
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 6 Issue 6 June 2017, Page No. 21764-21773

Index Copernicus value (2015): 58.10 DOI: 10.18535/ijecs/v6i6.36

Soha S. Zaghloul, IJECS Volume 6 Issue 6 June, 2017 Page No. 21764-21773 Page 21764

Analytical and Experimental Performance Evaluation of Parallel Merge sort

on Multicore System
Soha S. Zaghloul, PhD

1
, Laila M. AlShehri

2
, Maram F. AlJouie

3
, Nojood E. AlEissa

4
, Nourah A.

AlMogheerah
5

1
Department of Computer Science, King Saud University,

Riyadh, Saudi Arabia

smekki@ksu.edu.sa
2
Department of Computer Science, King Saud University,

Riyadh, Saudi Arabia

435203401@student.ksu.edu.sa
3
Department of Computer Science, King Saud University,

Riyadh, Saudi Arabia

435203327@student.ksu.edu.sa
4
Department of Computer Science, King Saud University,

Riyadh, Saudi Arabia

435203206@student.ksu.edu.sa
5
Department of Computer Science, King Saud University,

Riyadh, Saudi Arabia

435203977@student.ksu.edu.sa

Abstract: Parallel programming has evolved due to the availability of fast and inexpensive processors. This technique allows us to

determine which portions of an algorithm may be executed simultaneously by exploiting different processors. Recently, the focus has shifted

to implementing parallel algorithms on multicore systems in order to increase performance. One of the most common operations performed

by computers is sorting, which is a permutation on elements. Merge sort is an effective divide-and conquer sorting algorithm that is easy to

understand relative to other sorting strategies. The aim of this paper is to describe and evaluate the performance of the parallel merge sort

algorithm over its sequential version using the Java threading application program interface (API) environment, which allows

programmers to directly manipulate threads in Java programs. The main idea of the proposed algorithm is to distribute the input data

elements into several sub arrays according to the number of threads in each level. The experiments were conducted on a multi-core

processor and examined the running time, speedup, efficiency, and scalability. The experiments also tested against different array sizes and

different numbers of processors. The experimental results on a multi-core processor show that the proposed parallel algorithm achieves a

good performance compared to the sequential algorithm.

Keywords: Parallel programming, Multi-core, Merge sort, Sorting algorithms, Parallel merge sort

1. Introduction

When With the growing number of areas in which computers

are being used, the need for more computing power machines

has increased. Today’s processors can compute at incredible

speeds, having the ability to process thousands of operations

every second. Many algorithms, however, are not optimized for

use with modern processors, and so one way to increase

performance is to utilize parallel programming. The time it

takes to solve larger problems could be reduced radically if

parallel computing power were to be fully utilized. Parallel

computing refers to the execution of a program by splitting

larger problems into smaller ones, each computed on its own

processor and all executed simultaneously. One of the

advantages of this form of computing is its use of non-local

resources and its ability to overcome memory constraints,

which lead to increases in the performance of the system.

Sorting is one of the most common operations performed by

computers [1]. Basically, sorting is a permutation function that

operates on elements [2]. Basic sorting algorithms arrange the

elements of a list in a certain order. Many sorting algorithms

exist, and they differ in their functions, performance,

applications, and resources utilization [3]. Merge sort is an

efficient sorting algorithm that is classified as a divide-and-

conquer algorithm. Divide-and-conquer algorithms separate the

original data into smaller sets to solve a larger problem. This

algorithm is fast, stable, easy to understand, and easy to

implement. Using this algorithm via sequential computing in a

multi-core environment is inefficient when compared to

parallel computing. Therefore, this paper will deal with the

implementation of a parallel merge sort algorithm for use

within a multicore environment using a threading concept and

focusing on analyzing the code region that can be executed

concurrently. The overview of the proposed algorithm is shown

in Figure 1.

http://www.ijecs.in/
mailto:435203327@student.ksu.edu
mailto:435203327@student.ksu.edu
mailto:435203327@student.ksu.edu

DOI: 10.18535/ijecs/v6i6.36

Soha S. Zaghloul, IJECS Volume 6 Issue 6 June, 2017 Page No. 21764-21773 Page 21765

Figure 1: Overview of the proposed work

The rest of this paper is organized into five subsequent

sections. In section 2, we give a brief description of the

sequential merge sort algorithm along with common parallel

models. In section 3, the latest related work is introduced and

in Section 4, we demonstrate the proposed parallel merge sort

algorithm. Section 5 presents the performance analysis and

results. Finally, in Section 6, we draw some conclusions and

introduce some suggestions for future work.

2. Background

Set Merge sort is a sorting process that can benefit from using a

divide-and-conquer algorithm, which are useful due to their

timeless nature [4]. Merge sort arranges the elements of an

array in ascending order by recursively dividing the array into

two sub arrays until one element left. Then, all arranged sub

arrays will be merged into a single, final, sorted array. To sort

N elements, a complexity of running time logO N N is

fulfilled and known as the finest running time [5]. The divide-

and-conquer algorithm used by merge sort can be described as

follows: first, it divides the array into two sub arrays, repeating

the process until one element is left, which, in fact, is already

sorted. Then, the algorithm starts merging the already sorted

sub arrays into one array (see Figure 2) [5].

Figure 2: An illustrating merge sort example [6]

The listing in Figure 3 presents the pseudo code of the

sequential merge sort with inputs: an array R of size 1 to N and

index variables p, q, r where r > q > = p. Furthermore, the array

is divided from index p (the first element) until index r (the last

element). The output is in ascending order [5].

