
www.ijecs.in
International Journal Of Engineering And Computer Science ISSN: 2319-7242
Volume 4 Issue 9 Sep 2015, Page No. 14298-14306

R. Sandhya, IJECS Volume 04 Issue 09 September, 2015 Page No.14298-14306 Page 14298

Optimized Analytical Approach For Wireless Sensory Nodes Based

On Low Power DSP Architecture
R. Sandhya (Pg Scholar) 1 B.Sanjai Prasada Rao Associate Professor2

Department of ECE, Lords Institute of Engineering and Technology, Hyderabad, INDIA

Abstract

In 21st the role of wireless communications is huge in daily life applications but still power consumption by the applications is still

concerned area in field of digital signal processing. Low power DSP architecture is required in all applications. Wireless

communication exhibits the highest energy consumption in wireless sensor nodes. Given their limited energy supply from batteries

or scavenging, these nodes must trade data communication for on-the-node computation. Due to the increasing complexity of

VLSI circuits and their frequent use in portable applications, energy losses in the interconnections of such circuits have become

significant. In the light of this, an efficient routing of these interconnections becomes important. In the implemented design

describes the design and implementation of the newly proposed folded-tree architecture for on-the-node data processing in

wireless sensor networks, in addition of add the routing technique for the high communication. Measurements of the silicon

implementation show an improvement of 10–20× in terms of energy as compared to traditional modern micro-controllers found in

sensor nodes.

KEYWORDS: Digital processor, Folded Tree, Modern Micro-Controller, parallel prefix, wireless sensor Network (WSN).

1. INTRODUCTION

Wireless Sensor Network (WSN) applications range from

medical monitoring to environmental sensing, industrial

inspection, and military surveillance. WSN nodes essentially

consist of sensors, a radio, and a microcontroller combined

with a limited power supply, e.g., battery or energy

scavenging. Since radio transmissions are very expensive in

terms of energy, they must be kept to a minimum in order to

extend node lifetime. The ratio of communication-to

computation energy cost can range from 100 to 3000. In

addition, the lack of task-specific operations leads to

inefficient execution. The data-driven nature of WSN

applications requires a specific data processing approach.

Previously, we have shown how parallel prefix

computations can be a common denominator of many WSN

data processing algorithms.

It is possible to say that history of sensor network

technology originates in the first distributed sensing idea

implementations. The continuous work of researchers and

engineers over sensor networks which lately became

wireless sensor networks (WSNs) has started exactly with

this idea. Like many other technologies, distributed sensing

was firstly introduced by the military. The first system

which has all the characteristics of sensor networks

(distribution, hierarchical data processing system) is Sound

Surveillance System (SOSUS), which was made to detect

and track submarines. SOSUS consisted of the acoustic

sensors (hydrophones) settled on the ocean bottom. In 1980s

Defense Advanced Research Projects Agency (DARPA) is

working over Distributed Sensor Networks (DSN) program.

The main task of the program was to test

applicability of a new approach to machine

communications, introduced for the first time in Arpanet

http://www.ijecs.in/

DOI: 10.18535/ijecs/v4i9.41

R. Sandhya, IJECS Volume 04 Issue 09 September, 2015 Page No.14298-14306 Page 14299

(predecessor of the Internet). The task of researchers was to

engineer a network of area-distributed sensors. At the same

time, sensors had to be inexpensive, work autonomously and

exchange data independently. Such demands are still made

for developing sensor networks for modern applications.

Hence, it is possible to say that the DARPA research was a

base for modern WSNs. A sensor network of acoustic

sensors tracking aircrafts appeared as a result of

collaboration of researchers from Carnegie Mellon

University (CMU), Pittsburgh, PA, and Massachusetts

Institute of Technology (MIT), Cambridge. For a

demonstration there was a platform made to passively detect

and track low-flying aircraft. Connection between mobile

nodes and a central computer was implemented through

wireless transmission channel. Certainly, this system

included not so many wireless nodes, and it was necessary

to transport mobile nodes in the lorries, also system was able

to track only low-flying objects with simple trajectory in

rather short distance. However, this work was well in

advance of that time and gave a considerable impetus to

sensor networks developing.

