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Abstract: This paper proposes new processor architecture for accelerating data-parallel applications based on the 

combination of VLIW and vector processing paradigms. It uses VLIW architecture for processing multiple independent 

scalar instructions concurrently on parallel execution units. Data parallelism is expressed by vector ISA and processed on 

the same parallel execution units of the VLIW architecture. The proposed processor, which is called VecLIW, has unified 

register file of 64x32-bit registers in the decode stage for storing scalar/vector data. VecLIW can issue up to four 

scalar/vector operations in each cycle for parallel processing a set of operands and producing up to four results. However, 

it cannot issue more than one memory operation at a time, which loads/stores 128-bit scalar/vector data from/to data 

cache. Four 32-bit results can be written back into VecLIW register file. The complete design of our proposed VecLIW 

processor is implemented using Verilog HDL.  

Keywords: VecLIW architecture; vector processing; data-

level parallelism; unified datapath; FPGA/Verilog HDL 
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I. INTRODUCTION 

 

One of the most important methods for achieving 

high Performance is taking advantage of parallelism. The 

simplest way to take the advantage of parallelism among 

instructions is through pipelining, which overlaps instruction 

execution to reduce the total time to complete an instruction 

sequence (see [1] for more detail). All processors since about 

1985 use the pipelining technique to improve performance by 

exploiting instruction-level parallelism (ILP). The instructions 

can be processed in parallel because not every instruction 

depends on its immediate predecessor. After eliminating data 

and control stalls, the use of pipelining technique can achieve 

an ideal performance of one clock cycle per operation (CPO). 

To further improve the performance, the CPO would be 

decreased to less than one. Obviously, the CPO cannot be 

reduced  

below one if the issue width is only one operation per clock 

cycle. Therefore, multiple-issue scalar processors  

 

 

 

fetch multiple. scalar instructions and allow multiple 

operations to issue in a clock cycle. However, vector 

processors fetch a single vector instruction (v operations) and 

issue multiple operations per clock cycle. 

Statically/dynamically scheduled superscalar processors issue 

varying numbers of operations per clock cycle and use in-

order/out-of-order execution [2, 3]. Very long instruction word 

(VLIW) processors, in contrast, issue a fixed number of 

operations formatted either as one large instruction or as a 

fixed instruction packet with the parallelism among 

independent operations explicitly indicated by the instruction 

[4]. 

 

VLIW and superscalar implementations of traditional 

scalar instruction sets share some characteristics: multiple 

execution units and the ability to execute multiple operations 

simultaneously. However, the parallelism is explicit in VLIW 

instructions and must be discovered by hardware at run time in 

superscalar processors. Thus, for high performance, VLIW 

implementations are simpler and cheaper than super scalars 

because of further hardware simplifications. However, VLIW 

architectures require more compiler support. 

VLIW architectures are characterized by instructions 

that each specify several independent operations. Thus, VLIW 

is not CISC instruction, which typically specify several 

dependent operations. However, VLIW instructions are like 

RISC instructions except that they are longer to allow them to 

specify multiple independent simple operations. A VLIW 

instruction can be thought of as several RISC instructions 

packed together, where RISC instructions typically specify 

one operation. The explicit encoding of multiple operations 

into VLIW instruction leads to dramatically reduced hardware 

complexity compared to superscalar. Thus, the main 

advantages of VLIW are that the highly parallel 

implementation is much simpler and cheaper to build the 

equivalently concurrent RISC or CISC chips. See[6] for 

architectural comparison between CISC, RISC, and VLIW.  

On multiple execution units, this paper proposes new 

processor architecture for accelerating data-parallel 

applications by the combination of VLIW and vector 

processing paradigms. It is based on VLIW architecture for 

processing multiple scalar instructions concurrently. 

Moreover, data-level parallelism (DLP) is expressed 

efficiently using vector instructions and processed on the same 

parallel execution units of the VLIW architecture. Thus, the 

proposed processor, which is called VecLIW, exploits ILP 

using VLIW instructions and DLP using vector instructions. 
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The use of vector instruction set architecture (ISA) lead to 

expressing programs in a more concise and efficient way (high 

semantic), encoding parallelism explicitly in each vector 

instruction, and using simple design techniques (heavy 

pipelining and functional unit replication) that achieve high 

performance at low cost [7, 8]. Thus, vector processors remain 

the most effective way to exploit data-parallel applications [9, 

10]. 