1 MERGESORT(array,p,q,r)

2 if p < r

3 q = (r + p)/2

4 MERGESORT(array, p, q)

5 MERGESORT(array,q+1,r)

6 MERGE(array, p, q, r)

7 MERGE(R, p, q, r)

8 n1 = q-p+1

9 n2 = r-q

10 create arrays L[1...n1+1] and

R[1...n2+1]

11 for i=1 to n1

12 do L[i] = Array[p+i-1]

13 for j=1 to n2

14 do R[j] = array[q+j]

15 L[N1+1] = ∞

16 R[N2+1] = ∞

17 i = 1

18 j = 1

19 for k= p to r

20 do if L[i] ≤ R[j]

21 then array[k] = L[i]

22 i = i+1

23 else array[k] ← R[j]

24 j = j+1

Figure 3: The pseudo code of sequential merge sort

In the sequential merge sort algorithm, the MergeSort() method

will divide a given array into halves. Then, recursively, the

same method is called to divide each half in half again, and so

on until each half is a single element. After that, each two

halves will be merged into a sorted array by the Merge()

method. A number of halves are sorted and merged into a new

array for each recursion call of the Merge() method.

Different parallel programming models include the Shared

Memory Model (with or without threads) and the Distributed

Memory Model (message passing). These models are not

specific to a particular memory architecture or machine, and so

theoretically, they can be implemented on any underlying

hardware [7]. The Shared Memory Model (without threads) is

probably the simplest parallel programming model (see Figure

4). The processes and tasks will read and write asynchronously

to a mutual shared address space. To avoid race conditions and

deadlocks, determining contentions and managing the shared

memory’s access are achieved using different mechanisms such

as locks/semaphores [7].

Figure 4: Shared Memory Model (without threads) [7]

From a developer’s perspective, the Shared Memory Model

can often be simplified. Due to a lack of data “ownership,”

there is no need to indicate exactly how tasks are manipulating

DOI: 10.18535/ijecs/v6i6.36

Soha S. Zaghloul, IJECS Volume 6 Issue 6 June, 2017 Page No. 21764-21773 Page 21766

the data’s communication. Thus, accessing and conceiving the

shared memory are all the same between processes.

Understanding and managing data locality, however, is difficult

in terms of performance, which is a disadvantage of this model.

Only expert users are typically able to control and understand

data locality in this model [7]. In parallel programming using

the Shared Memory Model (with threads), threads are usually

coupled with shared memory architecture and operating

systems. Each process can have several parallel execution

paths. The programmer is responsible for shaping all

parallelism, and from a programming viewpoint, threads often

can be implemented by calling subroutine libraries within the

parallel code and by using a group of environment variables

and a group of implanted compiler directives in

sequential/parallel code [7].

During computation using the Distributed Memory Model

(message passing), a group of tasks use their local memory and

several tasks can be located across one or more machines. The

tasks can swap data over connections by sending and receiving

messages (see Figure 5). Additionally, each process performs

supportive actions for data transfer, including matching sent

actions with received actions.

Figure 5: Distributed Memory Model (message passing) [7]

Since the 1980s, many message passing libraries have been

available. For this model, the developer is responsible for

shaping parallelism. Thus, the implementation of parallel

programming in this model is highly difference variable, which

makes developing portable applications a challenge for

programmers. Usually, implementations include the

subroutines of a library, and implanted in the source code are

calls to those subroutines.

In 1992, a goal was made to establish a standard interface for

message passing implementations (MPI) that would,

essentially, replace all other message passing implementations.

The first standard interface was released in 1994 as part 1

(MPI-1). Then, in 1996, was the release of part 2 (MPI-2) was

released. Finally, in 2012, there was the release of part 3 (MPI-

3). MPI implementations are available for almost all known

parallel computing platforms. Thus, not all developments

include everything from MPI-1, MPI-2, or MPI-3 [7].

3. Related Work

When In [8], only one model of parallel programming is used

that explicates threads with shared memory. One thread is

similar to a running sequential program, but it can also generate

new threads, which are part of the same program. And those

generated threads can, in turn, create other threads, and so on.

Additionally, they share memory by communicating with the

writing and reading fields of the same objects. Theoretically, if

all threads have been started but not yet terminated, they are

considered to be “running at the same time” in a program. In

practice, however, not all threads may be running at any

particular moment. Each thread has its own program counter

(PC) and call-stack. Also, the threads all share static fields and

objects as one collection. According to [8], shared memory is

frequently known to be easy and convenient for users because

it uses the usual read and write fields for objects to

communicate. The negative side of this model, however, is that

it is considered error prone because it requires the programmer

to know which memory access spaces are engaging in inter-

thread communication, and which are not by deeply

understanding the code and documentation. Furthermore, for

message passing in their model, they are explicating threads

without allowing them to share objects. To communicate, the

sent message also sends a copy of some data to its receiver. If a

thread mistakenly updates a field, other threads will not be

affected because each thread has its own object. If processors

are occasional, however, we should keep track of the different

copies being produced by messages. In Java, threads have a

clear scheme regarding how to apply divide-and-conquer

parallelism. Each thread creates two assistant threads, left and

right, and then waits for them to finish. Critically, the calls to

left.start() and right.start() precede the calls to left.join() and

right.join(). Thus, we will not have effective parallelism if

left.join() comes before right.start(), even if a correct result is

produced. Also, it is important to know that the main method

calls the run method directly.