The goal of this paper is to design an ultralow-

energy WSN digital signal processor by further exploiting

this and other characteristics unique to WSNs.

2. CHARACTERISTICS OF WSN

Several specific characteristics, unique to WSNs, need to be

considered when designing a data processor architecture for

WSNs.

2.1 Data-Driven

WSN applications are all about sensing data in an

environment and translating this into useful information for

the end-user, so virtually all WSN applications are

characterized by local processing of the sensed data.

2.2 Many-to-Few

Since radio transmissions are very expensive in terms of

energy, they must be kept to a minimum in order to extend

node lifetime. Data communication must be traded for on-

the-node computation to save energy, so many sensor

readings can be reduced to a few useful data values.

2.3 Applications-Specific

 A “one-size-fits-all” solution does not exist since a general

purpose processor is far too power hungry for the sensor

node’s limited energy budget. ASICs, on the other hand, are

more energy efficient but lack the flexibility to facilitate

many different applications. Apart from the above

characteristics of WSNs, two key requirements for

improving existing processing and control architectures can

be identified.

2.4 Minimize Memory Access

 Modern micro-controllers (MCU) are based on the

principles of a divide-and-conquer strategy of ultra-fast

processors on the one hand and arbitrary complex programs

on the other hand. But due to this generic approach,

algorithms are deemed to spend up to 40–60% of the time in

accessing memory, making it a bottleneck.

2.5 Data Flow and Control Flow Principles

 To manage the data stream (to/from data memory) and the

instruction stream (from program memory) in the core

functional unit, two approaches exist. Under control flow,

the data stream is a consequence of the instruction stream,

while under data flow the instruction stream is a

consequence of the data stream. Traditional processor

architecture is a control flow machine, with programs that

execute sequentially as a stream of instructions. In contrast,

a data flow program identifies the data dependencies, which

enable the processor to more or less choose the order of

execution. The latter approach has been hugely successful in

specialized high throughput applications, such as

multimedia and graphics processing.

DOI: 10.18535/ijecs/v4i9.41

R. Sandhya, IJECS Volume 04 Issue 09 September, 2015 Page No.14298-14306 Page 14300

Figure 1: A binary tree (left, 7 PEs) is functionally

equivalent to the novel folded tree topology (right, 4 PEs)

used in this architecture

Figure 2: Addition with propagate-generate (PG) logic

3. PROPOSED METHOD

3.1 On-The-Node Data Aggregation

Notwithstanding the seemingly vast nature of WSN

applications, a set of basic building blocks for on-the-node

processing can be identified. Common on-the-node

operations performed on input data collected directly from

the node’s sensors or through in-the-network aggregation

include filtering, fitting, sorting ,and searching[7].Prefix

operations can be calculated in a number of ways, but we

chose the binary tree approach because its flow matches the

desired on-the-node data aggregation. This can be visualized

as a binary tree of processing elements (PEs) across which

input data flows from the leaves to the root (Fig. 1, left).

This topology will form the fixed part of our approach, but

in order to serve multiple applications, flexibility is also

required. The tree-based data flow will, therefore, be

executed on a data path of programmable PEs, which

provides this flexibility together with the parallel prefix

concept.

3.2 Parallel Prefix Operations

In the digital design world, prefix operations are best known

for their application in the class of carry look-ahead adders.

