
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN: 2319-7242

Volume 5 Issue 11 Nov. 2016, Page No. 18911-18915

Biprajeet Pal , IJECS Volume 05 Issue 11 Nov., 2016 Page No.18911-18915 Page 18911

Alternative Method of Audio Searching (AMAS)
Biprajeet Pal

1
, Vishal Ramanathan

2
, Abhilaksh Sharma

3
 , Riten Shah

4
, Sarthak Raisurana

5

1 2 3 4 5School of Computer Science and Engineering, VIT University,

VIT University , Vellore - 632014

biprajeet.pal@gmail.com

Abstract: With the advent of searching technologies becoming more and more efficient day by day it has become impertinent to apply the

same on audio. Often times we require search results which if in audio format makes more sense. Our existing algorithms use waveforms to

search on audio which requires indexing of all audio files or the audio file is matched via the names of the file itself and pertaining

metadata about the file. In order to make real and real-time searching on the audio files possible we use this methodology. This paper

merely outlines a possible way of searching for the content of the audio files. We do this by converting the audio to text and then search on

the text itself thus giving better results. In this paper we review on the previous works and provide a rough guideline how this can be

achieved.

Keywords: speech to text, audio format, audio searching , audio conversion , text compression , text searching algorithm , review paper.

1. Introduction

The way to document audio files for future use is called oral

documentation. The gathering historical information preserving

them and interpreting this information through recordings of

interviews of participants and communities for past events.

Oral History is a research area and provides techniques of

preserving history. It is a method of cultural documentation. It

helps in preserving the form of verbal information which has

existed since before recorded history. This can be applied for

the study of any subject of history. Oral History is applied in

the research of military history, social history, economic

history, cultural history, business history, political history and

community history.

This paper focuses on bringing the Oral History documentation

into automation with advanced speech and script format. This

aims to use a speech recognizer to convert audio from

historical and present interviews and speeches and then convert

these audio files automatically in to a textual format that

records the entire audio as a script in a text file.

For the process of extracting audio from the file and recognize

speech from it, we use the latest and efficient speech

recognition and pattern analysis algorithms already available in

the market. Real-time recognizer uses an isolated word

dictation implemented with a 500 word vocabulary. It uses self-

organize, statistical approaches underlying the basic speech

recognition algorithms of the recognizer. Previous approaches

relied heavily on expert input through the painstaking analysis

of data to release speech signals to the word sequences that

produced them. Such methodologies were completely displaced

by casting the speech recognition problem in a probabilistic

framework by modeling the joint probability distribution of

speech signals and word sequences. At the beginning of the 21
st

century , the amount of data and computation to train and

builds models has increased exponentially, and the emergence

of new machine- learning algorithms and methodologies has

opened new vistas in approaching complex pattern recognition

problems. This is enabled by a new set of machine- learning

techniques referred to as graphical models with

computationally tractable training algorithms. Closely related

are neuro-network modeling techniques, and there has been a

resurgence of interest in the application of neural – network

concepts such as deep networks to speech recognition. The

explosion of data has caused the development of new ways to

capture the key features in massive amounts of data using

efficient methods deploying exemplar-based sparse

representations. Lastly, all of these different approaches can be

tied together in a principle fashion using another variation of

graphical models: an exponential model framework.

This paper describes the current state of the art speech

recognition systems to bring the audio speech into a scripted

text file which then undergoes severe compression system to

reduce its size and compounded along with the existing audio

file to establish a format that allows archiving the data as a

compound of audio and its script which helps in documentation

of the oral history and makes for better search.

It is often required to reduce data size in order to save space

and time spent in transmission, and this process is called

compression. In this paper we review technologies that utilize

the complementary processes of text compression and speech

recognition. Data compression involves encoding information

using fewer bits than the original representation. Compression

is useful because it reduces resources required to store and

transmit data. Computational resources are utilized in the

compression process, as well as the decompression process.

The first objective in order to save text with the audio is to

recognize the speech and convert it to text. Speech recognition

methodologies have seen improvements over the years, and

advancement of technology has enabled more accurate

reporting and subsequently storage of more quality

information.

.

