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Abstract: Parallel programming has evolved due to the availability of fast and inexpensive processors. This technique allows us to 

determine which portions of an algorithm may be executed simultaneously by exploiting different processors. Recently, the focus has shifted 

to implementing parallel algorithms on multicore systems in order to increase performance. One of the most common operations performed 

by computers is sorting, which is a permutation on elements. Merge sort is an effective divide-and conquer sorting algorithm that is easy to 

understand relative to other sorting strategies. The aim of this paper is to describe and evaluate the performance of the parallel merge sort 

algorithm over its sequential version using the Java threading application program interface (API) environment, which allows 

programmers to directly manipulate threads in Java programs. The main idea of the proposed algorithm is to distribute the input data 

elements into several sub arrays according to the number of threads in each level. The experiments were conducted on a multi-core 

processor and examined the running time, speedup, efficiency, and scalability. The experiments also tested against different array sizes and 

different numbers of processors. The experimental results on a multi-core processor show that the proposed parallel algorithm achieves a 

good performance compared to the sequential algorithm. 

Keywords: Parallel programming, Multi-core, Merge sort, Sorting algorithms, Parallel merge sort  

1. Introduction 

When With the growing number of areas in which computers 

are being used, the need for more computing power machines 

has increased. Today’s processors can compute at incredible 

speeds, having the ability to process thousands of operations 

every second. Many algorithms, however, are not optimized for 

use with modern processors, and so one way to increase 

performance is to utilize parallel programming. The time it 

takes to solve larger problems could be reduced radically if 

parallel computing power were to be fully utilized. Parallel 

computing refers to the execution of a program by splitting 

larger problems into smaller ones, each computed on its own 

processor and all executed simultaneously. One of the 

advantages of this form of computing is its use of non-local 

resources and its ability to overcome memory constraints, 

which lead to increases in the performance of the system. 

Sorting is one of the most common operations performed by  

computers [1]. Basically, sorting is a permutation function that 

operates on elements [2]. Basic sorting algorithms arrange the 

elements of a list in a certain order. Many sorting algorithms 

exist, and they differ in their functions, performance, 

applications, and resources utilization [3]. Merge sort is an 

efficient sorting algorithm that is classified as a divide-and-

conquer algorithm. Divide-and-conquer algorithms separate the 

original data into smaller sets to solve a larger problem. This 

algorithm is fast, stable, easy to understand, and easy to 

implement. Using this algorithm via sequential computing in a 

multi-core environment is inefficient when compared to 

parallel computing. Therefore, this paper will deal with the 

implementation of a parallel merge sort algorithm for use 

within a multicore environment using a threading concept and 

focusing on analyzing the code region that can be executed 

concurrently. The overview of the proposed algorithm is shown 

in Figure 1. 
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Figure 1: Overview of the proposed work 

The rest of this paper is organized into five subsequent 

sections. In section 2, we give a brief description of the 

sequential merge sort algorithm along with common parallel 

models. In section 3, the latest related work is introduced and 

in Section 4, we demonstrate the proposed parallel merge sort 

algorithm. Section 5 presents the performance analysis and 

results. Finally, in Section 6, we draw some conclusions and 

introduce some suggestions for future work. 

2. Background 

Set Merge sort is a sorting process that can benefit from using a 

divide-and-conquer algorithm, which are useful due to their 

timeless nature [4]. Merge sort arranges the elements of an 

array in ascending order by recursively dividing the array into 

two sub arrays until one element left. Then, all arranged sub 

arrays will be merged into a single, final, sorted array. To sort 

N elements, a complexity of running time  logO N N  is 

fulfilled and known as the finest running time [5]. The divide-

and-conquer algorithm used by merge sort can be described as 

follows: first, it divides the array into two sub arrays, repeating 

the process until one element is left, which, in fact, is already 

sorted. Then, the algorithm starts merging the already sorted 

sub arrays into one array (see Figure 2) [5]. 

 
Figure 2: An illustrating merge sort example [6] 

The listing in Figure 3 presents the pseudo code of the 

sequential merge sort with inputs: an array R of size 1 to N and 

index variables p, q, r where r > q > = p. Furthermore, the array 

is divided from index p (the first element) until index r (the last 

element). The output is in ascending order [5]. 

