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Abstract - Mammogram is measured the most consistent method for early detection of breast cancer.  Computer-aided 

diagnosis system is also able to support radiologist to detect abnormalities earlier and more rapidly. In this paper the 

performance evaluation of the computer aided diagnostic system for the classification of mass classification in digital 

mammogram based on Discrete Wavelet Transform (DWT), Stochastic Neighbor Embedding (SNE) and the Support 

Vector Machine (SVM) is presented. This proposed system classifies the mammogram images into normal or abnormal, 

and the abnormal severity into benign or malignant. Mammography Image Analysis society (MIAS) database is used to 

evaluate the proposed system. The average classification rate achieved is satisfied.  
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INTRODUCTION 

Breast cancer is the most extensive cancerous pathology 

among women. It is also an important public health problem 

in the world. As causes of its onset are still unknown, there 

are no efficient ways to avoid breast cancer. For this reason, 

an efficient diagnosis in its early stage can give women a 

better chance of full healing and survival. Therefore, early 

detection of breast cancer is the key for reducing the 

associated morbidity and death rates.  

 

To study the human breast, Mammography is widely used as 

a diagnostic and a screening tool that uses X-rays. The 

objective of mammography is the premature revealing of 

breast cancer, usually through detection of characteristic 

microcalcifications and/or masses. Mammography is the 

only effective and viable technique to detect breast cancer in 

particular in the case of minimal tumors. About 30% to 50% 

of breast cancers reveal deposits of calcium called 

microcalcifications. Computer aided diagnosis system is 

also able to support radiologist to detect abnormalities 

earlier and faster.  

1.1 Related Research Works: 

All the following mentioned related research works are 

reviewed aptly to construct the proposed system with the 

high efficiency, A Computer Aided Diagnosis (CAD) 

system for the automatic detection of clustered 

microcalcifications in digitized mammograms is presented 

by (Song yang Yu, 2000). A computerized scheme for 

detecting early stage microcalcification clusters in 

mammograms is proposed by (Ryohei Nakayama, 2006). A 

computer aided decision support system for an automated 

diagnosis and classification of breast tumor using 

mammogram is presented by (M. Suganthi, 2009). A new 

method of feature extraction from Wavelet coefficients for 

classification of digital mammograms is proposed by 

(Ibrahima Faye, 2009). A novel methodology for the 

classification of suspicious areas in digital mammograms is 

presented by (Peter Mc Leod, 2010), and so on. 

In this research the proposed system uses, two 

techniques for building a computer aided diagnostic system 

for the classification of microcalcification in digital 

mammograms based on DWT and SNE are presented. The 

SNE applied to wavelet transformed image and also applied 

on sub-bands of wavelet transformed image individually. 

SNE is essentially used for reducing high dimensionality 

data into relatively low dimensional data, efficiently. Then 

classifier system based on Support Vector Machine (SVM) 

is constructed. Experiments are conducted on 

Mammography Image Analysis society (MIAS) database. 

The MIAS is an organization of UK research groups 

interested in the understanding of mammograms and has 

generated a database of digital mammograms. Films taken 

from the UK National Breast Screening programme have 

been digitized to 50 micron pixel edge with a Joyce -Loebl 
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scanning microdensitometer. It is a device linear in the 

optical density range 0 to 3.2 and representing each pixel 

with an 8-bit word. MIAS database consists of a total of 322 

digital mammogram images (161 breast pairs) in the 

mediolateral oblique view. The performance of the proposed 

system is carried on 99 normal images and 25 

microcalcification images. Among the 25 abnormal images, 

there are 12 benign and 13 malignant images available. All 

the images are considered for the classification test. 

  

METHODOLOGY 

 
The proposed system for the classification of 

microcalcification in digital mammograms is built based on 

DWT, SNE and by applying SVM for building the 

classifiers, PCA for Comparison. In this following section 

the theoretical background of all the approaches are 

introduced. 

 

A: Support Vector Machines (SVM) 

 

SVMs are a set of related supervised learning methods that 

analyze data and recognize patterns, used for classification 

and regression analysis. The standard SVM is a non-

probabilistic binary linear classifier, i.e. it predicts, for each 

given input, which of two possible classes the input is a 

member of. A classification task usually involves with 

training and testing data which consists of some data 

instances. Each instance in the training set contains one 

“target value” (class labels) and several “attributes” 

(features). SVM has an extra advantage of automatic model 

selection in the sense that both the optimal number and 

locations of the basic functions are automatically obtained 

during training. The performance of SVM largely depends 

on the kernel.  