2. Review of Methodology

A. Speech recognition (speech to text)

A wide array of works in literature bears witness to the

successful attempts being made at using speech recognition to

extract meaningful words from dictation. For instance, [3] use a

speech-to-text interface integrated to Mammo-Class which

enables radiologists to dictate a mammography report rather

than physically typing it in. Despite a wide range of success,

speech recognition engines work well given the vocabularies

are limited i.e. lexemes are less and speech is delivered in

isolated and dedicated mini-worlds. Thus rendering it less

suitable in noisy environments delivering a poor performance.

An idea [6] is to reduce error rate by successive revisions of the

dictation thus focusing on the text itself rather than the relevant

word to build a data-structure for posterior automata study.

DOI: 10.18535/ijecs/v5i11.33

Biprajeet Pal , IJECS Volume 05 Issue 11 Nov., 2016 Page No.18911-18915 Page 18912

Speech recognition is many times confused with voice

recognition while in fact, both are quite different, has separate

objectives. While voice recognition deals with identifying a

person with the voice sample and previously learned voice data

Irrespective of the language, whereas speech recognition only

deals with identifying what the lexemes i.e. words in the

speech, depending on the language and not how its'

pronounced. Our aim here is to recognize and extract relevant

lexemes from dictated texts. So some of the major speech to

text techniques will be discussed here.

Researchers have been trying for decades to create a speech

recognition system. The earlier [1] automatic speech

recognition techniques involved template matching methods.

Template matching involves comparing the incoming speech

with a set of reference patterns and then recognizing the

common words. This involved having templates for each word

and the comparing which would take a lot of execution time.

Hence this concept was difficult to implement and run

Other early attempts included including high level knowledge

based systems that used expert knowledge for speech

processing and recognition. These had limited success because

creating expert knowledge would imply a lot of manual based

rule methods which will involve too many constraints. So this

method was discarded and data driven approach was used to

extract the information.

Today’s speech recognition is much broader. We aim at not

only recognizing the word but also recognizing the person’s

signature. Also people don’t speak just a single language

anymore. Many languages are spoken together to form

sentences. These will also require translation and hence the

speech recognition is an uphill battle.

Data driven methods [1] created language models with the

purpose to handle syntactical and grammar aspects of the

language. Another common problem faced was different

pronunciations for the same word and also the different dialects

of the same language. These were solved by data driven aspect

as the language model was represented by grammar especially

context-free-grammar. The technique involves pre-processing

the speech signal and removing noise. Then extract the

phonemes and then do the acoustic matching. This method

proved to generate much more accuracy in recognizing the

pronunciation. The primary reason for that is the

level/generation of the computers available to us today. It has

made data processing much faster. Even very complex models

can be solved in a few hours.

The current best and fastest method for speech recognition is

using neural networks [2]. The initial goal is to build a

classifier that can recognize the phonemes and convert them to

text. The input speech data is either un-aligned or aligned.

Aligned data is very easy to work on but unaligned data is not.

So there are two options to convert the input speech into un-

aligned pattern into aligned or directly build a system that

works on un-aligned data.

The next objective is choosing the right algorithm for searching

a phoneme. The one chosen after lot of research is forward-

backward algorithm for Makarov models. The reason why this

is chosen instead of the basic naive – search is that is starts by

searching for the prefix of the string so instead of searching the

whole word only the prefix is matched first and then when hit it

moves forward with the next phoneme. Also in this method

probability technique is incorporated to ensure a faster search

and hit for the phoneme.

The most difficult objective here is training the software to

recognize human speech and not a string of phonemes. This

also includes removing the sound data and only concentrating

on the speech.

Speech-to-text software is a type of software that effectively

takes audio content and transcribes it into written words which

is the idea of this whole context. One of the popular speech-to-

text interface is provided by Google’s Web Speech API

(Application Programming Interface, https://dvcs.w3.org/

hg/speech-api/raw-file/tip/speechapi.html) which allows the

programmer to obtain a translation of voice to text, and also

Voice Note (https://voicenote.in) that is a free extension for

Google Chrome.