 

 

 

 

 

 

 
1 MERGESORT(array,p,q,r)  

2 if p < r 

3  q = (r + p)/2 

4  MERGESORT(array, p, q ) 

5  MERGESORT(array,q+1,r) 

6  MERGE(array, p, q, r) 

7 MERGE(R, p, q, r) 

8  n1 = q-p+1 

9  n2 = r-q 

10 create arrays L[1...n1+1] and 

R[1...n2+1] 

11 for i=1 to n1 

12    do L[i] = Array[p+i-1] 

13   for j=1 to n2 

14    do R[j] = array[q+j] 

15    L[N1+1] = ∞ 

16    R[N2+1] = ∞ 

17 i = 1 

18 j = 1 

19 for k= p to r 

20  do if L[i] ≤ R[j] 

21    then array[k] = L[i] 

22       i = i+1 

23  else array[k] ← R[j] 

24       j = j+1 

Figure 3: The pseudo code of sequential merge sort 

In the sequential merge sort algorithm, the MergeSort() method 

will divide a given array into halves. Then, recursively, the 

same method is called to divide each half in half again, and so 

on until each half is a single element. After that, each two 

halves will be merged into a sorted array by the Merge() 

method. A number of halves are sorted and merged into a new 

array for each recursion call of the Merge() method. 

Different parallel programming models include the Shared 

Memory Model (with or without threads) and the Distributed 

Memory Model (message passing). These models are not 

specific to a particular memory architecture or machine, and so 

theoretically, they can be implemented on any underlying 

hardware [7]. The Shared Memory Model (without threads) is 

probably the simplest parallel programming model (see Figure 

4). The processes and tasks will read and write asynchronously 

to a mutual shared address space. To avoid race conditions and 

deadlocks, determining contentions and managing the shared 

memory’s access are achieved using different mechanisms such 

as locks/semaphores [7]. 

 

 
Figure 4: Shared Memory Model (without threads) [7] 

From a developer’s perspective, the Shared Memory Model 

can often be simplified. Due to a lack of data “ownership,” 

there is no need to indicate exactly how tasks are manipulating 
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the data’s communication. Thus, accessing and conceiving the 

shared memory are all the same between processes. 

Understanding and managing data locality, however, is difficult 

in terms of performance, which is a disadvantage of this model. 

Only expert users are typically able to control and understand 

data locality in this model [7]. In parallel programming using 

the Shared Memory Model (with threads), threads are usually 

coupled with shared memory architecture and operating 

systems. Each process can have several parallel execution 

paths. The programmer is responsible for shaping all 

parallelism, and from a programming viewpoint, threads often 

can be implemented by calling subroutine libraries within the 

parallel code and by using a group of environment variables 

and a group of implanted compiler directives in 

sequential/parallel code [7]. 

During computation using the Distributed Memory Model 

(message passing), a group of tasks use their local memory and 

several tasks can be located across one or more machines. The 

tasks can swap data over connections by sending and receiving 

messages (see Figure 5). Additionally, each process performs 

supportive actions for data transfer, including matching sent 

actions with received actions. 

 

 
Figure 5: Distributed Memory Model (message passing) [7] 

Since the 1980s, many message passing libraries have been 

available. For this model, the developer is responsible for 

shaping parallelism. Thus, the implementation of parallel 

programming in this model is highly difference variable, which 

makes developing portable applications a challenge for 

programmers. Usually, implementations include the 

subroutines of a library, and implanted in the source code are 

calls to those subroutines. 

In 1992, a goal was made to establish a standard interface for 

message passing implementations (MPI) that would, 

essentially, replace all other message passing implementations. 

The first standard interface was released in 1994 as part 1 

(MPI-1). Then, in 1996, was the release of part 2 (MPI-2) was 

released. Finally, in 2012, there was the release of part 3 (MPI-

3). MPI implementations are available for almost all known 

parallel computing platforms. Thus, not all developments 

include everything from MPI-1, MPI-2, or MPI-3 [7]. 

3. Related Work 

When In [8], only one model of parallel programming is used 

that explicates threads with shared memory. One thread is 

similar to a running sequential program, but it can also generate 

new threads, which are part of the same program. And those 

generated threads can, in turn, create other threads, and so on. 

Additionally, they share memory by communicating with the 

writing and reading fields of the same objects. Theoretically, if 

all threads have been started but not yet terminated, they are 

considered to be “running at the same time” in a program. In 

practice, however, not all threads may be running at any 

particular moment. Each thread has its own program counter 

(PC) and call-stack. Also, the threads all share static fields and 

objects as one collection. According to [8], shared memory is 

frequently known to be easy and convenient for users because 

it uses the usual read and write fields for objects to 

communicate. The negative side of this model, however, is that 

it is considered error prone because it requires the programmer 

to know which memory access spaces are engaging in inter-

thread communication, and which are not by deeply 

understanding the code and documentation. Furthermore, for 

message passing in their model, they are explicating threads 

without allowing them to share objects. To communicate, the 

sent message also sends a copy of some data to its receiver. If a 

thread mistakenly updates a field, other threads will not be 

affected because each thread has its own object. If processors 

are occasional, however, we should keep track of the different 

copies being produced by messages. In Java, threads have a 

clear scheme regarding how to apply divide-and-conquer 

parallelism. Each thread creates two assistant threads, left and 

right, and then waits for them to finish. Critically, the calls to 

left.start() and right.start() precede the calls to left.join() and 

right.join(). Thus, we will not have effective parallelism if 

left.join() comes before right.start(), even if a correct result is 

produced. Also, it is important to know that the main method 

calls the run method directly. 