SVM is essentially a linear learning machine. For 

the input training sample set  

(𝑥𝑖 , 𝑦𝑖), 𝑖 = 1… . 𝑛, 𝑥 ∈ 𝑅
𝑛 , 𝑦

∈ {−1,+1}                                                  
Let the classification hyperplane equation is to be (𝜔. 𝑥) +

𝑏 = 0         (1) 

 

Thus the classification margin is 2 / |ω| .To maximize the 

margin, that is to minimize |ω|, the optimal hyperplane 

problem is transformed to quadratic programming problem 

as follows, 

{
𝑚𝑖𝑛∅(𝜔) =

1

2
(𝜔, 𝜔)

𝑠. 𝑡. 𝑦𝑖((𝜔. 𝑥) + 𝑏) ≥ 1,   𝑖 = 1,2… . 𝑙
                 (2) 

After introduction of Lagrange multiplier, the dual problem 

is given by, 

 

{
 
 

 
 𝑚𝑎𝑥 𝑄(𝛼) =  ∑𝛼𝑖

𝑛

𝑖=1

−
1

2
 ∑∑𝑦𝑖𝑦𝑗𝛼𝑖𝛼𝑗𝐾(𝑥𝑖 . 𝑥𝑗)

𝑛

𝑗=1

𝑛

𝑖=1

𝑠. 𝑡  ∑𝑦𝑖𝛼𝑖 = 0,   𝛼𝑖 ≥

𝑛

𝑖=1

0, 𝑖 = 1,2… , 𝑛

      (3)          

 

 According to Kuhn-Tucker rules, the optimal solution must 

satisfy 

 

(𝑦𝑖((𝑤. 𝑥𝑖) + 𝑏) − 1 = 0, 𝑖

= 1,2, . . 𝑛                   (4)                           
That is to say if the option solution is  

𝛼∗ = (𝛼1
∗, 𝛼2

∗, … . , 𝛼𝑖
∗)𝑇 ,

𝑖 = 1,2, … 𝑛        (5)                                               
 

Then 

 

∗ 𝑤     = ∑𝛼𝑖
∗𝑦𝑖𝑥𝑖

𝑛

𝑖=1

      (6)       

𝑏∗ = 𝑦𝑖 −∑𝑦𝑖𝛼𝑖
∗(𝑥𝑖 . 𝑥𝑗)  , 𝑗 ∈ {𝑗|𝛼𝑖

∗ > 0}

𝑛

𝑖=1

      (7)  

For every training sample point 𝑥𝑖 , there is a corresponding 

Lagrange multiplier. And the sample points that are 

corresponding to 𝛼𝑖 = 0 don’t contribute to solve the 

classification hyper plane while the other points that are 

corresponding to 𝛼𝑖 > 0 do, so it is called support vectors. 

Hence the optimal hyper plane equation is given by, 

 

∑ 𝛼𝑖𝑦𝑖(𝑥𝑖 . 𝑥𝑗) + 𝑏  = 0
 

𝑥,∈𝑆𝑉        (8) 

The hard classifier is then, 

   𝑦 =  𝑠𝑔𝑛[∑ 𝛼𝑖𝑦𝑖(𝑥𝑖 . 𝑥𝑗) + 𝑏𝑥,∈𝑆𝑉 ] situation, SVM 

constructs an optimal separating hyperplane in the high 

dimensional space by introducing kernel function 𝐾(𝑥. 𝑦) =
∅(𝑥). ∅(𝑦), hence the nonlinear SVM is given by, 

{
𝑚𝑖𝑛∅(𝜔) =

1

2
(𝜔,𝜔)

𝑠. 𝑡. 𝑦𝑖 ((𝜔. ∅(𝑥𝑖)) + 𝑏) ≥ 1, 𝑖 = 1,2, … . 𝑙
      (9)   

And its dual problem is given by, 

{
 
 

 
 
𝑚𝑎𝑥𝐿(𝛼) =∑𝛼𝑖 −

1

2
∑∑𝑦𝑖𝑦𝑗𝛼𝑖𝛼𝑗𝐾(𝑥𝑖 . 𝑥𝑗)

𝑙

𝑗=1

𝑙

𝑖=1

𝑙

𝑖=1

𝑠. 𝑡.∑𝑦𝑖𝛼𝑖 = 0,   0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1,2, … , 𝑙

𝑛

𝑖=1

    (10)  

Thus the optimal hyperplane equation is determined by the 

solution to the optimal problem. 