We look at Free Voice to Text (http://download.cnet.com/Free-

Voice-to-Text/ 3000-7239 4-76115951.html). This software is

used to send emails and documents just dictating. It is a free

tool and supports the following languages: English, Spanish,

French and Japanese. Next was Talking Desktop (http://voice-

recognition-software-review.toptenreviews.com/

talkingdesktop-review.html). The next software is Dragon

Naturally Speaking Home (and Premium version)

(http://www.nuance.com/for-business/by-product/

dragon/product-resources/edition-comparison/index.htm).

All of these examples require that the user installs some

software. Others allow the access via web browser or via

Application Programming Interfaces (API). One of them is the

Web Speech API (https: //dvcs.w3.org/hg/speech-api/raw-

file/tip/speechapi.html).

We tested all the freely available sources and gave preference

to Google web speech API. It is also interesting to note that

despite many speech recognition software existing they are still

only used to recognize words. The future aim is to considerably

reduce the execution time broadening the scope to recognize

multiple speakers at the same time.

So our proposed model will be using Google speech for speech

recognition and speech synthesis.

1) System Description

This system has two modules. The recognition module and the

correction module. While the first module deals with

converting the speech of the dictated text to actual text the

second module deals with the edition or deletion of a word.

The basic working of this tool is shown in Fig. 1.

Fig. 1. Interaction with the speech tool

For speech synthesis and recognition, Google Speech API is

used.

1) Google Speech Recognition

Google speech works online. Initially , the speech is recorded.

This is then sent to the Google server. Google returns a result

with the set of other possible results of highest probability.

The language may be any known accent. The punctuation

marks is also generated.

DOI: 10.18535/ijecs/v5i11.33

Biprajeet Pal , IJECS Volume 05 Issue 11 Nov., 2016 Page No.18911-18915 Page 18913

2) Recognition module

At first the sentence spoken by the user is recorded in a flac

audio file. Then the audio data is sent to google server. Then

Google processes this audio using its own algorithms. Then it

returns the highest possible result along with other possible

results. This process is shown in Fig. 2.

Fig. 2. Recognition module

3) Correction module

For text correction, user has to enter word replace or word

deletion mode. After entering a mode, the user will be notified

through the Google speech synthesizer. Then he will be asked

for a specific word which should be deleted or replaced. After

the user gives his choice, he will be notified through audio

feedback whether it is found or not. If it is found, he will be

asked which word he would like to replace it with. Then if he

speaks a word, the replacing will occur successfully. The

process is shown in Fig. 3.

Fig. 3. Correction module

B. Text Compression

There is always a trade-off between speed and compression

ratio, i.e. a space-time complexity trade-off. For instance, a

compression scheme for video may require

expensive hardware for the video to be decompressed fast

enough to be viewed as it is being decompressed, and the

option to decompress the video in full before watching it may

be inconvenient or require additional storage. The design of

data compression schemes involves trade-offs among various

factors, including the degree of compression, the amount of

distortion introduced (when using lossy data compression), and

the computational resources required to compress and

decompress the data.

Data compression may be viewed as a branch of information

theory in which the primary objective is to minimize the

amount of data to be transmitted. The purpose of this paper is

to present and analyze a variety of data compression

algorithms. Data compression has important applications in the

areas of data transmission and data storage. Many data

processing applications require storage of large volumes of

data, and the number of such applications is constantly

increasing as the use of computers extends to new disciplines.

At the same time, the proliferation of computer communication

networks is resulting in massive transfer of data over

communication links. Compressing data to be stored or

transmitted reduces storage and/or communication costs. When

the amount of data to be transmitted is reduced, the effect is

that of increasing the capacity of the communication channel.

Similarly, compressing a file to half of its original size is

equivalent to doubling the capacity of the storage medium. It

may then become feasible to store the data at a higher, thus

faster, level of the storage hierarchy and reduce the load on the

input/output channels of the computer system.

1) Types of Data Compression

Compression can be of two types:

1. Lossy - Lossy compression is compression done by reducing

bits by eliminating unnecessary or less important

information. After decompression, the data that is retrieved

will be close to the original data, but will not be the exact

same. Some data from the original message will be lost.

Fig. 4 Lossy Compression

Since we are focusing on compression of textual data, lossy

compression is not suitable, since all the information in the text

is critical. Lossy compression is mainly used for Digitally

Sampled Analog Data (DSAD). DSAD are files that include

audio, graphics, images or video. We shall focus on Lossless

data compression for textual data.