In [9], a parallel merge sort algorithm with multithreading is

introduced. They chose to focus on merge sort rather than the

quick sort as it better parallelizes. In terms of divide and

conquer, merge sort can be defined as follows: divide a given

array in half to have two sub arrays (an array of size zero or

one is already sorted). Then, for each sub array, apply sorting

recursively. Finally, arrange the sorted sub arrays into one final

sorted array. The parallel processing can be done by sorting the

two sub arrays and if this operation is over, proceeding to the

merge step. The results show that with two cores, the parallel

merge sort is 100% faster than the sequential quick sort and

25% faster than the parallel version of the quick sort with O(n)

extra cost of space.

In [10], three versions of the parallel merge sort are studied:

first with shared memory (OpenMP), second with message

passing (MPI), and third through a hybrid (MPI and OpenMP).

OpenMP is selected for the implementation of a shared

memory merge sort on SMPs because it combines with freely

available compilers such as C/C++. OpenMP is a parallel

programming language that allows programmers to create

multiple threaded applications. Additionally, OpenMP supports

a high level parallel programming model that makes it easier to

use than different thread libraries. On the other hand, the MPI

is chosen to develop merge sort’s message passing on

computer’s clusters because it is well documented, it can be

implemented for different architectures, and it has freely

available implementations. The final performance experiments

show that with OpenMP, the merge sort’s shared memory,

achieves the highest speedup compared to the merge sort’s

message passing with MPI. OpenMP, however, was not as

efficient at deciding the best relays for a problem’s nature,

cluster nodes hardware and software, and the cluster network.

DOI: 10.18535/ijecs/v6i6.36

Soha S. Zaghloul, IJECS Volume 6 Issue 6 June, 2017 Page No. 21764-21773 Page 21767

In the case of problems with a fast network, the message

passing with MPI can be quicker than hybrid solutions and

OpenMP shared memory.

In [11], the authors propose a parallel merge sort using

OpenMP, which improves the performance, effectiveness, and

expansion of the existing program by adding compiler

directives to the code, allowing parallel processing while

exerting little effort and minimizing changes to the system.

OpenMP can only be used in SMP. After a few years, however,

most CPUs provide at least a dual core, so using OpenMP

poses no real problem. The experimental performance results

of the merge sort in this paper show a speedup of 80% on a 2-

processor core and a speed up of 180% on a 4-processor core.

In [12], GPUs are considered highly parallel systems that

need hundreds (or even thousands) of threads to achieve

bandwidth saturation. The authors designed an elevated

performance parallel merge sort for these kind of systems.

They use GPUs in order to exploit register communication and

to avoid shared memory communication as much as possible to

decrease the number of binary searches. To avoid load

imbalance, the authors process bigger partitions at a time and

exploit more register communication. Four main techniques

allow their merge sort to achieve high performance: initially,

within each thread, they sort 8 elements, which controls register

bandwidth. Second, within a thread block, they apply a binary

then linear search approach. Then, they avoid the over

segmentation of the register windows and moving shared

memory. Finally, by applying these three steps to their merge

sort, it becomes suitable for the memory hierarchy and

computational strength of GPUs. This process achieves 150%

faster performance than a thrust merge sort and is quicker than

GPU merge sorts by 70%. Applying these techniques, the

authors achieved a 250 MKeys/sec sorting rate.

The proposed load-balanced merge sort used in [13] involves

several processors in the sorting process. This model divides

the input data between all available processors in each period.

This makes processors work as much as possible. The main

idea in [13] is to initiate a parallel execution of the sort by

distributing each part of the input list onto different processors.

For instance, every processor saves an identical number of key

elements. Thus, the processors together will be merging

between as throughout the execution. This method employs

more parallelism and thus reduces the running time of as sort

algorithm. The proposed algorithm in this paper determines the

minimum number of keys by creating a histogram. All

processors together are sorting one list, which will be

distributing between the available processors. Each processor

will compute the histogram of its keys. After that, the

histogram is used to merge these processes. Significant

performance is achieved by enhancing the speed up to the

number of processors minus one divided by the number of

processors. After using this algorithm, the running time is

reduced to a highest speedup of 860% on a Cray with 32

processors. The results on an 8-node PC cluster achieved a

speedup of an added 130% with a 180% upper bound at sorting

integers of 4M 32-bit.

In [14], a state-of-the-art, scalable parallel merge tree is

proposed. The main difference in this model is that instead of

assumes a constant sorting rate, it allows a variable sorting rate

in the parallel merge-tree. This assumption deletes the nasty

memory bandwidth requirement by proposing a solution that

involves optimizing the parallel merge-tree at different data

sets collected in a random way. Also, the authors offer three

clear positive comparisons to the sequential implementation of

sort the sorters: an increase in the sorting rate by one for each

cycle, a reduction in the number of times the algorithm is run

relative to the sequential version, and a different means of

calculating the size of the sorted data that does not involve the

available space on FPGA memory, which is used only as

communication buffers for the main memory.

Nanjesh et al. [15] propose a parallel merge sort algorithm.

A single node (desktop PC) paradigm that involves only two

cores is used to evaluate the performance on different RAM

sizes using MPI and PVM, which are software tools for the

parallel networking of computers. One of these cores acts as

master, which handles requests from the user and assigns the

problem to a slave, while another core acts as a slave, which

accepts problems from the master and sends back solutions.