The addition of two inputs A and B in this case consists of

three stages (Fig. 2): a bitwise propagate generate (PG) logic

stage, a group PG logic stage, and a sum-stage. The outputs

of the bitwise PG stage (Pi = Ai + Bi and Gi = Ai ・ Bi) are

fed as (Pi, Gi)-pairs to the group PG logic stage, which

implements the following expression:

(Pi, Gi) ◦ (Pi+1, Gi+1) = (Pi ・Pi+1, Gi + Pi ・Gi+1) (1)

Figure 3: Example of a prefix calculation with sum operator

using Blelloch’s generic approach

For example, the binary numbers A = “1001” and B=

“0101” are added together. The bitwise PG logic of LSB

first noted A = {1001} and B = {1010} returns the PG-pairs

for these values, namely, (P, G) = {(0, 1); (0, 0); (1,0); (1,

0)}.Using these pairs as input for the group PG-network,

defined by the ◦-operator from (1) to calculate the prefix

operation, results in the carry-array G = {1, 0, 0, 0} [i.e., the

second element of each resulting pair from (1)]

In fact, it contains all the carries of the addition, hence the

name carry look ahead. Combined with the corresponding

propagate values Pi, this yields the sum S = {0111}, which

corresponds to “1110.”

The group PG logic is an example of a parallel prefix

computation with the given ◦-operator. The output of this

parallel prefix PG-network is called the all-prefix set

defined next.

DOI: 10.18535/ijecs/v4i9.41

R. Sandhya, IJECS Volume 04 Issue 09 September, 2015 Page No.14298-14306 Page 14301

For example, if ◦ is a simple addition, then the next prefix

element of the ordered set [3, 1, 2, 0, 4, 1, 1, 3] is ∑ai =

15.Blelloch’s procedure to calculate the prefix operations on

a binary tree requires two phases (Fig. 3). In the trunk phase,

the left value L is saved locally as L save and it is added to

the right value R, which is passed on toward the root. This

continues until the parallel-prefix element 15 is found at the

root.

3.3 Folded tree

However, a straightforward binary tree implementation of

Blelloch’s approach as shown in Fig.3 costs a significant

amount of area as n inputs require p= n−1 PEs. To reduce

area and power, pipelining can be traded for throughput.

With a classic binary tree, as soon as a layer of PEs finishes

processing, the results are passed on and new calculations

can already recommence independently. The idea presented

here is to fold the tree back onto itself to maximally reuse

the PEs. In doing so, p becomes proportional to n/2 and the

area is cut in half. The interconnect is reduced. On the other

hand, throughput decreases by a factor of log2(n) but since

the sample rate of different physical phenomena relevant for

WSNs does not exceed 100 kHz, this leaves enough room

for this tradeoff to be made. This newly proposed folded tree

topology is depicted in Fig.1 on the right, which is

functionally equivalent to the binary tree on the left.

4. PROGRAMMING THE FOLDED TREE

Now it will be shown how Blelloch’s generic approach for

an arbitrary parallel prefix operator can be programmed to

run on the folded tree. As an example, the sum-operator is

used to implement a parallel-prefix sum operation on a 4-PE

folded tree.

First, the trunk-phase is considered. At the top of

Fig. 4,a folded tree with four PEs is drawn of which PE3

and PE are hatched differently. The functional equivalent

binary tree in the center again shows how data moves from

leaves to root during the trunk-phase. It is annotated with the

letters L and R to indicate the left and right input value of

inputs A and B. In accordance with Blelloch’s approach, L

is saved as L save and the sum L+R is passed. Note that

these annotations are not global, meaning that annotations

with the same name do not necessarily share the same actual

value. This is tailored toward executing the key store-and-

calculate operation of the parallel prefix algorithm on a tree.

The PE program for the prefix-sum trunk-phase is

given at the bottom of Fig. 4. The description column shows

how data is stored or moves, while the actual operation is

given in the last column. The write/read register files (RF)

columns show how incoming data is saved/ retrieved in

local RF, e.g., X@0bY means X is saved at address 0bY,

while 0bY@X loads the value at 0bY into X. Details of the

PE data path and the trigger handshaking, which can make

PEs wait for new input data.