In [9], a parallel merge sort algorithm with multithreading is 

introduced. They chose to focus on merge sort rather than the 

quick sort as it better parallelizes. In terms of divide and 

conquer, merge sort can be defined as follows: divide a given 

array in half to have two sub arrays (an array of size zero or 

one is already sorted). Then, for each sub array, apply sorting 

recursively. Finally, arrange the sorted sub arrays into one final 

sorted array. The parallel processing can be done by sorting the 

two sub arrays and if this operation is over, proceeding to the 

merge step. The results show that with two cores, the parallel 

merge sort is 100% faster than the sequential quick sort and 

25% faster than the parallel version of the quick sort with O(n) 

extra cost of space. 

In [10], three versions of the parallel merge sort are studied: 

first with shared memory (OpenMP), second with message 

passing (MPI), and third through a hybrid (MPI and OpenMP). 

OpenMP is selected for the implementation of a shared 

memory merge sort on SMPs because it combines with freely 

available compilers such as C/C++. OpenMP is a parallel 

programming language that allows programmers to create 

multiple threaded applications. Additionally, OpenMP supports 

a high level parallel programming model that makes it easier to 

use than different thread libraries. On the other hand, the MPI 

is chosen to develop merge sort’s message passing on 

computer’s clusters because it is well documented, it can be 

implemented for different architectures, and it has freely 

available implementations. The final performance experiments 

show that with OpenMP, the merge sort’s shared memory, 

achieves the highest speedup compared to the merge sort’s 

message passing with MPI. OpenMP, however, was not as 

efficient at deciding the best relays for a problem’s nature, 

cluster nodes hardware and software, and the cluster network. 
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In the case of problems with a fast network, the message 

passing with MPI can be quicker than hybrid solutions and 

OpenMP shared memory. 

In [11], the authors propose a parallel merge sort using 

OpenMP, which improves the performance, effectiveness, and 

expansion of the existing program by adding compiler 

directives to the code, allowing parallel processing while 

exerting little effort and minimizing changes to the system. 

OpenMP can only be used in SMP. After a few years, however, 

most CPUs provide at least a dual core, so using OpenMP 

poses no real problem. The experimental performance results 

of the merge sort in this paper show a speedup of 80% on a 2-

processor core and a speed up of 180% on a 4-processor core. 

In [12], GPUs are considered highly parallel systems that 

need hundreds (or even thousands) of threads to achieve 

bandwidth saturation. The authors designed an elevated 

performance parallel merge sort for these kind of systems. 

They use GPUs in order to exploit register communication and 

to avoid shared memory communication as much as possible to 

decrease the number of binary searches. To avoid load 

imbalance, the authors process bigger partitions at a time and 

exploit more register communication. Four main techniques 

allow their merge sort to achieve high performance: initially, 

within each thread, they sort 8 elements, which controls register 

bandwidth. Second, within a thread block, they apply a binary 

then linear search approach. Then, they avoid the over 

segmentation of the register windows and moving shared 

memory. Finally, by applying these three steps to their merge 

sort, it becomes suitable for the memory hierarchy and 

computational strength of GPUs. This process achieves 150% 

faster performance than a thrust merge sort and is quicker than 

GPU merge sorts by 70%. Applying these techniques, the 

authors achieved a 250 MKeys/sec sorting rate. 

The proposed load-balanced merge sort used in [13] involves 

several processors in the sorting process. This model divides 

the input data between all available processors in each period. 

This makes processors work as much as possible. The main 

idea in [13] is to initiate a parallel execution of the sort by 

distributing each part of the input list onto different processors. 

For instance, every processor saves an identical number of key 

elements. Thus, the processors together will be merging 

between as throughout the execution. This method employs 

more parallelism and thus reduces the running time of as sort 

algorithm. The proposed algorithm in this paper determines the 

minimum number of keys by creating a histogram. All 

processors together are sorting one list, which will be 

distributing between the available processors. Each processor 

will compute the histogram of its keys. After that, the 

histogram is used to merge these processes. Significant 

performance is achieved by enhancing the speed up to the 

number of processors minus one divided by the number of 

processors. After using this algorithm, the running time is 

reduced to a highest speedup of 860% on a Cray with 32 

processors. The results on an 8-node PC cluster achieved a 

speedup of an added 130% with a 180% upper bound at sorting 

integers of 4M 32-bit. 