 

B: Discrete Wavelet Transform (DWT) 

 

Nowadays, wavelets have been used quite frequently in 

image processing and used for feature extraction, denoising, 

compression, face recognition, and image super-resolution. 

The decomposition of images into different frequency 

ranges permits the isolation of the frequency components 

introduced by “intrinsic deformations” or “extrinsic factors” 

into certain sub-bands. This process results in isolating small 

changes in an image mainly in high frequency sub-band 

images. 

The 2-D wavelet decomposition of an image is 

performed by applying 1-D DWT along the rows of the 

image first, and, then, the results are decomposed along the 

columns. This operation results in four decomposed sub-

band images referred to as low–low (LL), low–high (LH), 

high–low (HL), and high–high (HH).  

 

 

C: Stochastic Neighbor Embedding (SNE) 
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SNE is a probabilistic approach to the task of placing 

objects, described by high-dimensional vectors or by pair-

wise dissimilarities in a low-dimensional space in a way that 

preserves neighbor identities. A Gaussian is centered on 

each object in the high-dimensional space and the densities 

under this Gaussian (or the given dissimilarities) are used to 

define a probability distribution over all the potential 

neighbors of the object. The aim of the embedding is to 

approximate this distribution as well as possible when the 

same operation is performed on the low-dimensional 

“images” of the objects. A natural cost function is a sum of 

Kullback-Leibler divergences, one per object, which leads to 

a simple gradient for adjusting the positions of the low-

dimensional images. 

For each object, 𝑖 and each potential neighbor,𝑗  the 

asymmetric probability is calculated by the formula that 𝑖 
would pick 𝑗 as its neighbor is given by  

 

𝑝𝑖𝑗 =  
exp(−𝑑𝑖𝑗

2 )

∑ 𝑒𝑥𝑝(−𝑑𝑖𝑘
2 )𝑘≠𝑖

        (11)      

 

The dissimilarities, 𝑑𝑖𝑗
2  , may be given as part of the problem 

definition (and need not be symmetric), or they may be 

computed using the scaled squared Euclidean distance 

(“affinity”) between two high-dimensional points, 𝑋𝑖; 𝑋𝑗 : 

𝑑𝑖𝑗
2   =    

‖𝑋𝑖 − 𝑋𝑗‖
2

2𝜎𝑖
2         (12)      

Where 𝜎𝑖 is either set by hand or found by a binary search 

for the value of 𝜎𝑖 that makes the entropy of the distribution 

over neighbors equal to log 𝑘. Here, k is the effective 

number of local neighbors or “perplexity” and is chosen by 

hand. In the low-dimensional space, the Gaussian 

neighborhoods are used with a fixed variance so the induced 

probability  𝑞𝑖𝑗 that point 𝑖 picks point 𝑗 as its neighbor is a 

function of the low-dimensional images 𝑦𝑖  of all the objects 

and is given by the expression 

𝑞𝑖𝑗 =      
𝑒𝑥𝑝 (−‖𝑦𝑖 − 𝑦𝑗‖

2
)

∑ 𝑒𝑥𝑝𝑘≠𝑖 (−‖𝑦𝑖 − 𝑦𝑗‖
2
)
   (13)           

The aim of the embedding is to match these two 

distributions as well as possible. This is achieved by 

minimizing a cost function which is a sum of Kullback-

Leibler divergences between the original (𝑝𝑖𝑗) and induced 

(𝑞𝑖𝑗) distributions over neighbors for each object is given by 

(4) 

𝐶 = ∑ ∑ 𝑝𝑖𝑗 𝑙𝑜𝑔
𝑝𝑖𝑗

𝑞𝑖𝑗
= ∑ 𝐾𝐿(𝑃𝑖||𝑄𝑖)𝑖𝑗𝑖   (14) 

The minimization of the cost function in Equation 4 is 

performed using gradient method. The gradient has the 

simple form as 

 
𝜕𝐶

𝜕𝑌𝑖
= 2∑(𝑦𝑖 − 𝑦𝑗) (𝑝𝑖𝑗 − 𝑞𝑖𝑗 + 𝑝𝑖𝑗 − 𝑞𝑖𝑗)

𝑗

        (15)  

The gradient descent is initialized by sampling map points 

randomly from an isotropic Gaussian with small variance 

that is center around the origin.  For speed up the 

optimization and avoid been stuck in local optima, a 

momentum term is added to the gradient [4]. The current 

gradient is added to an exponentially decay sum of previous 

gradients in order to determine the changes in the 

coordinates of the map points at each iteration of gradient 

search.  