Figure 4: Implications of using a folded tree (four4-PE

folded tree shown at the top)

Now, the twig-phase is considered using Fig. 5. The tree

operates in the opposite direction, so an incoming value

(annotated as S) enters the PE through its O port [see Fig.

4(top)].Following Blelloch’s approach, S is passed to the

left and the sum S + L save is passed to the right. the

incoming value is passed to the left, followed by passing the

sum of this value with Lsave0 to the right. Note that here as

well none of these annotations are global. The way the PEs

is activated during the twig-phase again influences how the

programming of the folded tree must happen.

DOI: 10.18535/ijecs/v4i9.41

R. Sandhya, IJECS Volume 04 Issue 09 September, 2015 Page No.14298-14306 Page 14302

Figure 5: Annotated twig-phase graph of 4-PE folded tree

5. SIMULATION RESULTS

Unfolded Kogge Stone Adder Wsn

Figure 6: Simulation result of 8-bit unfolded Kogge-stone

adder WSN

Folded Kogge stone adder Single Trunk Phase

Figure 7: Simulation result of 8-bit fold KS adder Trunk

Phase test bench WSN

Figure 8: Simulation result of 8-bit fold KS adder Trunk

Phase WSN

Folded single Twig Phase

Figure 9: Simulation result of 8-bit fold KS adder Twig

Phase WSN

Figure 10: Simulation result of 8-bit fold KS adder Twig

Phase WSN

DOI: 10.18535/ijecs/v4i9.41

R. Sandhya, IJECS Volume 04 Issue 09 September, 2015 Page No.14298-14306 Page 14303

Folded KS adder single twig phase

Figure 11: Simulation result of 8-bit Fold KS adder Single

Twig Phase

Folded KS adder Two Trunk Phase

Figure 12: Simulation result of 8-bit Fold KS adder Two

Trunk WSN

Fold Sensor Node

Figure 13: Simulation result of 8-bit Folded Sensor Node

Kogge-stone adder

Unfolded Kogge-Stone Adder Wsn

Figure 14: Top-level of 8-bit Unfold Kogge-stone WSN

Figure 15: Internal block of 8-bit Unfold Kogge-stone WSN

Figure 16: Top level of 8-bit Fold Single Trunk WSN

DOI: 10.18535/ijecs/v4i9.41

R. Sandhya, IJECS Volume 04 Issue 09 September, 2015 Page No.14298-14306 Page 14304

Figure 17: Internal block Fold trunk phase WSN

Figure 18: Top-level Fold trunk phase WSN

Figure 19: Top-level Fold twig phase WSN

Figure 20: Internal block Fold Twig Phase WSN

Figure 21: Top-level Fold Sensor node

Figure 22: Internal block of Fold Sensor Node

DOI: 10.18535/ijecs/v4i9.41

R. Sandhya, IJECS Volume 04 Issue 09 September, 2015 Page No.14298-14306 Page 14305

Figure 23: Top-level of Fold single twig phase

Figure 24: Top-level of fold two trunk phase

TABULAR COLUMNS

Architectures No.of

slices

No.of

LUTs

No.of

IOBs

Accessing

time

Unfolded tree architecture

By using Kogge-stone

adder

160

278

 70

4.875ns

Folded tree architecture

By using Kogge-stone

adder

125

217

67

2.010ns

Table 1.1: Comparison of unfolded and folded Kogge-stone adder WSN for 8-bit

Tabular 1.2: Device utilization summary of 8-bit Kogge-stone Folded tree WSN

6. CONCLUSION

This paper presented the folded tree architecture of a digital

signal processor for WSN applications. The design exploits

the fact that many data processing algorithms for WSN

applications can be described using parallel-prefix

operations, introducing the much needed flexibility. Energy

is saved thanks to the following: 1) limiting the data set by

pre-processing with parallel-prefix operations; 2) the reuse

of the binary tree as a folded tree; and 3) the combination of

 Device Utilization Summary (estimated values) |[-]