In [14], a state-of-the-art, scalable parallel merge tree is 

proposed. The main difference in this model is that instead of 

assumes a constant sorting rate, it allows a variable sorting rate 

in the parallel merge-tree. This assumption deletes the nasty 

memory bandwidth requirement by proposing a solution that 

involves optimizing the parallel merge-tree at different data 

sets collected in a random way. Also, the authors offer three 

clear positive comparisons to the sequential implementation of 

sort the sorters: an increase in the sorting rate by one for each 

cycle, a reduction in the number of times the algorithm is run 

relative to the sequential version, and a different means of 

calculating the size of the sorted data that does not involve the 

available space on FPGA memory, which is used only as 

communication buffers for the main memory. 

Nanjesh et al. [15] propose a parallel merge sort algorithm. 

A single node (desktop PC) paradigm that involves only two 

cores is used to evaluate the performance on different RAM 

sizes using MPI and PVM, which are software tools for the 

parallel networking of computers. One of these cores acts as 

master, which handles requests from the user and assigns the 

problem to a slave, while another core acts as a slave, which 

accepts problems from the master and sends back solutions. 

The communication between master and slave is accomplished 

using MPICH-2 which is a new implementation of MPI 

provided to assist MPI-1 and MPI-2. The routines in MPICH2 

have very low communications overhead and are significantly 

faster compared to the “classic” MPI. The authors compare the 

time taken to solve the parallel algorithm using MPI and PVM 

with its sequential version. The results show that the sequential 

version is faster than the parallel version due to the overhead in 

communication involved in the parallel execution, which could 

be overcome by increasing the number of nodes. Also, the 

authors show that the MPI is faster than PVM in terms of 

performance. 

Zhang et al. [16] propose an improved two-way merge sort 

algorithm based on OpenMP. The concept of a two-way merge 

sort is to repeatedly merge two sorted subsets of data into a 

new one until the data is sorted. During the execution of the 

program, parallel threads are initiated for each merge sort 

operation via parallelizing the operation of the merge, then they 

are divided among multiple cores to be processed. Their 

algorithm has three main functions: Merge() is used to merge 

the sorted subset into new subset; MergePass() is implemented 

for each trip and pairwise merge on the subsets; Mergesort() is 

mainly used as an interface that can be initiated by another 

module. To produce the final ordered list, the MergePass() 

function will be called many times. The only modification 

necessary for parallel processing is to run the MergePass() 

function while the Mergesort() and Merge() functions are 

implemented sequentially. The performance of this model was 

tested using randomly produced data with different lengths of 

unsorted elements and numbers of threads. These experiments 

show that when compared to the traditional algorithm, this 

model is more efficient. 

Khan and Rajesh [17] propose an adaptive framework to 

analyze the parallel merge sort using MPI. Their methodology 

uses the master and slave model in tree form, where a list of 

elements received by each process from its predecessor is 

portioned to two halves. One half will be kept for itself and the 

second half is given to its successor. When the job is 

completed, the sorted data is sent back to the predecessor. This 

process will keep going up to the root node. Rank calculation is 

used to address the predecessor and successor concept. As a 

result, the parallelized version is faster compared to the 

sequential version. 

In [18], the authors present the implementation of different 
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commutation algorithms in parallel using OpenMP application 

program interface (API). Using these algorithms, code is 

executed in parallel, taking advantage of multi-core CPUs that 

can perform multiple tasks simultaneously. On the other hand, 

writing parallel code is more complex than writing serial code. 

The OpenMP API allows serial code to run simultaneously on 

multi core processors. In this paper, the authors indicate the 

sections of code they want executed simultaneously using 

OpenMP. The paper’s aim is to present the performance of the 

parallel programming model over the sequential programming 

model using OpenMP. They describe the merge sort and 

Floyd’s algorithm parallel by using OpenMP to reduce the 

running time on multiple cores, achieving good performance 

results. The algorithm’s execution time is tested on a dual core 

processor, and a quad core to measure performance. Moreover, 

the performance demonstrated in this paper is tested for both 

merge sort and Floyd’s algorithm. The results show that the 

parallel implementation is about 100% quicker than the 

sequential, and the speedup is linear. 

Some large, complex computational numeric formulas can 

make running a problem sequentially take a long time since 

sequential models use just one processor at a time. In [19], the 

authors describe two numerical problems. They present the 

solutions of the matrix multiplication algorithm and the Floyd-

Warshall algorithm for parallel programming, which takes the 

smallest times on multiprocessor machines. Here, they use a 

shared memory strategy to implement the simultaneous 

execution of computational instruction. For this paper, they use 

the OpenMP API to clearly express multi-threading. On the 

other hand, they represent the size of a matrix as the number of 

threads in the matrix multiplication algorithm. Also, for the 

Floyd-Warshall algorithm, they give each thread a chunk size 

that specifies the number of iterations necessary to achieve the 

shortest path between two vertices on the graph. To test the 

performance of these algorithms, they use a sequential model. 