The communication between master and slave is accomplished

using MPICH-2 which is a new implementation of MPI

provided to assist MPI-1 and MPI-2. The routines in MPICH2

have very low communications overhead and are significantly

faster compared to the “classic” MPI. The authors compare the

time taken to solve the parallel algorithm using MPI and PVM

with its sequential version. The results show that the sequential

version is faster than the parallel version due to the overhead in

communication involved in the parallel execution, which could

be overcome by increasing the number of nodes. Also, the

authors show that the MPI is faster than PVM in terms of

performance.

Zhang et al. [16] propose an improved two-way merge sort

algorithm based on OpenMP. The concept of a two-way merge

sort is to repeatedly merge two sorted subsets of data into a

new one until the data is sorted. During the execution of the

program, parallel threads are initiated for each merge sort

operation via parallelizing the operation of the merge, then they

are divided among multiple cores to be processed. Their

algorithm has three main functions: Merge() is used to merge

the sorted subset into new subset; MergePass() is implemented

for each trip and pairwise merge on the subsets; Mergesort() is

mainly used as an interface that can be initiated by another

module. To produce the final ordered list, the MergePass()

function will be called many times. The only modification

necessary for parallel processing is to run the MergePass()

function while the Mergesort() and Merge() functions are

implemented sequentially. The performance of this model was

tested using randomly produced data with different lengths of

unsorted elements and numbers of threads. These experiments

show that when compared to the traditional algorithm, this

model is more efficient.

Khan and Rajesh [17] propose an adaptive framework to

analyze the parallel merge sort using MPI. Their methodology

uses the master and slave model in tree form, where a list of

elements received by each process from its predecessor is

portioned to two halves. One half will be kept for itself and the

second half is given to its successor. When the job is

completed, the sorted data is sent back to the predecessor. This

process will keep going up to the root node. Rank calculation is

used to address the predecessor and successor concept. As a

result, the parallelized version is faster compared to the

sequential version.

In [18], the authors present the implementation of different

DOI: 10.18535/ijecs/v6i6.36

Soha S. Zaghloul, IJECS Volume 6 Issue 6 June, 2017 Page No. 21764-21773 Page 21768

commutation algorithms in parallel using OpenMP application

program interface (API). Using these algorithms, code is

executed in parallel, taking advantage of multi-core CPUs that

can perform multiple tasks simultaneously. On the other hand,

writing parallel code is more complex than writing serial code.

The OpenMP API allows serial code to run simultaneously on

multi core processors. In this paper, the authors indicate the

sections of code they want executed simultaneously using

OpenMP. The paper’s aim is to present the performance of the

parallel programming model over the sequential programming

model using OpenMP. They describe the merge sort and

Floyd’s algorithm parallel by using OpenMP to reduce the

running time on multiple cores, achieving good performance

results. The algorithm’s execution time is tested on a dual core

processor, and a quad core to measure performance. Moreover,

the performance demonstrated in this paper is tested for both

merge sort and Floyd’s algorithm. The results show that the

parallel implementation is about 100% quicker than the

sequential, and the speedup is linear.

Some large, complex computational numeric formulas can

make running a problem sequentially take a long time since

sequential models use just one processor at a time. In [19], the

authors describe two numerical problems. They present the

solutions of the matrix multiplication algorithm and the Floyd-

Warshall algorithm for parallel programming, which takes the

smallest times on multiprocessor machines. Here, they use a

shared memory strategy to implement the simultaneous

execution of computational instruction. For this paper, they use

the OpenMP API to clearly express multi-threading. On the

other hand, they represent the size of a matrix as the number of

threads in the matrix multiplication algorithm. Also, for the

Floyd-Warshall algorithm, they give each thread a chunk size

that specifies the number of iterations necessary to achieve the

shortest path between two vertices on the graph. To test the

performance of these algorithms, they use a sequential model.

After that, they test these algorithms using a parallel model by

running them in a multi-core machine. In both methods, the

execution time for sequential processing takes a longer time

than did the parallel program. Execution time is recorded based

on the size of the dataset. For the largest data set used in the

experiments, they achieved the largest speedup. They used

eight hundred elements for the matrix multiplication and eighty

nodes for the Floyd-Warshall algorithm. The parallel models of

these algorithms achieved speedups of nearly 50%.

In [02], the authors show two experimental algorithms, which

are used to calculate the value of Pi (π) and gauss elimination

in order to examine the performance of parallel processing

versus sequential execution. They test parallelism by

calculating a number of linear equations and then implementing

both sequential execution and parallel execution. Finally, they

compare and analyze the results. In this paper, they implement

a parallel algorithm using OpenMP. The parallel execution

performance is based on the number of available cores in the

machine, the memory hierarchy, and the synchronization costs.

In this paper, the authors describe the algorithms that achieve

the fastest running time through OpenMP parallelization on

multi-core processors compared to sequential execution. The

result of their experiments show that the parallel

implementation is about 100% faster than the sequential

method and that the speedup is linear.

4. Parallel Merge Sort

When The design of our parallel merge sort algorithm benefits

from applying the recursive method that divides the problem

size by two between a number of threads, which will increase

the speed of sorting the elements, especially with larger

problems. The implementation of the merge sort has

complexity of logO N N , which means more increase in

the speed of sorting the elements as the problem size increases

compared to other sorting algorithms [5]. The design of our

parallel algorithms takes advantage of multi-core hardware

capabilities as much as possible. In this paper, we have

implemented the sequential and the parallel versions of merge

sort algorithm. Using the parallel version, we employ a

threading concept. The parallel merge sort algorithm divides an

input array between two threads at every runtime. Thus, each

thread is executed independently from the other threads. These

threads executed by the divide and sort method then merge the

input array simultaneously. As a result, the running time of the

merge sort program is reduced.