2. Lossless - Lossless compression reduces bits by identifying

and eliminating statistical redundancy. Here, data is not lost

during compression and decompression. The exact original

data can be retrieved from the compressed file. Algorithms to

compress text data in a lossless manner exploit statistical

redundancy in a manner that the data is represented in a more

concise manner without loss of important information within

the text data. Lossless compression is possible due to the

presence of statistical redundancy in most real-world data.

Fig. 5 Lossless Compression

Most lossless compression algorithms have two parts – one

which generates a statistical model for the input data and

another which maps the input data to bit strings using this

model in such a way that frequently encountered data will

DOI: 10.18535/ijecs/v5i11.33

Biprajeet Pal , IJECS Volume 05 Issue 11 Nov., 2016 Page No.18911-18915 Page 18914

produce shorter output than improbable(less frequent) data.

Lossless data compression works best for text data.

2) Existing lossless data compression techniques

1. Bit Reduction Algorithm

This algorithm was originally implemented for use in a text file

like message communication application [7]. The main idea

behind this program is to reduce the standard 8-bit encoding to

some application specific 5-bit encoding system and then pack

into a byte array. This method reduces the size of a string

considerably when the string is lengthy and the compression

ratio is not affected by the content of the string.

Bit Reduction Algorithm in steps:

 Select the frequently occurring characters from the text

file which are to be encoded and obtain their

corresponding ASCII code.

 Obtain the corresponding binary code of these ASCII

key codes for each character.

 Then put these binary numbers into an array of byte

(8bit array).

 Remove extra bits from binary no like extra 3 bits from

the front.

 Then rearrange these into array of byte and maintain the

array.

 Final text will be encoded and as well as compression

will be achieved.

 Now decompression will be achieved in reverse order

at the client-side Improved Dynamic Bit reduction

algorithm (Hybrid Approach).

2. Syllable Based Morphology

This approach considers the syllables in words, and their

significance in many languages. Many syllables are shared

between words, and are usually longer than a single character

and shorter than a word. [8] Therefore, both character

compression and word compression can be utilised. This

approach is most suitable for short text files. The proposed

approach is different than previous syllable based compression

approaches in that, syllables are used as the basic unit and these

fragments are compressed utilizing an automaton to produce a

volatile dictionary.

Languages are classified into Mono-syllable and Multi-syllable

languages.

The algorithm works as follows:

 A file, considered as the source, consisting of text is

taken

 The text is searched for characters that may not be

included in the alphabet using a filtering unit.

 The words are divided into syllables using the syllables

unit.

 A dictionary for compressing the input text is created

by the compression unit, which produces the target

file.

 The dictionary consists of different syllables contained

in the text and binary codes corresponding to them.

This is a volatile file.

 Finally, the target file which contains the compressed

data.

This algorithm is useful in many ways. It reduces chances of

corruption in the resulting compressed files. This is because

any corruption occurring when compressing a syllable results in

a typo only for that syllable as a result of decompression

leaving the rest of the text uncorrupted. Bit errors are extremely

dangerous for most of the other algorithms which result in

unreadable files after the point of corruption. This algorithm, is

modular with clearly defined modules. This makes the entire

system easy to understand and make modifications to. Less

memory space is needed due to the use of a volatile dictionary.

Finally, it extends theoretical insights from other algorithms

reported in the literature and our results may provide a basis for

discussions and extensions regarding the use of languages’

syllabic characteristics in text compression.

1. Two stage text compression and decompression

using Adaptive Huffman (AH) and Parallel

Dictionary Lempel-Ziv-Welch (PDLZW)

algorithms.

In this approach, two very famous algorithms, the Huffman and

the Lempel-Ziv-Welch algorithms, are combined to result in a

higher compression ratio than when both are used individually.

This approach works as follows:

A. Compression:

The PDLZW algorithm [9] replaces the input text strings into

fixed length codes in stage one. In stage two, the Adaptive

Huffman algorithm replaces the fixed length codes into

variable length codes.

B. Decompression

In stage one, the input string is replaced into variable length

codes by the Adaptive Huffman algorithm. These variable

length codes are replaced into fixed length ones by the PDLZW

algorithm.