 𝑦(𝑡) =      𝑦(𝑡−1)𝜂
𝜕𝐽

𝜕𝑦𝑖
            

+          𝛼(𝑡)(𝑦(𝑡−1)

−       𝑦(𝑡−2))     (16)      
 

Where 𝑦(𝑡) indicate the solution at iteration𝑡, 𝜂 indicates the 

learning rate, and 𝛼(𝑡) represents the momentum at 

iteration 𝑡. In the early stages of the optimization, after the 

each iteration, a random jitter is added to the map points. 

Then gradually reducing the variance of this noise performs 

a type of simulated annealing that helps the optimization to 

escape local minima in the cost function. 

 

D: Principle Component Analysis (PCA) 

 

Given a set of data on n dimensions, PCA aims to 

find a linear subspace of dimension d  lower than n  such 

that the data points lie mainly on this linear subspace .Such 

a reduced subspace attempts to maintain most of the 

variability of the data. The linear subspace can be specified 

by d  orthogonal vectors that form a new coordinate system, 

called the `principal components'. The principal components 

are orthogonal, linear transformations of the original data 

points, so there can be no more than n  of them. 

 

However, the hope is that only nd   principal 

components are needed to approximate the space spanned 

by the n  original axes. The most common definition of 

PCA is that, for a given set of data vectors tixi ,...1 , the 

d  principal axes are those ortho normal axes onto which 

the variance retained under projection is maximal. In order 

to capture as much of the variability as possible, let us 

choose the first principal component, denoted by 1U , to 

have maximum variance. Suppose that all centered 

observations are stacked into the columns of a tn matrix

X , where each column corresponds to an n -dimensional 

observation and there are t observations. Let the first 

principal component be a linear combination of X defined by 

coefficients (or weights) 21 .....www  . 

 

In matrix form: 

 

XwU T1     
                                   

 
SwwXwU TT  )var()var( 1  

where S is the nn sample covariance matrix of X . 

Clearly )var( 1U can be made arbitrarily large by increasing 

the magnitude of w  Therefore, w  is chosen in order to 

maximize SwwT
 while constraining w to have unit length. 

        
SwwTmax

                                      
 

1wwtosubject T
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To solve this optimization problem a Lagrange multiplier 

1 is introduced: 

)1(),( 1  wwSwwwL TT 
       (17)

 

Differentiating with respect to w  gives n equations, 

wSw 1  

Pre-multiplying both sides by 
Tw ,we get 

11   wwSww TT
 

)var( 1U is maximized if 1 is the largest Eigen value of S

.Clearly 1 and w are an Eigen value and an eigenvector of 

S . Differentiating (5.5) with respect to the Lagrange 

multiplier 1 gives us back the constraint: 

1wwT
 

This shows that the first principal component is given by the 

normalized eigenvector with the largest associated Eigen 

value of the sample covariance matrix S . A similar 

argument can show that the d  dominant eigenvectors of 

covariance matrix S  determine the first d principal 

components. Another nice property of PCA, closely related 

to the original discussion is that the projection onto the 

principal subspace minimizes the squared reconstruction 

error, 

.

2

11





t

ii xx


      (18) 

In other words, the principal components of a set of 

data in 
n  provide asequence of best linear 

approximations to that data, for all ranks .nd 
 

 

Consider the rank- d linear approximation model 

as: 

 

yUxyf d)(
 (19) 

 

This is the parametric representation of a hyper plane of 

rank d . 

 

For convenience, suppose 0x  (otherwise the 

observations can be simply replaced by their centered 

versions .~ xxx i  Under this assumption the rank d  

linear model would be yUyf d)( where dU is a dn

matrix with d orthogonal unit vectors as columns and y  is 

a vector of parameters. Fitting this model to the data by least 

squares leaves us to minimize the reconstruction error: 

2

,min  
t

i

idiyU yUx
id

 (20) 

By partial optimization for iy we obtain: 

i

T

di

i

xUy
dy

d
0

  (21)
 

Now we need to find the orthogonal matrix :dU
 

2

min  
t

i

i

T

ddiU xUUx
d

 (22)
 

Define 
T

ddd UUH  . dH  is a nn matrix which 

acts as a projection matrix and projects
 
each data point ix  

onto its rank d reconstruction. In other words, id xH is the 

orthogonal
 
projection of ix onto the subspace spanned by 

the columns of dU  A unique solution U can obtained by 

finding the singular value decomposition of .X For each 

rank d ,
 dU consists of the first d  columns of U .Clearly 

the solution for U can be expressed as singular value 

decomposition (SVD) of X ( J. Friedman,2002). 