After that, they test these algorithms using a parallel model by 

running them in a multi-core machine. In both methods, the 

execution time for sequential processing takes a longer time 

than did the parallel program. Execution time is recorded based 

on the size of the dataset. For the largest data set used in the 

experiments, they achieved the largest speedup. They used 

eight hundred elements for the matrix multiplication and eighty 

nodes for the Floyd-Warshall algorithm. The parallel models of 

these algorithms achieved speedups of nearly 50%. 

In [ 02 ], the authors show two experimental algorithms, which 

are used to calculate the value of Pi (π) and gauss elimination 

in order to examine the performance of parallel processing 

versus sequential execution. They test parallelism by 

calculating a number of linear equations and then implementing 

both sequential execution and parallel execution. Finally, they 

compare and analyze the results. In this paper, they implement 

a parallel algorithm using OpenMP. The parallel execution 

performance is based on the number of available cores in the 

machine, the memory hierarchy, and the synchronization costs. 

In this paper, the authors describe the algorithms that achieve 

the fastest running time through OpenMP parallelization on 

multi-core processors compared to sequential execution. The 

result of their experiments show that the parallel 

implementation is about 100% faster than the sequential 

method and that the speedup is linear. 

4. Parallel Merge Sort 

When The design of our parallel merge sort algorithm benefits 

from applying the recursive method that divides the problem 

size by two between a number of threads, which will increase 

the speed of sorting the elements, especially with larger 

problems. The implementation of the merge sort has 

complexity of  logO N N , which means more increase in 

the speed of sorting the elements as the problem size increases 

compared to other sorting algorithms [5]. The design of our 

parallel algorithms takes advantage of multi-core hardware 

capabilities as much as possible. In this paper, we have 

implemented the sequential and the parallel versions of merge 

sort algorithm. Using the parallel version, we employ a 

threading concept. The parallel merge sort algorithm divides an 

input array between two threads at every runtime. Thus, each 

thread is executed independently from the other threads. These 

threads executed by the divide and sort method then merge the 

input array simultaneously. As a result, the running time of the 

merge sort program is reduced. 

The parallel merge sort algorithm is implemented with Java 

thread API. Java thread is an API [21] used explicitly for multi-

threaded programming using a thread library, which is shared 

memory parallelism. Figure 6 shows a brief overview of our 

implementation of the shared memory parallelism for the merge 

sort algorithm. At runtime, threads will run the parallel parts of 

the code and execute them in different processors at the same 

time sharing the same memory and address spaces. This 

increases the performance of the program’s execution time by 

taking advantage of multiple cores. The threads use the cores to 

indicate thread level parallelism in the program. 

 
Figure 6: Parallelism of merge sort in Java threads API 

In this model, the tasks are executed in parallel by threads 

using the multiple cores of a processor. More specifically, we 

will have a main thread that will assign tasks to worker threads 

(child threads). Private data will be visible only to the single 

thread and public data will be visible to all threads [21]. Java 

threads API is supported on many programming shared 

memory multiprocessing platforms. The Java programming 

language can use the thread library to compile directives and 

environment variables to implement multi-threaded processing 

completely managed by Java threads. A natural way to redesign 

the merge sort algorithm to run on a parallel computing 

platform is to split the work that can be run “in parallel” to do 

the work required at each level of the tree simultaneously. 
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Note that our parallel solution for each iteration will go one 

level up starting from the bottom of the tree, which is called an 

iterative approach. Simply stated, if we have an array with a 

given number of values, the merge can be executed on them 

using each individual thread. Furthermore, every thread in each 

level will execute in parallel and read an independent sub data 

of the original array. Then, these threads will write in memory 

the output array result. Overall, the number of the tree’s leaf 

nodes is the same as the number of thread K. The number of K 

can be thought of as 2
#tree levels

. Another parent thread will make 

use of the newly sorted list, then merge it with another child’s 

sorted list. This process is continued until the first main thread 

is reached. Figure 7 shows an example of what we described 

for an array with 8,000 elements and K equals 8. 

 

 
Figure 7: An illustration of the proposed parallel merge sort 

algorithm with 8,000 elements 

Furthermore, the parallel version of the merge sort is 

implemented by converting the sequential merge sort 

algorithm. Implementation of the parallel merge sort, however, 

has an additional parallel section in the code. Using the Java 

threads API, we create the parallel section of code using a class 

that implements a runnable interface. In this class is an 

overriding method named run(). This method is implemented 

every time an instance of an object from the parallel merge sort 

class is created. Figure 8 shows the parallel version of the 

merge sort that includes the added parallelism section of code. 

Mainly, the parallelism section of the merge sort algorithm is 

used to divide the array into halves, to assign each half to a 

thread, to recursively sort the halves, and finally to combine the 

sorted halves into one array all accomplished in parallel. Thus, 

Each thread has a unique piece of the original array. 

