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Abstract: K-Means is the most popular clustering algorithm in data mining. The size of various data sets has increased tremendously day 

by day. Due to recent development in the shared memory inexpensive architecture like Graphics Processing Units (GPU). The general – 

purpose applications are implemented on GPU using Compute Unified Device Architecture (CUDA).  Cost effectiveness of the GPU and 

several features of CUDA like thread Divergence and coalescing memory access. Shared memory architecture is much more efficient than 

distributed memory architecture. 
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1. Introduction 

Graphics processors (GPUs) have developed very rapidly 

in recent years. GPUs have moved beyond their originally-

targeted graphics applications and increasingly become a 

viable choice for general purpose computing. Nowadays, 

most desktop computers are equipped with programmable 

graphics processing units (GPUs) with plenty powerful 

Single Instruction Multiple Data (SIMD) processors that can 

support parallel data processing and high-precision 

computation. The rapid advance in GPUs performance, 

coupled with recent improvements in its programmability, 

made it possible to parallelize k-means on personal 

computers. CUDA technology gives computationally 

intensive applications access to the tremendous processing 

power of the latest GPUs through a C-like programming 

interface [1].  

As a general-purpose and high performance parallel 

hardware, Graphics Processing Units (GPUs) develop 

continuously and provide another promising platform for 

parallelizing k-Means. GPUs are dedicated hardware for 

manipulating computer graphics. Due to the huge computing 

demand for real-time and high-definition 3D graphics, GPUs 

have evolved into highly parallel many-core processors. The 

advances of computing power and memory bandwidth in 

GPUs have driven the development of general-purpose 

computing on GPUs (GPGPU) [10]. 

  The paper provides a brief literature review of all 

versions of K-Means implementation on GPUs using CUDA 

that have published till date. Section II brief describes K-

Means with its parallel implementation details on GPU. 

Section III explains literature review of K-Means on GPUs. 

Finally, Section IV discusses the findings of this review work 

and future scope for improvement.  

2.  RELATED WORK 

2.1 K-Mean 

K-Means is a commonly used clustering algorithm used for 

data mining. Clustering is a means of arranging n data points 

into k clusters where each cluster has maximal similarity as 

defined by an objective function. Each point may only belong 

to one cluster, and the union of all clusters contains all n 

points. The algorithm assigns each point to the cluster whose 

center is nearest. The center is the average of all the points in 

the cluster that is, its coordinates are the arithmetic mean for 

each dimension separately over all the points in the cluster. 

The algorithm steps are [4]: 

1) Choose the number of clusters, k. 

2) Randomly generate k clusters and determine 

the cluster centers, or directly generate k random points as 

cluster centers. 

3) Assign each point to the nearest cluster center. 

4) Re-compute the new cluster centers. 

5) Repeat the two previous steps until some convergence 

criterion is met (usually that the assignment hasn’t changed).  
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An initial clustering C is created by choosing k random 

centroids from the set of data points X. This is known as the 

seeding stage. Next a labeling stage is executed where each 

data point xi ε X is assigned to the cluster Cj for which D(xi, 

cj) is minimal. Each centroid cj is then recalculated by the 

mean of all data points xi ε Cj. The labelling and centroid 

update stage are executed repeatedly until C no longer 

changes [2]. 

 

2.2  Parallel K-Mean 

2.2.1 Data objects assignment 

Data objects assignment and k centroids recalculation are 

the most intensive arithmetic task load of k-means. There are 

two strategies in data objects assignment process suited to 

GPU-based kmeans. The first is the centroids-oriented, in 

which distance from each centroid to all data objects are 

calculated and then, each data point will merge itself into the 

cluster represented by nearest centroid. This method has 

advantages when the number of processors of GPU is 

relatively small so that every processor can deal with data 

objects in series. Another is the data objects-oriented, 

namely, each data point calculates the distance from all 

centroids, then data object will be assigned to the cluster 

represented by the centroid with the shortest distance from it 

[5]. 

In k-means algorithm, every data point must choose the 

nearest centroid after calculating all the distances, this 

selecting process consists a series of comparison which could 

be carried out through Deep Buffer in early GPUs. In this 

way, the latency of memory access could be avoided while 

one thread is waiting for memory access, and other threads 

will be optimized to use the arithmetic resources [3]. 