Logic Utilization Used Available Utilization

Number of Slices 125 1920 6%

Number of Slices Flip

Flops

99 3840 2%

Number of 4 input LUTs 217 3840 5%

Number of bonded IOBs 67 141 87%

Number of GCLKs 2 8 25%

DOI: 10.18535/ijecs/v4i9.41

R. Sandhya, IJECS Volume 04 Issue 09 September, 2015 Page No.14298-14306 Page 14306

data flow and control flow elements to introduce a local

distributed memory, which removes the memory bottleneck

while retaining sufficient flexibility. It consumes down to 8

pJ/cycle. Compared to existing commercial solutions, this is

at least 10× less in terms of overall energy and 2–3× faster.

In future work to using the router in the end of data

reaching, it is very useful to send the data in multiple nodes.

REFERENCES

[1] Cedric Walravens and Wim Dehaene, “Low-Power

Digital Signal Processor Architecture for Wireless Sensor

Nodes”, in Proc. Design, Automat. Test Eur. Conf.

Exhibit.,2013.

[2] C.Walravens and W.Dehaene, “Design of a low-energy

data processing architecture for wsn nodes,” in Proc.

Design, Automat. Test Eur. Conf. Exhibit., Mar. 2012, pp.

570–573.

[3] M.Hempstead, D.Brooks, and G.Wei, “An accelerator-

based wireless sensor network processor in 130 nm cmos,”

J. Emerg. Select. Topics Circuits Syst., vol. 1, no. 2, pp.

193–202, 2011.

 [4] N.Weste and D.Harris, CMOS VLSI Design: A Circuits

and Systems Perspective. Reading, MA, USA, Addison

Wesley, 2010.

[5] O.Girard. (2010). “OpenMSP430 processor core,

available at opencores.org.

[6] S.Mysore, B.Agrawal, F.T.Chong, and T.Sherwood,

“Exploring the processor and ISA design for wireless sensor

network applications,” in Proc. 21th Int. Conf. Very-Large-

Scale Integr. (VLSI) Design, 2008, pp. 59–64.

 [7] M.Hempstead, J.M.Lyons, D.Brooks, and G.Y.Wei,

“Survey of hardware systems for wireless sensor networks,”

J. Low Power Electron., vol. 4, no. 1, pp. 11–29, 2008.

[8] J.Hennessy and D.Patterson, Computer Architecture A

Quantitative Approach, 4th ed. San Mateo, CA: Morgan

Kaufmann, 2007.

[9] P.Sanders and J.Träff, “Parallel prefix (scan) algorithms

for MPI,” in Proc. Recent Adv. Parallel Virtual Mach.

Message Pass. Interf., 2006, pp. 49–57.

 [10] H.Karl and A.Willig, Protocols and Architectures for

Wireless Sensor Networks, 1st ed. New York: Wiley, 2005.

[11] V.N.Ekanayake, C.Kelly, and R.Manohar, “BitSNAP:

Dynamic significance compression for a low energy sensor

network asynchronous processor,” in Proc. IEEE 11th Int.

Symp. Asynchronous Circuits Syst., Mar. 2005, pp. 144–

154.

[12] L.Nazhandali, M.Minuth, and T.Austin, “SenseBench:

Toward an accurate evaluation of sensor network

processors,” in Proc. IEEE Workload Characterizat. Symp.,

Oct. 2005, pp. 197–203.

[13] B.A.Warneke and K. S.J.Pister, “An ultra-low energy

microcontroller for smart dust wireless sensor networks,” in

Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech.

Papers. Feb. 2004, pp. 316–317.

[14] M.Hempstead, M.Welsh, and D.Brooks, “Tinybench:

The case for a standardized benchmark suite for TinyOS

based wireless sensor network devices,” in Proc. IEEE 29th

Local Comput. Netw. Conf., Nov. 2004, pp. 585–586

