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Abstract: In a NoC system, modules such as processor cores, memories and specialized IP Cores exchange data using a network via 

multiple point to point data links interconnected by switches (Routers) by making routing decisions at Routers. These Routers generally 

have Buffers dedicated to their input or output ports for temporarily storing packets in case contention occurs at output physical 

channels. These buffers, in fact, consume significant portions of router area and power. So, sharing these buffers among input or output 

ports makes using the buffers more efficient. The Extended Router Architecture with Shared Queues (E-RoShaQ), shares the buffers 

among output ports making the operation dead-lock free. With this architecture, the performance of router has increased by 50% over 

conventional router architecture at all the traffic loads. This work focuses on realization of both conventional and Extended RoShaQ. 

The E-RoShaQ is designed with 4 input ports, 4 output ports and Shared Queue length of 8 with 2 Buffer entries each, using Field 

Programmable Gate Array (FPGA) technology. 
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INTRODUCTION 

Network-on-Chip (NoC) is an emerging paradigm for communication with in large VLSI systems implemented on single silicon 

chip. NoC are found to be feasible and easy to scale for supporting a large number of processing elements rather than point to 

point interconnect wires or shared buses [3]. Traditionally ICs have been designed with dedicated point-to-point connections, with 

one wire dedicated to each signal. For large designs, in particular, this has several limitations from a physical design view point. 

The wires occupy much of the area of chip, and in nanometer CMOS technology, interconnects dominate both performance and 

dynamic power dissipation, as signal propagation in wires across the chip requires multiple clock cycles. NoC links reduce the 

complexity of designing wires for predictable speed,power,noise,reliability,etc., due to their regular, well controlled structure. 

Fig.1 depicts a multicore system in which processors communicate together through a 2-D mesh network of routers. A network 

interface (NI) locates between a processor and its router for transforming processor messages into packets to be transferred on the 

network and viceversa. 

 

Fig.1 Multi Cores connected by a network of Routers 

NI: Network Interface    R: Router 

 

In a typical router, each input port has an input buffer for temporarily storing packets in cases that output physical channels are 

busy. These buffers can be a single queue as in warmhole (WH) router or multiple queues in parallel as in virtual channel (VC) 

router[4]. These buffers, in fact, consume significant portions of area and power, that can be 60% and 30% of the whole router, 

respectively. Bufferless routers remove buffers from the router so save much area [5] however, their performance becomes poor 
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that in many cases cannot meet application requirements in which packet injection rates are high. While running a traffic trace,  

not all the input ports have incoming packets needed to be transferred simultaneously. Therefore, a large number of  buffer queues 

in the network are empty and the other queues are mostly busy.  

This situation leads to the design of a router architecture that uses Shared Queues, to maximize the buffer utilization. Sharing 

queues, infact, makes using buffers more efficiect hence be able to achieve higher throughput when the network load is heavy. On 

the other side, at light traffic load , the router has the capability to bypass the shared queues,achieving low latency. 

CONVENTIONAL RoShaQ : ROUTER ARCHITECTURE WITH SHARED QUEUES 

A.Concept of  sharing Queues 

For maximizing queue utilization,  a router is designed to share all the queues [1],[2]. With this architecture, incoming packets 

from an input port has to be written to shared queue before reaching the output port even if the data is facing congestion or not. 

Also because this architecture has no buffer at the input port, when a packet needs to be forwarded, it has to send request to the 

destination router and wait for grant before sending data. Therefore the shared queue arbiter for each router is highly complicated 

because it must handle many external requests from multiple shared queues of all neighbouring routers and also the intra router 

requests. 

To alleviate this latency, each input port is dedicated with one buffer queue and share all remaining queues, also providing it with 

a facility to bypass the shared queues as shown in the Fig.2. With this design, a packet from an input queues simultaneously 

arbitrates for both shared queues and an output port. If it wins the output port, it would be forwarded to the downstream router in 

the next cycle. Otherwise, that means having congestion at the corresponding output port., it can be buffered to the shared queues 

in the same cycle. At low load, the network would have low latency because packets can bypass shared queues. While at heavy 

load, shared queues are used to temporarily store packets hence reducing their stall times at input ports that would improve the 

network throughput. 