2.2.2 K centroids recalculation 

The new centroid is the arithmetic means of all data 

objects. The positions of the k centroids are also parallel 

recalculated by GPU and every thread is responsible for a 

new centroid. After data objects assignment, we get the 

cluster label of every data point. A straightforward idea for 

recalculating the position of one centroid is to read all data 

objects and determine whether the data point belongs to this 

centroid or not. Unfortunately, massive condition statements 

are not suitable to the stream processor model of GPUs. We 

add another procedure that the cluster labels are downloaded 

from the device (GPU) to the host (CPU) and the host 

rearranges all data objects and counts the number of data 

objects contained by each cluster. And then, both structures 

are uploaded to the global memory of the device. In this way, 

every thread of CUDA kernel can complete its task by 

reading its own data objects continuously [7]. 

2.2.3 Algorithm 

The labelling stage is identified as being inherently data 

parallel. The set of data points X is split up equally among p 

processors, each calculating the labels of all data points of 

their subset of X. In a reduction step the centroids are then 

updated accordingly. It has been shown that the relative 

speedup compared to a sequential implementation of k-means 

increases nearly linearly with the number of processors. 

Performance penalties introduced by communication cost 

between the processors in the reduction step can be neglected 

for large n. 

Since the GPU is a shared memory multiprocessor 

architecture this section briefly outlines a parallel 

implementation on such a machine. It only slightly diverges 

from the approach proposed by Dhillon. Processors are now 

called threads and a master-slave model is employed. Each 

thread is assigned an identifier between 0 and t - 1 where t 

denotes the number of threads. Thread 0 is considered the 

master thread, all other threads are slaves. Threads share 

some memory within which the set of data points X, the set 

of current centroids C as well as the clusters Cj reside. Each 

thread additionally owns local memory for miscellaneous 

data. It is further assumed that locking mechanisms for 

concurrent memory access are available. Given this setup the 

sequential algorithm can be mapped to this programming 

model as follows. 

The master thread initializes the centroids as it is done in 

the sequential version of k-means. Next X is partitioned into 

subsets Xi; i = 0; : : : t. This is merely an offset and range 

calculation each thread executes giving those xi each thread 

processes in the labeling stage. All threads execute the 

labeling stage for their partition of X. The label of each data 

point xi is stored in a component li of an n-dimensional 

vector. This eliminates concurrent writes when updating 

clusters and simplifies bookkeeping. After the labelling stage 

the threads are synchronized to ensure that all data for the 

centroid update stage is available. The centroid update stage 

could then be executed by a reduction operation. However, 

for the sake of simplicity it is assumed that the master thread 

executes this stage sequentially. Instead of iterating over all 

centroids the master thread iterates over all labels partially 

calculating the new centroids. A k-dimensional vector m is 

updated in each iteration where each component mj holds the 

number of data points assigned to cluster Cj . Next another 

loop over all centroids is performed scaling each centroid cj 

by 1/mj giving the final centroids. Convergence is also 

determined by the master thread by checking whether the last 

labeling stage introduced any changes in the clustering. Slave 

threads are signaled to stop execution by the master thread as 

soon as convergence is achieved. Algorithm 2 describes the 

procedure executed by each thread. 
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2.3 Graphics Processing Unit 

NVIDIA's Tesla unified computing architecture is 

designed to support both graphics and general purpose 

computing. The programmable processing elements share a 

common, very general-purpose instruction set that is used by 

both graphics and general-purpose computation. Each 

processing element (PE) supports 128 concurrent thread 

contexts, allowing a very simple pipeline. Latencies are 

simply tolerated by switching threads. Current Tesla-

architecture products can support up to 30720 concurrent 

threads. Although it describes the previous generation 

GeForce 8800 GTX and related products. Lindholm et al. 

[14] provide a nice description of contemporary NVIDIA 

GPU architectures. 

 

 
 

Figure1: GPU Architecture 

 

Each SM consists of 8 processing elements, called Stream 

Processors or SPs. To maximize the number of processing 

elements that can be accommodated within the GPU die, 

these 8 SPs operate in SIMD fashion under the control of a 

single instruction sequencer. The threads in a thread block 

(up to 512) are time-sliced onto these 8 SPs in groups of 32 

called warps. Each warp of 32 threads operates in lockstep 

and these 32 threads are quad-pumped on the 8 SPs. 

Multithreading is then achieved through a hardware thread 

scheduler in each SM. Every cycle this scheduler selects the 

next warp to execute. Divergent threads are handled using 

hardware masking until they re-converge. Different warps in 

a thread block need not operate in lockstep, but if threads 

within a warp follow divergent paths, only threads on the 

same path can be executed simultaneously. In the worst case, 

if all 32 threads in a warp follow different paths without re-

converging. effectively resulting in a sequential execution of 

the threads across the warp. A 32 * penalty will be incurred. 

Unlike vector forms of SIMD, Tesla's architecture preserves 

a scalar programming model, like the Illiac [5] or Maspar [2] 

architectures; for correctness the programmer need not be 

aware of the SIMD nature of the hardware, although 

optimizing to minimize SIMD divergence will certainly 

benefit performance. 