 
TVUX 

 (23)  

      
 

Since the columns of U  in the SVD contain the 

eigenvectors of 
TXX  . Figure 1 and 2 shows the histogram 

plot for normal mammogram and benign and malignant 

mammograms images using PCA based dimension 

reduction. The histogram plots show the variation in the 

benign and malignant pattern. 

 

III  PCA Vs SNE 

To analyze the performance of the SNE, the 

proposed system is tested with the state of art technique 

Principal Component Analysis (PCA) using SVM classifier. 

Initially the dimension of the feature is reduced for the 

wavelet transformed image and the performance is analyzed. 

In the second approach, dimension reduction is applied on 

the wavelet sub-bands individually and the classification 

accuracy is calculated.  The classification accuracy obtained 

by the proposed system using SVM classifier for first stage 

and final stage is shown in Table 1 and 2. Figure 1 and 2 

show the histogram plot for normal mammogram and 

benign and malignant mammograms images using SSNE 

based dimension reduction. 
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Figure 1 Histogram plot of dimension reduced 2-level 

wavelet coefficients of a mass- benign image by PCA 

 

Figure 2 Histogram plot of dimension reduced 2-level 

wavelet coefficients of a mass- malignant image by PCA 

Table 1 Classification results of proposed mass 

classification system of first stage based on PCA and SNE 

using SVM classifier 

 

Normal/Abnormal classification 

Level of 

decomposition 

Wavelet    
Wavelet Sub-

bands  

PCA 

(%) 

SNE 

(%) 

PCA 

(%) 

SNE 

(%) 

2 88.31 90.84 86.37 85.25 

3 88.70 91.22 82.45 89.05 

4 90.10 89.94 84.59 89.44 

5 85.40 88.55 84.47 88.28 

6 88.31 93.39 84.59 86.88 

 

The maximum average classification accuracy of 

93.39% is achieved by SNE at initial while using the 

wavelet decomposed image.  It is observed that the 

performance of SNE is somewhat better than PCA based 

reduced features. Table 5.8 shows the performance of PCA 

and SNE for benign/malignant classification. 

 

Table 2 Classification results of proposed mass 

classification system for final stage based on PCA and SNE 

using SVM classifier 

 

Mass - Benign/Malignant classification 

Level of 

decomposition 

Wavelet  
Wavelet Sub-

bands  

PCA SNE PCA SNE 

(%) (%) (%) (%) 

2 87.98 88.12 82.86 92.10 

3 78.81 92.10 84.07 92.10 

4 85.42 90.75 84.21 90.75 

5 86.70 92.10 84.21 93.39 

6 84.07 90.83 84.14 89.47 

 

The SNE classified the abnormal images more than 

10% than PCA reduction technique. The classification 

accuracy of the final stage classifier based on wavelet sub-

band features, the PCA reduction techniques produces less 

than 90% average accuracy while SNE produces a 

maximum average of 93.39% as shown in bold values. 

Hence it is concluded from the tables that the proposed SNE 

based method outperforms the PCA method in all aspect 

which is very clear in Figures 3 and 4. 
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Figure 3 Graphical representations of performance 

of normal/abnormal mass classification using PCA and SNE  

Figure 4 Graphical representations of performance of 

benign/malignant mass classification using PCA and SNE 

 

CONCLUSION: 
 

The classification accuracy shows in the above 

table gives the accuracy of SNE and PCA for mass 

classifications severity into benign or malignant.  The 

abnormal severity is correctly classified with no error by the 

SNE reduced data set for wavelet at all the level 

decomposition and wavelet sub-bands techniques at 5th  

level decomposition. The maximum accuracy obtained by 

SNE is at all the level decomposition and applied on the 

wavelet sub-bands individually. The bar chart shows in the 

Figure 3 and 4 clearly shows the performance of SNE over 

PCA. The most of the highest bars in the charts are belongs 

to SNE that shows the efficiency of SNE over PCA. 

This proposed system classifies the mammogram 

images into normal or abnormal, and the abnormal severity 

into benign or malignant. The proposed methods are 

implemented in MATLAB and the performances of these 

methods are also analyzed productively. Finally, in order to 

serve the cancer patients with due diagnosis, the 

classification accuracy rate is sensibly derived from our 

proposed system. 
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