
www.ijecs.in
International Journal Of Engineering And Computer Science ISSN: 2319-7242
Volume 5 Issue 11 Nov. 2016, Page No. 19037-19044

S.Rama Krishna, IJECS Volume 05 Issue 11 Nov., 2016 Page No.19037-19044 Page 19037

A Data Owner Controlled Model for Co tenant Covert Channel Protection
S.Rama Krishna, B.Padmaja Rani

Abstract— The emerging technology cloud Computing has became as a popular choice for small and
medium enterprises for their infrastructural needs. It has many services providing support like computing,
storing etc. Virtualization is the key technology to provide features like scalability and elasticity using multi
tenancy. In multi tenant cloud architecture malicious co tenants use covert channels like RAM, bus and
other shared devices to hijack the sensitive data. Literature is available for identifying and preventing these
kinds of attacks in matured cloud providers. Immature or lazy cloud service providers will suffer from
these kinds of problems profoundly. Our novel model tries to suggest measures in protection of covert
channel protection. It uses a simple technique of split and sharing data to store multiple regions in multiple
places. We have taken factor called as missing data which is inaccessible data in the case of compromised
co tenant covert channel attack. Experiments were done in the Amazon S3 cloud with different accounts in
different regions and multiple buckets for storing split data and results were analyzed. We come across
with best number of splits to maximize missing data factor with less impact over the time cost for upload
and download operations from our result analysis satisfactorily.

Index Terms— cloud computing, Covert Channel Protection, Split Share, Virtualization security

1. Introduction

Simplicity, availability and ease of use are the

features that make corporate companies to move towards

cloud computing [5] [6]. Cloud computing is widely

using technologies like Application clustering, Network

technologies, virtualization and distributed file system

for offering services to its wide variety of users.

Distributed storage which is provided by the Cloud

storage service provider makes the data available from

anywhere and anytime. Cloud users use heterogeneous

devices to access data from the cloud storage service

[7][8]. Cloud service provider utilizes multi-tenancy to

enable resource utilization maximization such as storage

or computation etc.., Multiplexing is the technique used

for sharing the virtualised physical resources to its cloud

users. Multi tenancy will optimize usage of system

physical resources it also support multiple virtual

machines share one common physical space from

different customers. In the same storage space these

multiple user’s data get stored. Scheduling and data

storage responsibility is taken care by Cloud provider.

This feature multi tenancy though it is helpful for

maximizing usage of resource it may also cause several

new security problems. Cloud security research is

gaining more focus from researchers and numerous

publications show their interest. This research is resulting

in identification and mitigation of information leakage

which is caused by feature co-tenancy. In multi tenant

architecture of cloud computing virtual machine that

share common physical space is said to be Co-tenant.

A malicious co tenant can trick to gain

information using covert channels. RAM memory, hard

disk, CPU cache, networking or i/o bus [9][10][11] can be

acted as covert channels for these co-tenant attackers.

This causes sensitive data leakage to the malicious VM

that stays in same physical resources. Even some

malicious VMs try to access the data that stored in same

physical storage device which it is not privileged to

access. A strict access policy is required because even a

policy like Chinese wall security is proven to be

vulnerable [12]. Channel hijacking can be prevented by

storing the conflict files physically isolated in storage

space. Cloud provider can easily implement this by

including it in service level agreement. For avoiding

channel hijacking problem cloud service provider has to

assign isolated storage space with other specific

malicious tenants. Cheap and lazy cloud service

provider may not enforce this strategy due to negligence

or cost cutting process [13].

This paper presents a novel framework structure that

helps in the protection of data over cloud from un trusted

malicious co tenant. The proposed framework is named

as Co-tenancy Covert Channel Protection model. The

organization of remaining of paper is organized as

follows. Section 2 presented with literature related to

security issues of co tenant covert channel attacks.

Section 3 presents major problem of focus and design

objectives of proposed model. Section 4 introduces Split

share model for Co-tenant Covert channel protection.