The main method will run the parallel merge sort version by 

calling the parallel section and creating an instance of the 

parallel merge sort class that includes a parallel section. A 

parallel merge sort creates an object that divides the array 

elements between threads, which are generated automatically. 

Figure 9 shows the main method of the merge sort. By default, 

the main input array is communal to all threads. As a result, the 

recursive call is applied from the parallel version. 

In this implementation, parallelization occurs at the merge 

operation. This is done by a conversion on the creating of 

threads. Apparently, this method can make parallel merge sort 

run faster than the parallel quick sort. This is most likely 

because parallelizing the merge process is simpler than the 

quick sort’s partition process [10]. We cannot, however, 

execute the merge method of the merge sort algorithm in 

parallel using the OpenMP API [19]. 

 
Figure 8: The code of the parallel section of the merge sort 

algorithm 

 

 
Figure 9: The code of the main class for the parallel merge sort 

version 

5. Performance Analysis and Results 

To analyze the performance of the algorithm, we ran the 

sequential and parallel versions of the merge sort algorithm on 

an intel Core i7-3630QM CPU @ 2.40GHz. In both 

experiments, the results are discussed and evaluated in terms of 

execution time, speedup, efficiency, and scalability 

performance metrics. The algorithms are evaluated against 

different sizes of array (N), which is generated randomly, and 

different number of processors (K). For each input of length N, 

the smallest running time of multiple runs is considered to 

record the results. 

5.1 Evaluation of the execution time 

Table 1 in the appendix presents the execution time of both the 

sequential and parallel algorithms in seconds according to the 

different problem sizes N and 8 processors. As illustrated in 

Figure 10, for the sequential algorithm, when increasing the 

data size, the execution time increases because of the increased 
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time needed for division, merging, and a number of 

comparisons. For the parallel algorithm, however, the 

performance is sensitive to the available number of system 

cores (K) where, for all N values, the more cores we have, the 

less running time is required due to the better work distribution 

among available processors. As a result, the parallel version of 

the merge sort is better and faster in terms of execution time 

with different sizes of data, both small and large. 

 

 
Figure 10: Running time against problem size in sequential 

and parallel merge sort algorithms 

5.2 Speedup Evaluation 

In terms of speedup, the performance of the parallel algorithm 

is measured in Tables 2 and 4. The speedup is used to 

demonstrate the gain of parallelizing a program against running 

the program sequentially. The actual speedup can be calculated 

as given in the formula )1(. Also, Amdahl’s law can be 

calculated using formula (2). 

( ,1)
( , )

( , )

T Nseq
Speedup N K

T N Kpar
                                     (1)  

1
( , )

(1 )
Speedup N K

F F

K


 

                                       (2)  

Such that F represents the sequential fraction that can be 

calculated as (3). Table 3 shows the results of F.  

( , ) ( ,1)

* ( ,1) ( ,1)

K T N K T N
F

K T N T N

 



                                        (3) 

Graphical representations in Figure 11 illustrate the 

calculated speedup against K number of processors using 

Amdahl’s law on the parallel algorithm with different problem 

sizes. The analytical results show that Amdahl’s speedup and 

actual speedup are the same. If the number of processors (K) 

are increased, the speedup increases as well, which is shown in 

Figure 11. In one case, when N is equal to 200,000, the 

speedup decreases if the number of processors is higher than 5. 

 

 
Figure 11: Speedup against number of processors 

5.3 Efficiency Evaluation 

Parallel efficiency is the ratio between speedup and the number 

of processors (K) as shown in formula (4). Formula )5) 

calculates Amdahl’s law in terms of efficiency. Tables 5 and 6 

present the results we obtained for each N problem and each K 

value when formulas 4 and 5 are applied. We obtained the 

same results for both formulas.  

( , )
( , )

Speedup N K
E N K

K
                                     (4)  

1
( , )

* (1 )
E N K

F K F


 
                                       (5)  

Figure 12 demonstrates the efficiency results against the 

number of K ranging from 1 to 8 and for all N sizes. We can 

conclude that the efficiency decreases when the number of 

processors (K) increases. With N equal to 200,000, however, 

and with 5 processors, the efficiency increased enormously 

compared to the other values due the high speedup value. 

 

 
Figure 12: Efficiency against number of processors 

5.4 Scalability Evaluation 

If we add more processors, we should be able to increase the 

size of a problem that we can solve in a given amount of time. 

The scalability of our parallel merge sort can be calculated 

using formula (6).  

( , )
( , )

( ,1)

N T Kpar
Sizeup T K

N Tseq
                                         (6) 
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Figure 13 illustrates the experimental results we obtained. The 

results proved that an increased number of processors leads to 

an increase in the problem sizes that can be computed at the 

same given time by the parallel merge sort algorithm. 