The parallel merge sort algorithm is implemented with Java

thread API. Java thread is an API [21] used explicitly for multi-

threaded programming using a thread library, which is shared

memory parallelism. Figure 6 shows a brief overview of our

implementation of the shared memory parallelism for the merge

sort algorithm. At runtime, threads will run the parallel parts of

the code and execute them in different processors at the same

time sharing the same memory and address spaces. This

increases the performance of the program’s execution time by

taking advantage of multiple cores. The threads use the cores to

indicate thread level parallelism in the program.

Figure 6: Parallelism of merge sort in Java threads API

In this model, the tasks are executed in parallel by threads

using the multiple cores of a processor. More specifically, we

will have a main thread that will assign tasks to worker threads

(child threads). Private data will be visible only to the single

thread and public data will be visible to all threads [21]. Java

threads API is supported on many programming shared

memory multiprocessing platforms. The Java programming

language can use the thread library to compile directives and

environment variables to implement multi-threaded processing

completely managed by Java threads. A natural way to redesign

the merge sort algorithm to run on a parallel computing

platform is to split the work that can be run “in parallel” to do

the work required at each level of the tree simultaneously.

DOI: 10.18535/ijecs/v6i6.36

Soha S. Zaghloul, IJECS Volume 6 Issue 6 June, 2017 Page No. 21764-21773 Page 21769

Note that our parallel solution for each iteration will go one

level up starting from the bottom of the tree, which is called an

iterative approach. Simply stated, if we have an array with a

given number of values, the merge can be executed on them

using each individual thread. Furthermore, every thread in each

level will execute in parallel and read an independent sub data

of the original array. Then, these threads will write in memory

the output array result. Overall, the number of the tree’s leaf

nodes is the same as the number of thread K. The number of K

can be thought of as 2
#tree levels

. Another parent thread will make

use of the newly sorted list, then merge it with another child’s

sorted list. This process is continued until the first main thread

is reached. Figure 7 shows an example of what we described

for an array with 8,000 elements and K equals 8.

Figure 7: An illustration of the proposed parallel merge sort

algorithm with 8,000 elements

Furthermore, the parallel version of the merge sort is

implemented by converting the sequential merge sort

algorithm. Implementation of the parallel merge sort, however,

has an additional parallel section in the code. Using the Java

threads API, we create the parallel section of code using a class

that implements a runnable interface. In this class is an

overriding method named run(). This method is implemented

every time an instance of an object from the parallel merge sort

class is created. Figure 8 shows the parallel version of the

merge sort that includes the added parallelism section of code.

Mainly, the parallelism section of the merge sort algorithm is

used to divide the array into halves, to assign each half to a

thread, to recursively sort the halves, and finally to combine the

sorted halves into one array all accomplished in parallel. Thus,

Each thread has a unique piece of the original array.

The main method will run the parallel merge sort version by

calling the parallel section and creating an instance of the

parallel merge sort class that includes a parallel section. A

parallel merge sort creates an object that divides the array

elements between threads, which are generated automatically.

Figure 9 shows the main method of the merge sort. By default,

the main input array is communal to all threads. As a result, the

recursive call is applied from the parallel version.

In this implementation, parallelization occurs at the merge

operation. This is done by a conversion on the creating of

threads. Apparently, this method can make parallel merge sort

run faster than the parallel quick sort. This is most likely

because parallelizing the merge process is simpler than the

quick sort’s partition process [10]. We cannot, however,

execute the merge method of the merge sort algorithm in

parallel using the OpenMP API [19].

Figure 8: The code of the parallel section of the merge sort

algorithm

Figure 9: The code of the main class for the parallel merge sort

version

5. Performance Analysis and Results

To analyze the performance of the algorithm, we ran the

sequential and parallel versions of the merge sort algorithm on

an intel Core i7-3630QM CPU @ 2.40GHz. In both

experiments, the results are discussed and evaluated in terms of

execution time, speedup, efficiency, and scalability

performance metrics. The algorithms are evaluated against

different sizes of array (N), which is generated randomly, and

different number of processors (K). For each input of length N,

the smallest running time of multiple runs is considered to

record the results.

5.1 Evaluation of the execution time

Table 1 in the appendix presents the execution time of both the

sequential and parallel algorithms in seconds according to the

different problem sizes N and 8 processors. As illustrated in

Figure 10, for the sequential algorithm, when increasing the

data size, the execution time increases because of the increased

DOI: 10.18535/ijecs/v6i6.36

Soha S. Zaghloul, IJECS Volume 6 Issue 6 June, 2017 Page No. 21764-21773 Page 21770

time needed for division, merging, and a number of

comparisons. For the parallel algorithm, however, the

performance is sensitive to the available number of system

cores (K) where, for all N values, the more cores we have, the

less running time is required due to the better work distribution

among available processors. As a result, the parallel version of

the merge sort is better and faster in terms of execution time

with different sizes of data, both small and large.

Figure 10: Running time against problem size in sequential

and parallel merge sort algorithms

5.2 Speedup Evaluation

In terms of speedup, the performance of the parallel algorithm

is measured in Tables 2 and 4. The speedup is used to

demonstrate the gain of parallelizing a program against running

the program sequentially. The actual speedup can be calculated

as given in the formula)1(. Also, Amdahl’s law can be

calculated using formula (2).

(,1)
(,)

(,)

T Nseq
Speedup N K

T N Kpar
 (1)

1
(,)

(1)
Speedup N K

F F

K

 (2)

Such that F represents the sequential fraction that can be

calculated as (3). Table 3 shows the results of F.