Section 5 brings implementation details of the model.

Section 6 Analyses the results derived by model. Section

7 summarises and section 8 gives future directions.

2. Literature on Covert-channel attacks and defences
Covert channels are utilized by the co resident VM to obtain
unprivileged information from another virtual machine
working in same workspace. These covert channels can give
chances to get access to unauthorized data. Memory,
network, CPU cache, and power consumption can be used as
covert channels for extracting others data. Literature [1]
introduced a method for tracking software events by
observing behavioural changes in hardware. The CPU cache

DOI: 10.18535/ijecs/v5i11.57

S.Rama Krishna, IJECS Volume 05 Issue 11 Nov., 2016 Page No.19037-19044 Page 19038

response time is used to verify whether the target VM is co
occupant or not [4]. Assailant uses load predictor and cubic
spline are used to process the cache utilization data linear

regression to analyze the behaviour of the cache. An

attacker VM will possess the significant portion of cpu

cache to target its co-tenant. Subsequently sends a data

request to the co-tenant. Attacker machine ascertains

cache access time using a program to measure loads

produced for this transaction. In attacker machine it

executes load measuring program to calculate cache

access time. Literature [4] presumes that higher access

time means more co-tenant activities. Same experiment

also extended and tested with three VM. Attackers VM

not only analyses cache access times but also capture the

target VM data through the covert channels. Literature

[2] specified the role of malware addition by attacker VM

over target machine for hijacking the information.

Attacker infuses malware into software of target machine

to gain indirect access. Attack acquires information from

target VM and also removes all the traces used for the

attack without leaving any evidence. For this attack

memory bus is used as a covert channel. Attacker VM

sends 1 to memory bus because atomic CPU instruction

will be issued. This atomic instruction will increase

latency in memory usage. When the latency is reduced

than transfers 0 bit and releases memory bus. Literature

[2] also referred to other covert channels like exploiting

contention of cache. Target VM bandwidth is calculated

using overlapped time in execution by the attacker VM.

Literature [2] referred a technique to mitigate this

problem by making changes to the scheduler of

hypervisor. For the successful defence to bandwidth

analysis using cache contention, overlapping time of

execution is minimized for two virtual machines. Proper

care should be taken to minimize overlapping time

without reducing system performance. One more bottle

neck to protect bandwidth analysis attack is that it is very

difficult for scheduler to identify malicious VM. Limiting

the frequency of switching VMs will minimize

overlapping execution time but reduces system

performance [2]. Therefore, as another measure to

counteract noise pumping technique can be used in

protection of bandwidth analysis attack. This generated

noise defends attack against memory bus. Xenpump is a

proposed model mentioned in literature [1][3] to protect

covert channel attacks. Random latency is generated by

Xenpump to limit the bandwidth of timing channel.

Attacker VM is confused by generated latency, but this

will reduce effectiveness of timing channel. Imposing

unpredictability through generated latency will defend

bandwidth analysis attack but reduces system

performance. Literature [1] discussed another type of

attack called as Prime trigger probing that uses cache as

the covert channel attack. This probing is performed by

the attacker machine by occupying more cache lines.

Attacker VM try to access more records to occupy many

cache lines. Subsequently obtains encoded message of

target VM by accessing parts of cache. Attacker VM will

start accessing cache parts after target VM completes its

job. As attacker has greater access time compared to the

baseline cache failure it is caused by each line used to

access the cache.

Fig. 1 A diagram is shown to describe about

Prime trigger probing.

To safeguard Probing attack flushing the data in

between the switching of VMS can be done so that

information in cache will not be accessible to the attacker.

From the exploratory results it was observed that 15%

more overhead is created by using flushing technique

mentioned in literature [1].

3. Major Problem of focus

3.1. Co-tenant Covert Channel attack

Shared resources such as RAM, CPU cache or

hard disk storage can be used as covert channels to leak

valuable information while services of two VMs which

try to access conflict files of interest through those shared

resources. Literature [5] [6] [7] presents several such

major issues. This study was not sufficiently done over

cloud storage.