 

Fig.2 Concept of Sharing Queues.  

P:number of router ports  N: number of shared queues 

 

B.RoShaQ Architecture 

RoshaQ, a router architecture with shared queues based on the idea of Fig.2 is shown in Fig.3. When an input port receives a 

packet, it calcualtes its output port for the next router. At the same time it arbitrates for both its decided output port and shared 

queues. If it receives a grant from the Output Port Allocator (OPA), it will advance to its output port in the next cycle. Otherwise, 

if it receives a grant to a shared queue, it will be written to that shared queue at the next cycle. Incase that it receives both grants, it 

will prioritize to advance to the output port. 
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Fig.3. Generalized architecture of  RoShaQ router. SQA:Shared Queue Allocator   OPA:Output Port Allocator SQRx State:Shared Queue receiving/writing state   
SQTx State: Shared Queue Transmitting/reading State. P: Number of Router Ports  N:Number of Shared Queues 

 

Shared Queue Allocator (SQA) receives requests from all input queues and grants the permission to their packets for accessing 

empty shared queues. Packets from input queues are allowed to write to shared queue only if: (1) shared queue is empty or (2)the 

shared queue is containing packets having the same output port as the requesting packet. This shared queue writing policy 

guarantees deadlock-free for the network.The OPA receives requests from both the input queues and shared queues. 

 C.Realization of conventional RoShaQ 

The realization of conventional RoShaQ is represented in this level. Fig 4 represents the top level block diagram for the 

conventional RoShaQ. It has  4 Input Ports, 4 Output Ports and  4 Shared Queues with 2 Buffer entries for each shared queue. 

 

     Fig.4 Realization of conventional RoShaQ 

The architecture uses a dedicated queue for each input port and a set of 4 shared queues. At each time cycle, every input port 

sends a data packet asking for any of the output ports. Based on the output port each input packet is requesting for, the arbitration 

starts. 

1)Structure of Data Packet: The Data Packet we have taken is of length 8 bits. Each packet is divided into 3 Flits, Head 

Flit, Body Flit and Tail Flit. Of the 8bits of a data packet, Head Flit and Tail Flit are of  2 bits each and Body Flit is of 4bits. Fig.5 

shows the sturcture of the data packet. Head Flit contains the address of output port port which the packet is requesting for. Tail 

Flit contains address of input port from which it is coming and the Body Flit contains the data, the packet is carrying. 
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                                                             Fig. 5. Sturcture of Data Packet 

2)Routing Complexity: Routing Complexity decides the traffic load status of the incoming packets. If any of the two 

input ports are asking for the same output port, it is said that the traffic load  is High. If all the input ports are asking for different 

output ports, it is said that the traffic load is Low. As the router architecture has capability to bypass the shared queues, at low 

network load cases, and uses shared queues at heavy network load cases, routing complexity decides when to use shared queues 

and when not to use. 

3) Dedicated Queues: Each input port is accommodated with a Dedicated Queue with 4 buffers each. Dedicated buffers 

accommodate data if the packet does not get grant for both the output port and also to store in the shared queues. As the data 

packet arrives at the input port, it is written to the Dedicated Queue. This is called Queue Write (QW). Then the packets arbitrates 

at the same time for shared queues and also the output ports. If it gets grant from any one of those., it is written into the 

corresponding one or else it will be stored in the dedicated queue itself waiting for the grant to come. Fig. 6 gives the view of 4 

dedicated queues, one for each input port and the buffers of them. A data packet when it is about to write into the queues, it checks 

if the buffers are empty. The packet is written into the empty buffer of the Queue. 

 

Fig. 6. View of Dedicated Queues 

4) Shared Queues: This architecture uses 4 shared queues with 2 buffer entries each. A data packet that doesnot get grant 

to the output ports will arbitrate for shared queues. For a packet to be written into the shared queues it has to satisfy the two 

conditions mentioned in section B, which ensures deadlock free operation of the router. Fig. 7. gives the view of shared queues 

and buffers in shared queues. 