When a kernel is launched, the driver notifies the 

GPU's work distributor of the kernel's starting PC and its grid 

configuration. As soon as an SM has sufficient thread and 

PBSM resources to accommodate a new thread block, a 

hardware scheduler randomly assigns a new thread block and 

the SM's hardware controller initializes the state for all 

threads (up to 512) in that thread block. 

The Tesla architecture is designed to support 

workloads with relatively little temporal data locality and 

only very localized data reuse. As a consequence, it does not 

provide large hardware caches which are shared among 

multiple cores, as is the case on modern CPUs. In fact, there 

is no cache in the conventional sense: variables that do not fit 

in a thread's register file are spilled to global memory. 

Instead, in addition to the PBSM, each SM has two small, 

private data caches, both of which only hold read-only data: 

the texture cache and the constant cache. (The name texture 

comes from 3D graphics, where images which are mapped 

onto polygons are called textures.) Data structures must be 

explicitly allocated into the PBSM, constant, and texture 

memory spaces. 

    The texture cache allows arbitrary access patterns 

at full performance. It is useful for achieving maximum 

performance on coalesced access patterns with arbitrary 

offsets. The constant cache is optimized for broadcasting 

values to all PEs in an SM and performance degrades linearly 

if PEs request multiple addresses in a given cycle. This 

limitation makes it primarily useful for small data structures 

which are accessed in a uniform manner by many threads in a 

warp. 

 

2.4 Compute Unified Device Architecture 

We have shown the GPU's potential to support interesting 

applications with diverse performance characteristics. In the 

course of developing these applications, we made many 

observations about the CUDA programming model. Threads 

in CUDA are scalar, and the kernel is therefore a simple 

scalar program, without the need to manage vectorization, 

packing, etc. as is common in some other programming 

models. In fact, in CUDA data accesses do not need to be 

contiguous at all, that is to say each thread can access any 

memory location and still obtain the benefits of SIMD 

execution as the instruction sequence stays in lockstep within 

a warp. Although non-contiguous memory references may 
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reduce effective memory bandwidth, this is only a concern 

for applications that are memory bound. Even in that case, 

packing is not a prerequisite for working code, but rather an 

optimization step, which dramatically reduces the software 

development burden. 

The CUDA model is not a purely data-parallel 

model. For example, programmers can specify task 

parallelism within a warp, but they must keep in mind that 

this might cause a severe performance penalty due to thread 

divergence. Alternatively, task parallelism can be specified 

between warps within a thread block, but programs are 

limited to synchronizing all warps via syncthreads() thread 

blocks can perform different work, but cannot have producer-

consumer relationships except across kernel calls. 

 

 
 

Figure 2: CUDA Architecture 

 

Barrier synchronization is widely perceived as 

inefficient, but can actually be more efficient than a large 

quantity of fine-grained synchronizations. Barriers are mainly 

detrimental in those cases where the program is forced to 

synchronize all threads to satisfy the needs of only a few. It is 

not clear how often this is a concern. Barriers also provide a 

much simpler abstraction to the programmer. These tradeoffs 

are poorly understood when the synchronization occurs on 

chip with hardware synchronization primitives. 

Currently, programmers must specify the number of 

working threads explicitly for a kernel, and threads cannot 

fork new threads. Often some thread resources are wasted, as 

in our Needleman-Wunsch implementation. Add to these 

limitations a lack of support for recursion, and the interface is 

missing a set of powerful, key abstractions that could hinder 

their uptake as programmers struggle to restructure their old 

code as CUDA programs. 

Lack of persistent state in the per-block shared 

memory results in less efficient communication among 

producer and consumer kernels than might be otherwise 

possible. The producer kernel has to store the shared memory 

data into device memory; the data is then read back over the 

bus by the consumer kernel. This also undercuts the 

efficiency of global synchronization which involves kernel 

termination and creation; however, a persistent shared 

memory contradicts the current programming model, in 

which thread blocks run to completion and by definition 

leave no state afterwards. Alternatively, a programmer can 

choose to use a novel algorithm that involves less 

communication and global synchronization, such as the 

pyramid algorithm that we use in HotSpot, but this often 

increases program complexity. 

CUDA's performance is hurt by its inability to 

collect data from a set of producer threads and stream them 

to a set of consumer threads. Intermediate data has to be 

stored in device memory before it is consumed by another 

thread in a new kernel. 