Fig. 2. Information leakage due Co tenant Covert

channel attack in shared storage space.

Leakage in storage of hard disk can be explained

using figure 4.1 as an example. Alice VM and Attacker

VM are two virtual machines hosted in two different

physical machines. File 1 and file 2 are two files with

interest of conflict those are stored in same disk storage

space. Alice is having access permission for file 1 while

the attacker has access privileges for file2.Hypervisor or

DOI: 10.18535/ijecs/v5i11.57

S.Rama Krishna, IJECS Volume 05 Issue 11 Nov., 2016 Page No.19037-19044 Page 19039

storage controller will be protected by enforcing strict

access policy like Chinese wall security [8]. Security

policy restricts Alice VM access to File 2 or Attacker VM

access to File 1.

When Alice VM compromised by malware sent by

attacker VM, then Alice VM may be guided to access File

1 with certain pattern so that contents of File 1 can be

leaked to Attacker VM through covert channel like

shared bus or cache. Attacker VM uses this pattern to

decode file1 using access time measurement of co located

file1. This will cause leakage even when we have

powerful access control policy like Chinese wall policy.

3.2. Design objectives of model

1. Model has to reduce the attack surface from malicious

Co-tenant to protect even in compromised covert channel

attacks.

2. Identifying optimized split criteria (no of splits) that

maximize the missing data and minimizes split time and

upload times.

3. Model has to support customizable storage policy that

supports multiple objects, multiple buckets, multiple

regions, and multiple account support.

4. Model has to provide support for Integrity verification

4. Split Share Model

Fig 3 Split – Share Model for Co-tenant Covert Channel

Protection

Split –Share Model contains five modules. Named to be

1. File split module

2. Data upload module

3. Data share module

4. Data download module

5. Compile module

In this method of Co-tenant Covert Channel

protection we focus more on splitting data and storing it

in the distributed manner unlike conventional storage,

for making data unavailable even in the case of co tenant

using covert channel to access un privileged sensitive

information as afore mentioned in section 3.1. Objective

of Split –Share method is to reduce data availability to

the malicious co-tenants by splitting data in to different

buckets, different regions and even for different clouds.

But in this paper our topic of discussion limited only for

the single cloud.

By splitting the data to different buckets or in

different regions even bucket is compromised or even the

region is compromised only part of data will be available

for malicious co-tenant. This method may give best

covert channel protection in the case of immature or lazy

cloud storage service providers. As these service

providers don’t try to isolate data which is conflict of

interest (i.e., data which is tried to hijack by malicious co-

tenants through covert channels) files because of

negligence or cost cutting process. In this method we

focused on a factor called missing data for comparing our

method with existing methods. Remaining of this section

discusses in detail about different modules involved in

the basic construction of Split-Share method and how it

protects from malicious Co-tenant covert channel

protection.

4.1 File split (file, n):

Inputs

File – Data owner File information

n- Number of Splits

Output

IFile- information File

Splitfilelist[n]

Begin

 Fsize getSize(file)

 Blocksize Fsize/n

 If(Fsize % n!=0)

 N=n+1

 End if

 For i =1 to n do

 Create newfile

 Readbuffer  Read file(blocksize)

 newFile. write(Readbuffer)

 SplitFileList[i] newFile

 IFile.write(SplitFileList[i])

 End for

End

 Description:

 File and no of splits are two inputs given to File

split module. Size of file is divided by n to find out each

split file size. After dividing if any data remaining that

will be added to n+1 split. If the size n increases security

increase but proportionally computation overhead also

increases. So while splitting the file n should be picked

heuristically. Same module may be re written for

supporting variable file sizes. In this model we

implemented and tested only equal size partition. In IFile

split file information to be incorporated for sharing that

to the user who data owner intend to share. For error

detection in the split file we can maintain CRC/ Message

Digest each split information along with CRC updated in

IFile.