 

 
Figure 13: Scalability against number of processors 

6. Conclusion 

In this paper, we present the performance evaluation 

achieved through the implementation of the parallel merge sort 

algorithm in Java threads API using a multi-core system. The 

evaluation of the algorithm calculated the execution time, 

speedup, efficiency, and scalability. Furthermore, the algorithm 

was tested against different array sizes with N elements, which 

were generated randomly, and on multiple processors. The 

performance of the parallel model was compared with the use 

of the sequential merge sort. In general, our implementation of 

the parallel merge sort algorithm achieves a good performance 

result by reducing the execution time. The results achieved by 

applying the sequential algorithm with small amounts of data 

gives a good performance, but as the data set size increases, the 

performance falls. The parallel algorithm gives a better result 

with increased data set size relative to the increased number of 

processors. The speedup is achieved by dividing the execution 

time of the sequential version over the execution time of the 

parallel version. Also, the efficiency is calculated by the ratio 

between speedup and the number of processors. Finally, the 

results demonstrate that increasing the number of threads leads 

to an increase in the problem sizes that can be handled, which 

reflects the scalability of the parallel algorithm. 

In future work, the performance on different RAM sizes 

could be evaluated using the same parallel merge sort 

algorithm to solve problems of larger size. Also, the work 

could be extended and compared with other parallel merge sort 

algorithms that are implemented using different model or on 

different platforms. 
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Appendix

 

Table 1: Execution time of sequential and parallel 

N 
Sequential 

time 

Parallel 

time at K=1 

Parallel 

time at 

K=2 

Parallel 

time at 

K=3 

Parallel 

time at 

K=4 

Parallel 

time at 

K=5 

Parallel 

time at 

K=6 

Parallel 

time at 

K=7 

Parallel 

time at 

K=8 

200000 0.038 0.047 0.031 0.016 0.016 0.005 0.006 0.006 0.015 

400000 0.098 0.11 0.069 0.047 0.047 0.038 0.035 0.031 0.022 

600000 0.145 0.144 0.1 0.069 0.054 0.038 0.036 0.031 0.031 

800000 0.183 0.201 0.15 0.1 0.085 0.078 0.062 0.067 0.054 

1000000 0.224 0.226 0.162 0.115 0.1 0.078 0.08 0.078 0.068 

1200000 0.264 0.262 0.196 0.121 0.1 0.084 0.085 0.078 0.067 

1400000 0.309 0.313 0.244 0.154 0.135 0.116 0.1 0.099 0.1 

1600000 0.367 0.364 0.279 0.185 0.148 0.131 0.131 0.121 0.104 

1800000 0.409 0.415 0.313 0.216 0.183 0.147 0.146 0.132 0.131 

2000000 0.464 0.469 0.363 0.231 0.216 0.178 0.169 0.153 0.147 

 

Table 2: Calculation of the actual speedup 

N 
Speed up at 

K=2  

Speed up at 

K=3  

Speed up at 

K=4  

Speed up at 

K=5  

Speed up at 

K=6  

Speed up at 

K=7  

Speed up at 

K=8 

200000 1.22580645 2.375 2.375 7.6 6.33333333 6.33333333 2.53333333 

400000 1.42028986 2.08510638 2.08510638 2.57894737 2.8 3.16129032 4.45454545 

600000 1.45 2.10144928 2.68518519 3.81578947 4.02777778 4.67741935 4.67741935 

800000 1.22 1.83 2.15294118 2.34615385 2.9516129 2.73134328 3.38888889 

1000000 1.38271605 1.94782609 2.24 2.87179487 2.8 2.87179487 3.29411765 

1200000 1.34693878 2.18181818 2.64 3.14285714 3.10588235 3.38461538 3.94029851 

1400000 1.26639344 2.00649351 2.28888889 2.6637931 3.09 3.12121212 3.09 

1600000 1.31541219 1.98378378 2.47972973 2.80152672 2.80152672 3.03305785 3.52884615 

1800000 1.30670927 1.89351852 2.23497268 2.78231293 2.80136986 3.09848485 3.1221374 

2000000 1.27823691 2.00865801 2.14814815 2.60674157 2.74556213 3.03267974 3.15646259 
 

 

Table 3: The calculation of the sequential fraction F 
N F at K=2 F at K=3 F at K=4 F at K=5 F at K=6 F at K=7 F at K=8 

200000 0.631578947 0.131578947 0.228070175 -0.085526316 -0.010526316 0.01754386 0.308270677 

400000 0.408163265 0.219387755 0.306122449 0.234693878 0.228571429 0.202380952 0.113702624 

600000 0.379310345 0.213793103 0.163218391 0.077586207 0.097931034 0.082758621 0.101477833 

800000 0.639344262 0.319672131 0.285974499 0.282786885 0.206557377 0.260473588 0.194379391 