(,) (,1)

* (,1) (,1)

K T N K T N
F

K T N T N

 (3)

Graphical representations in Figure 11 illustrate the

calculated speedup against K number of processors using

Amdahl’s law on the parallel algorithm with different problem

sizes. The analytical results show that Amdahl’s speedup and

actual speedup are the same. If the number of processors (K)

are increased, the speedup increases as well, which is shown in

Figure 11. In one case, when N is equal to 200,000, the

speedup decreases if the number of processors is higher than 5.

Figure 11: Speedup against number of processors

5.3 Efficiency Evaluation

Parallel efficiency is the ratio between speedup and the number

of processors (K) as shown in formula (4). Formula)5)

calculates Amdahl’s law in terms of efficiency. Tables 5 and 6

present the results we obtained for each N problem and each K

value when formulas 4 and 5 are applied. We obtained the

same results for both formulas.

(,)
(,)

Speedup N K
E N K

K
 (4)

1
(,)

* (1)
E N K

F K F

 (5)

Figure 12 demonstrates the efficiency results against the

number of K ranging from 1 to 8 and for all N sizes. We can

conclude that the efficiency decreases when the number of

processors (K) increases. With N equal to 200,000, however,

and with 5 processors, the efficiency increased enormously

compared to the other values due the high speedup value.

Figure 12: Efficiency against number of processors

5.4 Scalability Evaluation

If we add more processors, we should be able to increase the

size of a problem that we can solve in a given amount of time.

The scalability of our parallel merge sort can be calculated

using formula (6).

(,)
(,)

(,1)

N T Kpar
Sizeup T K

N Tseq
 (6)

DOI: 10.18535/ijecs/v6i6.36

Soha S. Zaghloul, IJECS Volume 6 Issue 6 June, 2017 Page No. 21764-21773 Page 21771

Figure 13 illustrates the experimental results we obtained. The

results proved that an increased number of processors leads to

an increase in the problem sizes that can be computed at the

same given time by the parallel merge sort algorithm.

Figure 13: Scalability against number of processors

6. Conclusion

In this paper, we present the performance evaluation

achieved through the implementation of the parallel merge sort

algorithm in Java threads API using a multi-core system. The

evaluation of the algorithm calculated the execution time,

speedup, efficiency, and scalability. Furthermore, the algorithm

was tested against different array sizes with N elements, which

were generated randomly, and on multiple processors. The

performance of the parallel model was compared with the use

of the sequential merge sort. In general, our implementation of

the parallel merge sort algorithm achieves a good performance

result by reducing the execution time. The results achieved by

applying the sequential algorithm with small amounts of data

gives a good performance, but as the data set size increases, the

performance falls. The parallel algorithm gives a better result

with increased data set size relative to the increased number of

processors. The speedup is achieved by dividing the execution

time of the sequential version over the execution time of the

parallel version. Also, the efficiency is calculated by the ratio

between speedup and the number of processors. Finally, the

results demonstrate that increasing the number of threads leads

to an increase in the problem sizes that can be handled, which

reflects the scalability of the parallel algorithm.

In future work, the performance on different RAM sizes

could be evaluated using the same parallel merge sort

algorithm to solve problems of larger size. Also, the work

could be extended and compared with other parallel merge sort

algorithms that are implemented using different model or on

different platforms.

References

[1] S. Akl, Parallel sorting algorithms, Orlando: Academic

Press, 1985.

[2] R. Rashidy, S. Yousefpour, M. Koohi, “Parallel bubble

sort using stream programming paradigm,” In 5
th

International Conference on Application of Information

and Communication Technologies (AICT), 2011.

[3] S. Altukhaim, “Bubble Sort Algorithm,” Florida Institute

of Technology, Melbourne, Florida, USA, 2003.

[4] R. Zadeh, “DAO: Distributed Algorithms and

Optimization,” Stanford.edu, Apr. 5, 2016. [Online].

Available:

https://stanford.edu/~rezab/classes/cme323/S16/notes/Lec

ture12/cme323_lec12.pdf. [Accessed: Jan. 12, 2017].

[5] S. Qin, “Merge sort Algorithm,” Florida Institute of

Technology, Melbourne, 2008. [Online]. Available:

http://cs.fit.edu/~pkc/classes/writing/hw13/song.pdf.

[Accessed: Jan. 12, 2017].

[6] I. Foster, “11.4 Mergesort,” Mathematics and Computer

Science, 1995. [Online]. Available:

http://www.mcs.anl.gov/~itf/dbpp/text/node127.html.

[Accessed: Jan. 12, 2017].

[7] B. Barney, “Introduction to Parallel Computing,”

Department of Energy by Lawrence Livermore National

Laboratory. [Online]. Available:

https://computing.llnl.gov/tutorials/parallel_comp/.

[Accessed: Jan. 12, 2017].

[8] D. Grossman, “A sophomoric introduction to shared-

memory parallelism and concurrency,” Lecture notes,

Department of Computer Science & Engineering,

University of Washington, 2012. [Online]. Available:

http://homes.cs.washington.edu/~djg/teachingMaterials/sp

ac/sophomoricParallelismAndConcurrency.pdf.

[Accessed: Dec. 24, 2016].

[9] D. Huba, “Parallel Merge sort,” Oct., 2010. [Online].

Available:

http://dzmitryhuba.blogspot.com/2010/10/parallel-merge-

sort.html. [Accessed: Dec. 24, 2016].