 

3. LITERATURE REVIEW 

According to literature survey we found Several 

implementations of the popular K-means data clustering 

algorithm for GPUs exist[6]. One common restriction of the 

published approaches, however, is the limitation of reported 

dimensionality of test data to small values of 60 or below. To 

the best of our knowledge there are two GPU 

implementations of k-means are available which taken as a 

benchmark for all comparisons. We have studied both the 

approaches and found some observations as follows: 

 

3.1 GPUMiner 

 

GPUMiner stores all input data in the global memory, and 

loads k centroids to the shared memory. Each block has 128 

threads, and the grid has n/128 blocks. The main 

characteristic of GPUMiner is the design of a bitmap. The 

workflow of GPUMiner is as follows. First, each thread 

calculates the distance from one data point to every centroid, 

and changes the suitable bit into true in the bit array, which 

stores the nearest centroid for each data point. Second, each 

thread is responsible for one centroid, finds all the 

corresponding data points from the bitmap and takes the 

mean of those data points as the new centroids. 

The main problem of GPUMiner is the poor utilization of 

memory in GPU, since GPUMiner accesses most of the data 

(input data point) from global memory directly. As pointed 

out in [9], bitmap approach is elegant in expressing the 

problem, but not a good method for high performance, since 

bitmap takes more space when k is large and requires more 

shared memory. 

 

3.2 UV_k-Means 

 

In order to avoid the long time latency of global 

memory access, UV_k-Means copies all the data to the 

texture memory, which uses a cache mechanism. Then, it 

uses constant memory to store the k centroids, which is also 

more efficient than using global memory. Each thread is 

responsible for finding the nearest centroid of a data point; 

each block has 256 threads, and the grid has n/256 blocks[7]. 

The work flow of UV_k-Means is straightforward. 

First, each thread calculates the distance from one 

corresponding data point to every centroid and finds the 

minimum distance and corresponding centroid. Second, each 

block calculates a temporary centroid set based on a subset of 

data points, and each thread calculates one dimension of the 

temp centroid. Third, the temporal centroid sets are copied 

from GPU to CPU, and then the final new centroid set is 

calculated on CPU. 
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UV_k-Means has achieved a speedup of twenty to 

forty over the single-thread CPU-based k-Means in our 

experiment. This speedup is mainly achieved by assigning 

each data point to one thread and utilizing the cache 

mechanism to get a high reading efficiency. However, the 

efficiency could be further improved by other memory access 

mechanisms such as registers and shared memory. 

Some other implementations of k-means are also 

shows considerable speedup on GPU like Hall and Hart 

propose two theoretical options for solving the problem of 

limited instance counts and dimensionality: multi-pass 

labeling and a different data layout within the texture [8]. 

None of the approaches have been implemented though. In 

addition to the naive k-means implementation the data is 

reordered to minimize the number of distance calculations by 

only calculating the metrics to the nearest centroids. This is 

achieved by finding those centroids by traversing a 

previously constructed kd-tree. The authors could not 

observe any problems caused by the non standard compliant 

floating point arithmetic implementations on the GPU, stating 

that the exact same clustering have been found. 

The approach of Cao et. al. in [6] differs in that the 

centroid indices are stored in an 8-bit stencil buffer instead of 

the frame buffer limiting the number of total centroids to 256. 

Limitations in dimensionality and instance counts due to 

maximum texture sizes are solved via a costly multi-pass 

approach. No statements concerning precision of the GPU 

version were made. 

 

4. DISCUSSION 

Analyzing the various papers on K-Means on GPU we can 

deduce: 

 Nearly all complex and time-cost computation of k-means 

can be speedup substantially by offloading work to GPU. 

The CUDA technology used is modern GPGPU 

architecture, which is adopted by many NVIDIA GPUs. 

As current trends indicated, future GPU designs, also 

based on general purpose multiprocessors, will offer 

even more computational power. 

 Exploiting the GPU for the labelling stage of k-means 

proved to be beneficial especially for large data sets and 

high cluster counts. The presented implementation is 

only limited in the available memory on the GPU and 

therefore scales well. 

 Parallelize an elementary data processing operation used 

by many applications on a highly parallel graphics 

processing architecture. Computationally bound 

applications have much to gain by using the idle 

resources offered by the system through the CUDA 

architecture. As performance and energy consumption 

become a prime concern for computer architectures, we 

are bound to see more applications of off-chip parallel 

computing in every computing domain from large-scale 

distributed systems to portable computers. 

 The GPU with CUDA parallel computing architecture will 

provide compelling benefits for data mining 

applications. In addition, its superior floating-point 

computation capability and low cost will definitely 

appeal to medium-sized business and individuals. 

Applications that used to rely on a cluster or a 

supercomputer to process will be solved on a desktop. 
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