4.2.Uploadfile(UploadPolicy,Mode,CloudAccessInfo,

SplitFilesList):

DOI: 10.18535/ijecs/v5i11.57

S.Rama Krishna, IJECS Volume 05 Issue 11 Nov., 2016 Page No.19037-19044 Page 19040

Inputs:

SplitFilesList-FileArrayconsiting list of files

UploadPoilicy-policy defined for distribution of

split files

Mode- distribution mode

CloudAccessInfo –cloud Account information

Output:

IFile- information File

Begin

 For i n

 Account 

getCloud(CloudAccessInfo,UploadPolicy)

 Region  setRegion(uploadPolicy)

 Bucket  createBucket(mode)

 Object  readFile(SplitFileList[i])

 uploadcloud(Cloud,Region,Bucket,Object)

 update(IFile)

End for

End

Description:

Upload file module takes four inputs IFile 

IFile consist of information about files after splitting such

as no of splits, file size, timestamp, message digest value.

UploadPolicy it is having values ranging from 1 to 4

1. Normal file upload

2. Split single Bucket in single region

3. Split Multiple Bucket in single region

4. Split Multiple buckets in multiple regions

Mode it has 3 values

1. Random distribution mode

2. Circular distribution mode

3. Sequential distribution mode

CloudAccessInfo this contains cloud account

information such as account name, access parameters.

Uploading process is done based on the upload

policy and mode by picking proper account information

from cloud access info data structure. Once uploading is

done details of uploading account information and time

stamp will be updated to the IFile .

Each split file is taken from split file array

properly uploaded by picking the proper cloud, region,

and bucket with different modes of storage and naming

conventions. If the files were not properly distributed we

may not achieve our desired parameter (missing data) to

the extent of expectation.

Here our experimental implementation only

limited to single cloud but in our method we made a

generalized framing of algorithm so that even in future

extension same model can be used for multiple cloud

infrastructures also.

4.3. Data sharing (Login credentials)

Inputs:

 LoginCredentials -user login credentials

Output:

IFile – information File

Begin

 If(login successful)

 Transfer IFile

 Else

 Return error message

End if

End

Description:

When the user wants to get information from the

data owner he has to subscribe at data owner for

credentials. Once he receive credentials at the time of

authentication user has to produce these credentials to

the data owner in secure channel. Data owner will verify

these credentials and if the credentials satisfy the access

policy of the information then will share the file

information to the user in secret form either mail or

encrypted format.

Data owner may also reduce burden of being online for

authentication or credentials verification by deploying a

trust server at cloud. Proper secrecy must be ensured at

trust server so that if it is compromised entire structure

will be compromised. Model should support for secure

IFile storage and transformation to prevent data leakage.

4.4. Download(IFile)

Inputs:

IFile – information File

Output:

 DownloadedFilesList[n]

Begin

 For i = 1 to n

 Account  getCloud(IFile)

 Region  getRegion(IFile)

 Bucket  getBucket(IFile)

 Object  readFile(IFile)

 DownloadfileList[i]downloadcloud(

Cloud,Region,Bucket,Object)

 ChksumIFile.getChecksum(i)

 If(chksum!=

Checksum(DownloadedFilesList[i]))

 Return error

 End if

 End for

End

Description:

User of the data who obtained IFile can easily download

the list of files from the cloud as mentioned in IFile by

providing proper security credentials at cloud. Process

repeated for n splits and digest verification is done here.

In this module we can also keep the additional feature of

error checking by calculating CRC value for each

downloaded file. This CRC will be checked by comparing

the generated CRC with one that is there in IFile. If

verification produces any errors same fragment can be re

downloaded and file re-construction can be done again.

DOI: 10.18535/ijecs/v5i11.57

S.Rama Krishna, IJECS Volume 05 Issue 11 Nov., 2016 Page No.19037-19044 Page 19041

Anyhow error detection is not major concern or scope of

the discussion so we limit the discussion here.