[10] A. Radenski, “Shared memory, message passing, and

hybrid Merge sorts for standalone and clustered SMPs,”

In Proc. PDPTA’11, the 2011 international conference of

parallel and distributed processing technique and

applications. CSREA press, pp. 367–373, 2011.

[11] J. Park, K. Lee, T. Kim, “Parallel Merge sort

Implementation Using OpenMP,” School of information

communication engineering, Sungkyunkwan University,

Suwon, GyeongGi-Do, South Korea, 2011.

[12] A. Davidson, D. Tarjan, M. Garland, J. Owens, “Efficient

parallel Merge sort for fixed and variable length keys,” In

Proceedings of the IEEE Innovative Parallel Computing

(InPar), 2010.

[13] M. Jeon, D. Kim, “Parallel Merge Sort with Load

Balancing,” In International Journal of Parallel

Programming, vol. 31, no. 1, pp. 21-33. Springer, 2003.

[14] W. Song, D. Koch, M. Lujan, J. Garside, “Parallel

Hardware Merge sorter,” In IEEE 24th Annual

International Symposium on Field-Programmable Custom

Computing Machines (FCCM), 2016.

[15] B. R. Nanjesh, et al., “Parallel Merge sort based

performance evaluation and comparison of MPI and

PVM,” In Proceedings of 2013 IEEE Conference on

Information and Communication Technologies (ICT),

2013.

[16] J. Zhang, et al., “Algorithm Improvement of Two-Way

Merge sort Based on OpenMP,” Applied Mechanics and

Materials, Vols 701-702, pp 24-29, Trans Tech

Publications, Switzerland, 2015.

[17] H. U. Khan, R. Tiwari, “An Adaptive Framework towards

Analyzing the Parallel Merge sort,” In International

Journal of Science and Research (IJSR), 2012.

[18] M. Basthikodi, W. Ahmed, “Parallel Algorithm

Performance Analysis using OpenMP for Multicore

Machines,” In International Journal of Advanced

DOI: 10.18535/ijecs/v6i6.36

Soha S. Zaghloul, IJECS Volume 6 Issue 6 June, 2017 Page No. 21764-21773 Page 21772

Computer Technology (IJACT), vol. 4, no. 5, pp. 28-32,

2015.

[19] P. Kulkarni, S. Pathare, “Performance Analysis of Parallel

Algorithm over Sequential using OpenMP,” In IOSR

Journal of Computer Engineering (IOSR-JCE), vol. 16,

no. 2, pp. 58-62, 2014.

[20] S. K. Sharma, K. Gupta, “Performance Analysis of

Parallel Algorithms on Multi-core System using

OpenMP,” In International Journal of Computer Science,

Engineering and Information Technology (IJCSEIT),

Vol.2, No.5, Oct. 2012.

[21] M. Oriol, “Java Programming: Concurrent Programming

in Java,” May 10, 2007. [Online]. Available:

se.inf.ethz.ch/old/teaching/ss2007/0284/book/Threads.pdf

. [Accessed: Dec. 29, 2016].

Appendix

Table 1: Execution time of sequential and parallel

N
Sequential

time

Parallel

time at K=1

Parallel

time at

K=2

Parallel

time at

K=3

Parallel

time at

K=4

Parallel

time at

K=5

Parallel

time at

K=6

Parallel

time at

K=7

Parallel

time at

K=8

200000 0.038 0.047 0.031 0.016 0.016 0.005 0.006 0.006 0.015

400000 0.098 0.11 0.069 0.047 0.047 0.038 0.035 0.031 0.022

600000 0.145 0.144 0.1 0.069 0.054 0.038 0.036 0.031 0.031

800000 0.183 0.201 0.15 0.1 0.085 0.078 0.062 0.067 0.054

1000000 0.224 0.226 0.162 0.115 0.1 0.078 0.08 0.078 0.068

1200000 0.264 0.262 0.196 0.121 0.1 0.084 0.085 0.078 0.067

1400000 0.309 0.313 0.244 0.154 0.135 0.116 0.1 0.099 0.1

1600000 0.367 0.364 0.279 0.185 0.148 0.131 0.131 0.121 0.104

1800000 0.409 0.415 0.313 0.216 0.183 0.147 0.146 0.132 0.131

2000000 0.464 0.469 0.363 0.231 0.216 0.178 0.169 0.153 0.147

Table 2: Calculation of the actual speedup

N
Speed up at

K=2

Speed up at

K=3

Speed up at

K=4

Speed up at

K=5

Speed up at

K=6

Speed up at

K=7

Speed up at

K=8

200000 1.22580645 2.375 2.375 7.6 6.33333333 6.33333333 2.53333333

400000 1.42028986 2.08510638 2.08510638 2.57894737 2.8 3.16129032 4.45454545

600000 1.45 2.10144928 2.68518519 3.81578947 4.02777778 4.67741935 4.67741935

800000 1.22 1.83 2.15294118 2.34615385 2.9516129 2.73134328 3.38888889

1000000 1.38271605 1.94782609 2.24 2.87179487 2.8 2.87179487 3.29411765

1200000 1.34693878 2.18181818 2.64 3.14285714 3.10588235 3.38461538 3.94029851

1400000 1.26639344 2.00649351 2.28888889 2.6637931 3.09 3.12121212 3.09

1600000 1.31541219 1.98378378 2.47972973 2.80152672 2.80152672 3.03305785 3.52884615

1800000 1.30670927 1.89351852 2.23497268 2.78231293 2.80136986 3.09848485 3.1221374