 

Fig. 7. View of Shared Queues 
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5) Allocators: This architecture uses two types of allocators, Output Port Allocator(OPA) and Shared Queue Allocator 

(SQA). Output Port Allocator decides whether the data can be sent to the requested Output Port or not. This arbiter sets priority 

for a specific input port and if morethan one input port is asking for same output port, it gives grant to the data from input port for 

which the priority has set. And at the same time the remaning data packets will already be arbitrating for shared queues and by the 

time the packets are rejected by the OPA, either they should have get grant from Shared Queue Allocator (SQA) or even rejected 

by the SQA too. If the latter condition was satisfied., the packet will be stored in dedicated queues itself. 

EXTENDED RoShaQ 

After the realization of conventional router, to increase the performance of  the router to a further extent, we have increased the 

count of shared queues. We have added an another set of shared queues which can accommodate 8 data packets. We have added 4 

shared queues with 2 buffers each.  Fig. 8 shows the architecture of Extended Router Architecture with Shared Queues (E-

RoShaQ).  

In this architecture, it uses another Shared Queue Allocator(SQA) which works on  same conditions as of conventional shared 

queue allocator. In this architecture, if the data packet does not get grant for first set of Shared queues, it arbitrates for second set 

of shared queues.  Even if it doesnot get grant for second set of shared queues also, it wll be stored in dedicated queues. So, on a 

whole, the packet is stored in the dedicated queues only if both the sets of shared queues are full. 

 

Fig. 8. Extended RoShaQ 

IV. DATAPATH PIPELINE OF RoShaQ 

After a packet is written into a dedicated queue in the first cycle, in the second cycle it simultaneously performs three operations: 

LRC,OPA and SQA. At low network load, there is a high chance for the packet to win the OPA due to low congestion at its 

desired output port, hence it is granted to traverse through the output crossbar and output link towards next router. Therefore, it 

incurs four stages including link traversal as shown in Fig.9(a) 

When network load becomes heavy, the packet at an input queue may fail to get grant from OPA, but it can get a grant from SQA 

and is allowed to traverse the shared queue crossbar and write to the granted shared queue in the next cycles. After that, it 

arbitrates for the output port again and would traverse across the output crossbar and output channel towards the next router at 
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next cycles if it is granted by the OPA at this time. Thus, in this situation, it incurs seven inter router stages as shown in Fig. 9(b). 

This larger number of traversing stages, infact, allows the router to use shared queues for reducing stall times of packets at input 

queues, hence improves throughput at heavy network load. In both cases, body and tail flits of a packet  traverse through the 

router in the same way as its head flit, except they do not need to arbitrate for the resources, as they are already reserved by the 

head flit.  

                                 

(a)                                                                                       (b) 

 
Fig. 9. RoShaQ  pipeline (a) at light load case   (b) at heavy load case  QW: Queue Write LRC: Look Ahead Routing  OPA:Output Port Allocation  
SQA:Shared Queue Allocation  OST: Output Switch Traversal  LT:Output Link Traversal  SQST: Shared Queue Switch Traversal   SQW: Shared Queue 

Write  (X): Pipeline stall 

 

EXPERIMENTAL RESULTS 

The router is coded using Verilog HDL and the results are observed in ISim Simulator. The architecture is verified under 

several conditions under all the possible combinations of data i.e., when each input port is asking for different output ports, 

two input ports asking for same output port, three input ports are asking for same output port and finally the results are 

examined under the worst case condition where all the four input ports are asking for same output port continuously, for both 

Conventional RoShaQ and Extended RoShaQ . 

 

1) Routing Complexity: If all the input ports are asking for different output ports, Routing Complexity should be Low. In 

any other case, it has to be High. Only the Head Flits of all the datapackets  are considered as inputs for this module. 

 

 
 

Fig. 10. Simulation Results of Routing Complexity 

 

2)When there is no congestion: If all the 4 input ports are asking for different output ports, all the data packets will win 

their respective output ports and all the queues are empty. 
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Fig. 11. Simulation results showing when there is no congestion 

 

3)When two input ports are asking for same output port: In this condition, as two input ports are asking for same output 

port, only one will get grant and the other will not. The packet from higher priority input port will get grant and the other 

packet will be stored in Shared Queue. The packets from other two ports, which are asking for free output channels will be 

deliverd to their respective output ports. 