4.5. Compile (DownloadedFilesList)

Inputs:

 IFile

 DownloadedFilesList[n]

Output:

 Final

Begin

 For i=1 to n do

 Readbuffer  Readfile(DownloadedFilesList[i])

 Final.append(Readbuffer)

 End for

End

Description:

Compile module is to re formulate original file at

to make it ready for user. All the downloaded files are

appended to the original file to re construct. This module

pools all piles of information according to IFile sequence

number and compiles a complete file.

5. Implementation

The Split share model was implemented using

java. Amazon S3 (Simple Storage Service) accounts were

created in Amazon Web Services public cloud. These

accounts were configured to create buckets and store

objects in different regions like US-EAST, US-WEST2 and

so on. AWS java API is used for accessing Amazon Web

Services S3 (Simple Storage Service). Eclipse Mars IDE is

used to execute developed program. Data owner and

User Machines we use Intel(R) Core(TM) i5-4210U CPU @

1.70 GHz to 2.40 GHz With 8 GB RAM. Data Owner

Machine get Connected to the cloud with basic internet

speeds 256 KBPS to 2 MBPS. All the experiments were

done at various times of day in a week and results were

averaged and normalized using Min –Max

Normalization technique.

Split share model discussed above tested with 4 different

upload policies. Such as

1. Normal file upload

2. Split single Bucket in single region

3. Split Multiple Bucket in single region

4. Split Multiple buckets in multiple regions

Setup 2:

To identify co-residency in hard disk contention

data is stored in storage service offered by Amazon-S3

Cloud provider. Data in Amazon S3 is stored as objects.

Buckets are the containers of objects. Each bucket has to

be given with unique name so that it is accessible to

everyone. Each object is associated with a key value. This

key value in the bucket is unique. For testing we utilize

two upload policies mentioned underneath.

Multiple bucket upload policy: Reading two files from one

bucket with other files with n buckets same region.

Single bucket upload policy: Reading two files from one

bucket.

For the verification of disk contention we

perform download operation with two t2.large EC2

instances in US-East region. The two instances has same

configuration. These instances are utilized to download

files at the same time from S3. These files stored in S3

were uploaded using two upload policies specified

previously. Test was rehashed for different document

sizes. Correlation coefficient of downloading times was

tabulated and figured as appeared in Fig. 11. We conduct

the experiment at different time of a day and repeated for

two weeks. We can observe that the download time

correlation coefficient of multiple bucket upload policy is

having higher order than the single bucket upload policy.

6. Result analysis

6.1 Best number of splits

 For analyzing best no of splits we conducted

experiments by uploading different files starting with 100

KB to 1.5 GB sizes. We record values of missing data and

split size with no of splits ranging from 1 to 100.

Figure 4 Split Size Vs Mising Data

Figure 4 on the X Axis we denote no of Splits

which variate from 1 to 100 , Y Axis we had taken File

size in bytes. Graph was drawn by taking a file size of

43356 bytes. There were two curves to represent split size

and missing data in the bucket as reducing surface area

in the graph. This graph is drawn to find out the relation

between reduced surface area and split size with respect

to no of splits. From the graph it was observed as the

number of splits increases split size is decreasing and

proportionally there is further reduction in data available

in same bucket.

But from the graph it was observed that variation

to number of splits to missing data is considerably high

in the range of no of split in between 8-15. Even number

of splits increase further beyond that missing data is not

increasing significantly.

So we can conclude that best number of splits for

any file will be in the range of 8 to 15.

