node 

Kogge-stone adder 

Unfolded Kogge-Stone Adder Wsn  

 

Figure 14: Top-level of 8-bit Unfold Kogge-stone WSN 

 

Figure 15: Internal block of 8-bit Unfold Kogge-stone WSN 

 

Figure 16: Top level of 8-bit Fold Single Trunk WSN 
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Figure 17: Internal block Fold trunk phase WSN 

 

Figure 18: Top-level Fold trunk phase WSN 

 

Figure 19: Top-level Fold twig phase WSN 

 

Figure 20: Internal block Fold Twig Phase WSN 

 

Figure 21: Top-level Fold Sensor node 

 

Figure 22: Internal block of Fold Sensor Node 
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Figure 23: Top-level of Fold single twig phase  

 

Figure 24: Top-level of fold two trunk phase  

TABULAR COLUMNS 

Architectures No.of 

slices 

No.of 

LUTs 

No.of 

IOBs 

Accessing 

time 

Unfolded tree architecture 

By using Kogge-stone 

adder 

 

160 

 

278 

 

      70 

 

4.875ns 

Folded tree architecture 

By using Kogge-stone 

adder 

 

125 

 

217 

 

67 

 

2.010ns 

Table 1.1: Comparison of unfolded and folded Kogge-stone adder WSN for 8-bit 

 

 

 

 

 

Tabular 1.2: Device utilization summary of 8-bit Kogge-stone Folded tree WSN 

 

6. CONCLUSION 

This paper presented the folded tree architecture of a digital 

signal processor for WSN applications. The design exploits 

the fact that many data processing algorithms for WSN 

applications can be described using parallel-prefix 

operations, introducing the much needed flexibility. Energy 

is saved thanks to the following: 1) limiting the data set by 

pre-processing with parallel-prefix operations; 2) the reuse 

of the binary tree as a folded tree; and 3) the combination of 

                              Device Utilization Summary (estimated values)                                                           |[-] 

Logic Utilization Used Available Utilization 

Number of Slices 125 1920 6% 

Number of Slices Flip 

Flops 

99 3840 2% 

Number of 4 input LUTs 217 3840 5% 

Number of bonded IOBs 67 141 87% 

Number of GCLKs 2 8 25% 
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data flow and control flow elements to introduce a local 

distributed memory, which removes the memory bottleneck 

while retaining sufficient flexibility. It consumes down to 8 

pJ/cycle. Compared to existing commercial solutions, this is 

at least 10× less in terms of overall energy and 2–3× faster. 

In future work to using the router in the end of data 

reaching, it is very useful to send the data in multiple nodes. 
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