 

 

Fig. 12. Simultion results for condition when two input ports are asking for same output port 

 

4)When three input ports are asking for same output port: In this condition, as three input ports are asking for same 

output port, only one will get grant and the other two will not. The packet from higher priority input port will get grant and the 

other packets will be stored in Shared Queue. 

 

 
Fig. 13. Simultion results for condition when three input ports are asking for same output port 
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5)When all input ports are asking for same output port: In this condition, as four input ports are asking for same output 

port, only one will get grant and the other three will not. The packet from higher priority input port will get grant and the other 

packets will be stored in Shared Queue. Considering the worst case condition, if that is run for a number of cycles, we can 

abserve that data given in 8th cycle and 10th cycle are lost after all the shared  buffers and corresponding dedicated queues are 

filled. Fig.14 and Fig. 15 are results of Conventional RoShaQ and Fig.16 shows results of Extended RoShaQ. 

  

 

Fig. 14. Simultion results for condition when four input ports are asking for same output port 

 

Fig. 15. Simultion results for condition when four input ports are asking for same output port, status of Queues and timing of datas 
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In this condition, as four input ports are asking for same output port, only one will get grant and the other three will not. The 

packet from higher priority input port will get grant and the other packets will be stored in Shared Queue. Considering the 

same data is given to E-RoShaQ, and run for a number of cycles, we can observe that data given in 8th cycle and 10th cycle 

datas that are lost in conventioanal architecture were made not to loss. 
 

 

Fig. 15. Simultion results for condition when four input ports are asking for same output port, showing data that hasnot lost due to Extended RoShaQ 

 COMPARISION OF TWO ROUTERS 

Experimental results show that Extended RoShaQ is giving 50% higher saturation throughput than the conventional RoShaQ 

with 2% larger area due to its higher performance. Table 1 shows the logic utilization for both the routers on a Spartan 6 

device. 
 

TABLE1 
COMPARISION OF TWO ROUTERS 

LOGIC UTILIZATION Conventional RoShaQ Extended RoShaQ 

Number of LUT’s 
575(0%) 3567(2%) 

Number of Fully used LUT-FF Pairs 
460(11%) 1892(13%) 

CONCLUSION 

In this paper, implementation of Conventional RoShaQ and Extended RoShaQ is done and the results are observed for both the 

routers for different input sequences in all the possible conditions and the synthesis is done using XILINX 14.2 observing  just 

a little increase in use of LUT’s, achieving higher performance than conventional routers. 

 

REFERENCES 

[1] Anh T. Tran and Bevan M. Bass, “Achieving High Performance On-Chip Networks With Shared Buffer Routers”, IEEE Transactions on VLSI Systems, 
Vol 22, No.6,June 2014 



DOI: 10.18535/ijecs/v4i9.24 
 

B.S.L.K.Anusha1 IJECS Volume 04 Issue 09 September, 2015 Page No.14204-14213 Page 14213 

[2] Anh T. Tran and Bevan M. Bass, “RoShaQ: High Performance On-Chip Router with Share Queues”, ICCD, Oct 2011 

[3] William J Dally and B.Towels, “Route Packets, not Wires: On-Chip interconnection Networks,” DAC2001 

[4] William J Dally, “Virtual channel Flow Control”, IEEE Transactions on Parallel Distribution. Systems., Vol 3, No 2, Mar 1992 

[5] T.Moscibroda and O.Mutlu, “A case for bufferless routing in Onchip Networks” ISCA, June 2009 

[6] A.T. Tran, D.N. Truong and B.M.Baas, “A GALS many-core heterogenous DSP platform with source-synchronous on-chip interconnection network,” in 

Proc. ACM/IEEE Int. NOCS, May 2009 

[7] E.Begine, “An asynchronous power aware and adaptive NoC based circuit”, IEEE J. Solid State Circuits, vol 44, Apr. 2009 

[8] R.S.Ramanujam, V.Soteriou, B.Lin and L.S.Peh, “Extending the effective throughput of NoC’s with Distributed Shared Buffer Routers”, IEEE 

Transactions on  Computer-Aided Design Integrated Circuits Systems., Vol 30, no. 4,  Apr 2011 

                                                                                                                                                       