The efficiency of data compression by using the two algorithm

together can be up to 41.50%.

In the new model,

A. Compression:

The Huffman algorithm replaces the input text strings into

variable length codes in stage one. In stage two, the LZW

algorithm replaces the variable length codes into fixed length

codes.

B. Decompression

In stage one, the input string is replaced into fixed length codes

by the LZW algorithm. These fixed length codes are replaced

into variable length ones by the Huffman algorithm.

By interchanging the compression stages in the new model, the

efficiency can be up to 46.19%.

2. Hybrid Approach combining Dynamic Bit

Reduction and Huffman coding.

This algorithm works in two stages for the compression of text

data. [10] The data is first compressed using dynamic bit

reduction followed by further compression using Huffman

coding. When input data is entered by the user, the number of

DOI: 10.18535/ijecs/v5i11.33

Biprajeet Pal , IJECS Volume 05 Issue 11 Nov., 2016 Page No.18911-18915 Page 18915

occurrences in the string will be discovered by the system with

numeric codes assigned to these unique symbols. For every

numeric code, corresponding binary codes will be generated to

obtain the (compressed) binary output. The binary output

generates ASCII code to which Huffman coding is applied,

further compressing the data. Huffman coding follows top

down approach means the binary tree is built from the top to

down to generate an optimal result. In Huffman Coding the

characters in a data file are converted to binary code. The most

common characters in the file have the shortest binary codes,

and the least common ones will have the longest binary code.

Decompression works in reverse order. Compressed data is

first decompressed by Huffman Decoder and then by dynamic

bit reduction decoder to get back the original data.

References

[1] Mikko Kurimo, Bowen Zhou, Rongqing Huani's and John

HL. Hansen, “Language Modelling Structures in Audio

Transcription for Retrieval of Historical Speeches” in SPC

2004.

[2] Eniko Beatrice Bilcu, Petri Salmela, Janne Suontausta,

Jukka Saarinen,” Application of Neural Networks for Text-to-

Phoneme Mapping” in SPC 2004.

[3] Ricardo Sousa Rocha, Pedro Ferreira, Inˆes Dutra, Ricardo

Correia, Rogerio Salvini, Elizabeth Burnside, “A Speech-to-

Text Interface for MammoClass” in ISCBMS 2016

[4] Md. Nafiz Hasan Khan, Md. Amit Hasan Arovi, Hasan

Mahmud, Md. Kamrul Hasan, and Husne Ara Rubaiyeat,

“Speech based text correction tool for the visually impaired” in

ICCIT 2015

[5] Annisa Istiqomah Arrahmah, Aulia Rahmatika, Samantha

Harisa, Hasballah Zakaria , Richard Mengko, “Text-to-Speech

Device for Patients with Low Vision” in ICICI-BME 2015

[6] R. Patel, B. Greenberg, S. Montner, A. Funaki, C. Straus, S.

Zangan, and H. MacMahon, “Reduction of voice recognition

errors in radiological dictation: Effects of systematic individual

feedback,”

http://clinicaleffectiveness.uchicago.edu/files/2013/07/Reductio

n- of-Voice-Recognition-Errors-in-Radiological-Dictation-

Effects-of-Systematic-Individual-feedback.pdf, accessed in Feb

2016.

[7] Rajinder Kaur, Er. Monica Goyal, “An Algorithm for

Lossless Text Data Compression”, International Journal of

Engineering Research & Technology (IJERT), Vol. 2, Issue 7,

July – 2013

[8] Ibrahim Akman, Hakan Bayindir, Serkan Ozleme, Zehra

Akin, Sanjay Misra, “Lossless Text Compression Technique

Using Syllable Based Morphology”, The International Arab

Journal of Information Technology, Vol. 8, No. 1, January

2011.

[9] Raja P., Saraswathi D., “An Effective Two Stage Text

Compression and Decompression Technique for Data

Communication”, International Journal of Electronics and

Communication Engineering, Vol. 4, Number 2, 2011.

[10] Amandeep Singh Sidhu, Er. Meenakshi Garg, “Research

Paper on Text Data Compression Algorithm using Hybrid

Approach”, International Journal of Computer Science and

Mobile Computing, Vol. 3, Issue 12, December 2014.