1000000 0.446428571 0.270089286 0.261904762 0.185267857 0.228571429 0.239583333 0.204081633 

1200000 0.484848485 0.1875 0.171717172 0.147727273 0.186363636 0.178030303 0.147186147 

1400000 0.579288026 0.247572816 0.249190939 0.219255663 0.188349515 0.207119741 0.226999538 

1600000 0.520435967 0.25613079 0.204359673 0.196185286 0.228337875 0.217983651 0.181004282 

1800000 0.530562347 0.292176039 0.263243684 0.199266504 0.228361858 0.209861451 0.223192455 

2000000 0.564655172 0.246767241 0.287356322 0.229525862 0.237068966 0.218031609 0.219211823 
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Table 4: Calculation of the Amdahl's law speedup 

N 
Speed up at 

K=2  

Speed up at 

K=3  

Speed up at 

K=4  

Speed up at 

K=5  

Speed up at 

K=6  

Speed up at 

K=7  

Speed up at 

K=8 

200000 1.22580645 2.375 2.375 7.6 6.33333333 6.33333333 2.53333333 

400000 1.42028986 2.08510638 2.08510638 2.57894737 2.8 3.16129032 4.45454545 

600000 1.45 2.10144928 2.68518519 3.81578947 4.02777778 4.67741935 4.67741935 

800000 1.22 1.83 2.15294118 2.34615385 2.9516129 2.73134328 3.38888889 

1000000 1.38271605 1.94782609 2.24 2.87179487 2.8 2.87179487 3.29411765 

1200000 1.34693878 2.18181818 2.64 3.14285714 3.10588235 3.38461538 3.94029851 

1400000 1.26639344 2.00649351 2.28888889 2.6637931 3.09 3.12121212 3.09 

1600000 1.31541219 1.98378378 2.47972973 2.80152672 2.80152672 3.03305785 3.52884615 

1800000 1.30670927 1.89351852 2.23497268 2.78231293 2.80136986 3.09848485 3.1221374 

2000000 1.27823691 2.00865801 2.14814815 2.60674157 2.74556213 3.03267974 3.15646259 
 

Table 5: The Efficiency results for each N value and K 
N K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 

200000 0.808510638 0.612903226 0.791666667 0.59375 1.52 1.055555556 0.904761905 0.316666667 

400000 0.890909091 0.710144928 0.695035461 0.521276596 0.515789474 0.466666667 0.451612903 0.556818182 

600000 1.006944444 0.725 0.700483092 0.671296296 0.763157895 0.671296296 0.668202765 0.584677419 

800000 0.910447761 0.61 0.61 0.538235294 0.469230769 0.491935484 0.390191898 0.423611111 

1000000 0.991150442 0.691358025 0.649275362 0.56 0.574358974 0.466666667 0.41025641 0.411764706 

1200000 1.007633588 0.673469388 0.727272727 0.66 0.628571429 0.517647059 0.483516484 0.492537313 

1400000 0.987220447 0.633196721 0.668831169 0.572222222 0.532758621 0.515 0.445887446 0.38625 

1600000 1.008241758 0.657706093 0.661261261 0.619932432 0.560305344 0.46692112 0.433293979 0.441105769 

1800000 0.985542169 0.653354633 0.63117284 0.558743169 0.556462585 0.466894977 0.442640693 0.390267176 

2000000 0.989339019 0.639118457 0.66955267 0.537037037 0.521348315 0.457593688 0.433239963 0.394557823 
 

 

Table 6: The Amdahl's law in terms of efficiency results for each N value and K 
N K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 

200000 0.808510638 0.612903226 0.791666667 0.59375 1.52 1.055555556 0.904761905 0.316666667 

400000 0.890909091 0.710144928 0.695035461 0.521276596 0.515789474 0.466666667 0.451612903 0.556818182 

600000 1.006944444 0.725 0.700483092 0.671296296 0.763157895 0.671296296 0.668202765 0.584677419 

800000 0.910447761 0.61 0.61 0.538235294 0.469230769 0.491935484 0.390191898 0.423611111 

1000000 0.991150442 0.691358025 0.649275362 0.56 0.574358974 0.466666667 0.41025641 0.411764706 

1200000 1.007633588 0.673469388 0.727272727 0.66 0.628571429 0.517647059 0.483516484 0.492537313 

1400000 0.987220447 0.633196721 0.668831169 0.572222222 0.532758621 0.515 0.445887446 0.38625 

1600000 1.008241758 0.657706093 0.661261261 0.619932432 0.560305344 0.46692112 0.433293979 0.441105769 

1800000 0.985542169 0.653354633 0.63117284 0.558743169 0.556462585 0.466894977 0.442640693 0.390267176 

2000000 0.989339019 0.639118457 0.66955267 0.537037037 0.521348315 0.457593688 0.433239963 0.394557823 
 