DOI: 10.18535/ijecs/v5i11.57

S.Rama Krishna, IJECS Volume 05 Issue 11 Nov., 2016 Page No.19037-19044 Page 19042

Figure 5 Normalized values of Split time, Split Size,

Missing Data , Total Upload Time change with no of

split

Figure 5 is the Graph which also includes

Normalized Split Time and Normalized Total Upload

Times along with Normalized Split Size and Missing

Data. Here we use Min –Max Normalization process to

bring the values in the range of 1 to 10 as Split size and

missing data sizes are dominating the split time and

upload times. This figure presents variation in split time,

split size total upload time and missing data with respect

to no of splits which variate starting from 1 to 100

depicted on X-Axis. Y –Axis Normalized values were

represented.

These curves also define best no of splits as at best

number of splits split size , split time and total upload

time should be minimum where as missing data should

be high. In such case observations also proves that in the

range of 8-15 no of splits that it is the best range of no of

splits .

Figure 6 Split size and Missing data variation Vs no of

splits

Figure 6 the depicts graph of curves for 3

different file sizes . It was observed split size and missing

data variation for 3 different file sizes 47 MB, 57 MB, 100

MB. Here we took no of splits taken are 1 to 10 over X

axis and on the Y- axis file sizes.

6.2 Performance variation for three upload policies

Next experiments were done to find the

overhead cost incurred among various models. For these

experiments we choose different file sizes and applied 3

models and compared the generated results with normal

file uploading.

 It was observed that as the file sizes increase costs

increased proportionally. From the results discussed in

previous part of this section we may conclude that

among three upload models split multiple buckets and

split multiple buckets in multiple regions will have high

value of missing data.

Figure 7 . Average bytes per Mille second transferred

considering the total cost involved for four models.

 Split Single bucket and Normal file upload policies

does not able to increase the missing data size. In this

experiment we try to observe the impact of additional

costs over file transfer rate incurred in four upload

policies. This experiment was conducted by uploading

different files with various sizes ranging from 34 KB to

700 MB. It was tested by sending files from various

regions in the cloud. All the results were averaged and

they were rounded up for drawing the graphs.

From the figure 7 on the X axis we have four different

upload policies. Y axis we represent average no of bytes

those were transferred per mille second. Split single

bucket upload policy when compared to split multiple

bucket upload policy more transfer rate but the

difference is considerably less. The same case was

observed with the split multiple buckets upload policy in

multiple regions.

Figure 8 Total upload times for three models with

various file sizes

 It was observed that normal file is

having high average no of bytes transferred per

mille second compared to remaining three models.

The remaining three models involve splitting time

DOI: 10.18535/ijecs/v5i11.57

S.Rama Krishna, IJECS Volume 05 Issue 11 Nov., 2016 Page No.19037-19044 Page 19043

additionally there is little overhead added to the

model.

6.3 Performance evaluation of split multiple bucket

upload policy.

 This experiment gives how different times were

varying with respect to different file sizes in split

multiple bucket upload policy in the single region. We

this we created 10 buckets in US-WEST2 region.

Uploaded split files to these 10 buckets sequentially.

Experiment was conducted in such a way that network

latency was reduced, by setting up ec2 instances and s3

buckets in the same region.

Figure 9 Split ,upload , total time comparison of

various file sizes in the split multiple bucket model.

Figure 10 Screen shot of split file storage in multiple

buckets in AWS S3 account

Figure 9 shows the results drawn by uploading five

different files of size varying from 30 MB TO 700 mb.

From the results it was observed that split time is less

factor when it compared to upload time and it moves up

with the file size that we transfer. Figure 10 gives a

snapshot of files stored in multiple buckets in AWS

cloud.

6.4 Hard disk contention checking between split single

bucket upload policy and split multiple buckets upload

policy.

 This experiment was done using second setup as

mentioned in implementation section 5 to check the hard

disk contention when two users download two files at a

time. From the results drawn we draw figure 11 and it

was clear conclusion as we are isolating two files hard

disk contention reduced significantly and very less

correlation has observed while downloading files in split

multiple bucket upload policy.

Figure 11 Correlation factor for single bucket and split

share 2 files reading times.