2000000 1.27823691 2.00865801 2.14814815 2.60674157 2.74556213 3.03267974 3.15646259

Table 3: The calculation of the sequential fraction F
N F at K=2 F at K=3 F at K=4 F at K=5 F at K=6 F at K=7 F at K=8

200000 0.631578947 0.131578947 0.228070175 -0.085526316 -0.010526316 0.01754386 0.308270677

400000 0.408163265 0.219387755 0.306122449 0.234693878 0.228571429 0.202380952 0.113702624

600000 0.379310345 0.213793103 0.163218391 0.077586207 0.097931034 0.082758621 0.101477833

800000 0.639344262 0.319672131 0.285974499 0.282786885 0.206557377 0.260473588 0.194379391

1000000 0.446428571 0.270089286 0.261904762 0.185267857 0.228571429 0.239583333 0.204081633

1200000 0.484848485 0.1875 0.171717172 0.147727273 0.186363636 0.178030303 0.147186147

1400000 0.579288026 0.247572816 0.249190939 0.219255663 0.188349515 0.207119741 0.226999538

1600000 0.520435967 0.25613079 0.204359673 0.196185286 0.228337875 0.217983651 0.181004282

1800000 0.530562347 0.292176039 0.263243684 0.199266504 0.228361858 0.209861451 0.223192455

2000000 0.564655172 0.246767241 0.287356322 0.229525862 0.237068966 0.218031609 0.219211823

DOI: 10.18535/ijecs/v6i6.36

Soha S. Zaghloul, IJECS Volume 6 Issue 6 June, 2017 Page No. 21764-21773 Page 21773

Table 4: Calculation of the Amdahl's law speedup

N
Speed up at

K=2

Speed up at

K=3

Speed up at

K=4

Speed up at

K=5

Speed up at

K=6

Speed up at

K=7

Speed up at

K=8

200000 1.22580645 2.375 2.375 7.6 6.33333333 6.33333333 2.53333333

400000 1.42028986 2.08510638 2.08510638 2.57894737 2.8 3.16129032 4.45454545

600000 1.45 2.10144928 2.68518519 3.81578947 4.02777778 4.67741935 4.67741935

800000 1.22 1.83 2.15294118 2.34615385 2.9516129 2.73134328 3.38888889

1000000 1.38271605 1.94782609 2.24 2.87179487 2.8 2.87179487 3.29411765

1200000 1.34693878 2.18181818 2.64 3.14285714 3.10588235 3.38461538 3.94029851

1400000 1.26639344 2.00649351 2.28888889 2.6637931 3.09 3.12121212 3.09

1600000 1.31541219 1.98378378 2.47972973 2.80152672 2.80152672 3.03305785 3.52884615

1800000 1.30670927 1.89351852 2.23497268 2.78231293 2.80136986 3.09848485 3.1221374

2000000 1.27823691 2.00865801 2.14814815 2.60674157 2.74556213 3.03267974 3.15646259

Table 5: The Efficiency results for each N value and K
N K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8

200000 0.808510638 0.612903226 0.791666667 0.59375 1.52 1.055555556 0.904761905 0.316666667

400000 0.890909091 0.710144928 0.695035461 0.521276596 0.515789474 0.466666667 0.451612903 0.556818182

600000 1.006944444 0.725 0.700483092 0.671296296 0.763157895 0.671296296 0.668202765 0.584677419

800000 0.910447761 0.61 0.61 0.538235294 0.469230769 0.491935484 0.390191898 0.423611111

1000000 0.991150442 0.691358025 0.649275362 0.56 0.574358974 0.466666667 0.41025641 0.411764706

1200000 1.007633588 0.673469388 0.727272727 0.66 0.628571429 0.517647059 0.483516484 0.492537313

1400000 0.987220447 0.633196721 0.668831169 0.572222222 0.532758621 0.515 0.445887446 0.38625

1600000 1.008241758 0.657706093 0.661261261 0.619932432 0.560305344 0.46692112 0.433293979 0.441105769

1800000 0.985542169 0.653354633 0.63117284 0.558743169 0.556462585 0.466894977 0.442640693 0.390267176

2000000 0.989339019 0.639118457 0.66955267 0.537037037 0.521348315 0.457593688 0.433239963 0.394557823

Table 6: The Amdahl's law in terms of efficiency results for each N value and K
N K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8

200000 0.808510638 0.612903226 0.791666667 0.59375 1.52 1.055555556 0.904761905 0.316666667

400000 0.890909091 0.710144928 0.695035461 0.521276596 0.515789474 0.466666667 0.451612903 0.556818182

600000 1.006944444 0.725 0.700483092 0.671296296 0.763157895 0.671296296 0.668202765 0.584677419

800000 0.910447761 0.61 0.61 0.538235294 0.469230769 0.491935484 0.390191898 0.423611111

1000000 0.991150442 0.691358025 0.649275362 0.56 0.574358974 0.466666667 0.41025641 0.411764706

1200000 1.007633588 0.673469388 0.727272727 0.66 0.628571429 0.517647059 0.483516484 0.492537313

1400000 0.987220447 0.633196721 0.668831169 0.572222222 0.532758621 0.515 0.445887446 0.38625

1600000 1.008241758 0.657706093 0.661261261 0.619932432 0.560305344 0.46692112 0.433293979 0.441105769

1800000 0.985542169 0.653354633 0.63117284 0.558743169 0.556462585 0.466894977 0.442640693 0.390267176

2000000 0.989339019 0.639118457 0.66955267 0.537037037 0.521348315 0.457593688 0.433239963 0.394557823