7. Summary

This paper proposes a novel model split share for

provisioning security to the cotenant covert channel

attack. The proposed model implemented and the results

were analyzed. We can summarize that split share model

with multiple bucket upload policy at no of splits range

from 8 to 15 gives best results. These results are

satisfactory as we observe less overhead, more missing

data factor and less hard disk contention correlation

factor as per the design objectives. Error detection was

also included in the model.

8. Future Scope

 8.1 Encryption Function

 For making malicious co-tenants job tough in the

covert channel attack we need to make even the available

small piece of information difficult to access. This can be

possible by incorporating encryption function to the

model. So that the data we place in the cloud would be

much harder to crack for the malicious cotenants.

Working in this direction may give valuable conclusions.

Security should not become unbearable overload

computing. So in this model we propose a basic model.

8.2 Multi Cloud Support

Since the implementation differentiation amongst

multiple clouds our proposed model was not tested

under the multi cloud environment. Research in that

direction may make even tough for malicious co-tenants

to gain access as well as difficult to leak data. Future

research may address this direction.

8.3 Sharing and Storage of IFile

IFile consist of all the Meta data related to cloud

access as well as storage information and check

sum. So Storage and sharing of this IFile

information in a flexible and secure manner is

expected. Research in this direction may also draw

some important conclusions.

9. References

DOI: 10.18535/ijecs/v5i11.57

S.Rama Krishna, IJECS Volume 05 Issue 11 Nov., 2016 Page No.19037-19044 Page 19044

 [1] M. Godfrey and M. Zulkernine, “A Server-Side Solution to

Cache-Based Side-Channel Attacks in the Cloud,” Proc. Of 6th IEEE

International Conference on Cloud Computing, 2013, pp. 163–170.

 [2] F. Liu, L. Ren, and H. Bai, “Mitigating Cross-VM Side Channel

Attack on Multiple Tenants Cloud Platform,” Journal of Computers,

9(4), 2014, pp. 1005–1013.

 [3] J. Wu, L. Ding, Y. Lin, N. Min-Allah, and Y. Wang, “xenpump: A

New Method to Mitigate Timing Channel in Cloud Computing,” Proc.

Of 5th IEEE International Conference On Cloud Computing, 2012, pp.

678–685.

 [4] S. Yu, X. Gui, J. Lin, X. Zhang, and J. Wang, “Detecting vms Co-

residency in the Cloud: Using Cache-based Side Channel Attacks,”

Elektronika Ir Elektrotechnika, 19(5), 2013, pp. 73– 78.

[5] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you,

get off of my cloud: exploring information leakage in third-party

compute clouds,” in ACM Conference on Computer and

Communications Security, 2009, pp. 199–212.

[6] Y. Xu, M. Bailey, F. Jahanian, K. R. Joshi, M. A. Hiltunen, and R.

D. Schlichting, “An exploration of l2 cache covert channels in

virtualized environments,” in CCSW, 2011, pp. 29–40.

[7] J. C. Wray, “An analysis of covert timing channels,” in IEEE

Symposium

on Security and Privacy, 1991, pp. 2–7.

[8] D. F. C. Brewer and M. J. Nash, “The chinese wall security

policy,” in IEEE Symposium on Security and Privacy, 1989, pp. 206–

214.

[9] Dan@AWS, “Best Practices for Using Amazon S3,” 2009.

[Online]. Available: http://aws.amazon.com/articles/1904

[10] Amazon Web Services. [Online]. Available: aws.amazon.com

[11] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi,

and P. Samarati, “Encryption policies for regulating access to

outsourced

data,” ACM Trans. Database Syst., vol. 35, no. 2, 2010.

[12] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure,

scalable, and fine-grained data access control in cloud computing” in

INFOCOM, 2010, pp. 534–542.

[13] T. Tsai, Y. Chen, H. Huang, P. Huang, and K. Chou, “A practical

Chinese wall security model in cloud computing,” in APNOMS, 2011,

pp. 1–4.