Therefore, many vector architectures have been 

proposed in the literature to accelerate data-parallel 

applications [11-17]. Commercially, the Cell BE architecture 

[18] is based on heterogeneous, shared-memory chip 

multiprocessing with nine processors: Power processor 

element is optimized for control tasks and the eight synergistic 

processor elements (SPEs) provide an execution environment 

optimized for data processing. SPE performs both scalar and 

data-parallel SIMD execution on wide data paths. NEC 

Corporation introduced SX-9 processors that run at 3.2 GHz, 

with eight-way replicated vector pipes, each having two 

multiply units and two addition units [19]. The peak vector 

performance of SX-9 processor is 102.4 GFLOPS. For non-

vectorized code, there is a scalar processor that runs at half the 

speed of the vector unit, i.e. 1.6 GHz. 

To exploit VLIW and vector techniques, Salami and 

Valero [20] proposed and evaluated adding vector capabilities 

to a μSIMD-VLIW core to speed-up the execution of the DLP 

regions, while reducing the fetch bandwidth requirements. 

Wada et al. [21] introduced a VLIW vector media coprocessor, 

“vector coprocessor (VCP),” that included three asymmetric 

execution pipelines with cascaded SIMD ALUs. To improve 

performance efficiency, they reduced the area ratio of the 

control circuit while increasing the ratio of the arithmetic 

circuit. This paper combines VLIW and vector processing 

paradigms to accelerate data-parallel applications. On unified 

parallel datapath, our proposed VecLIW processes multiple 

scalar instructions packed in VLIW and vector instructions by 

issuing up to four scalar/vector operations in each cycle. 

However, it cannot issue more than one memory 

operation at a time, which loads/stores 128-bit scalar/vector 

data from/to data cache. Four 32-bit results can be written 

back into VecLIW register file. The complete design of our 

proposed VecLIW processor is implemented using VHDL 

targeting the Xilinx FPGA Virtex5, XC5VLX110T-3FF1136 

device. 

The rest of the paper is organized as follows. 

Applying Amdahl'Law on VecLIW is presents in Section II. 

The VecLIW architecture is depicted in detail in Section III. 

Section IV describes the FPGA/Verilog HDL implementation 

of VecLIW. Finally, Section V concludes this paper and gives 

directions for future work. 

 

II. APPLYING AMDAHL'S LAW ON VECLIW 

 

Vector ISA reduces the semantic gap between 

programs and hardware [9]. Programmer can express 

parallelism to hardware using vector instructions. Otherwise, 

vector compilers did ultimately get good at synthesizing vector 

operations even when they were not explicitly expressed. 

Thus, the generated code says something higher-level, and 

then the processor manipulates the simple operations on its 

own.  

Programs have several different portions of their 

runtime that can be accelerated to differing degrees. On 

VecLIW, programs can be divided into scalar (unvectorizable) 

and vectorizable parts. Vectorizable parts can be accelerated to 

differing degrees on parallel execution units using vector ISA. 

On the other hand, scalar parts may be accelerated on 

multiple execution units using VLIW. Thus, on VecLIW, not 

only vectorizable parts are sped up but also scalar parts. It is 

well known that Amdahl's Law [22] governs the speedup of 

using parallel processing on a problem versus using sequential 

processing. It states that the performance improvement to be 

gained from using some faster mode of execution is limited by 

the fraction of the time the faster mode can be used. The main 

advantage of the VecLIW is the increase of the faster mode 

fraction by parallel processing VLIW/vector instructions on 

multiple execution units. Consider an application consists of a 

scalar code, which cannot be vectorizable, and vectorizable 

code, which spends V fraction of time on the baseline scalar 

processor. This vectorizable code can be decomposed further 

into V1, V2, …, Vm fractions that can be sped up by executing 

vector instructions on multiple execution units by factors of 

P1, P2, …, Pm, respectively, where V = V1 + V2 + … + Vm. 

Moreover, the unvectorizable, scalar code that can be sped up 

using VLIW spends S fraction of time on the baseline scalar 

processor, where scalar code that cannot be sped up using 

VLIW or vector instructions spends (1 – S – V ) fraction of 

time. S can be decomposed further into S1, S2, …, Sn fractions 

that can be sped up by factors of q1, q2, …, qn, respectively, 

where S = S1 + S2 + … + Sn. Thus, Amdahl's Law 

predicts an overall speedup equals 
𝟏

(𝟏 − 𝑺 − 𝑽) +
𝑺𝟏
𝒒𝟏

+
𝒔𝟐
𝒒𝟐

+⋯+
𝒔𝒏
𝒒𝒏

+
𝑽𝟏
𝑷𝟏

+
𝑽𝟐
𝑷𝟐

+. . +
𝑽𝒎
𝑷𝒎

 

Using Amdahl's Law, the scalar parts (1 – S – V) that 

are not sped up using VLIW or vector instructions will 

dominate the running time as increasing the parallel execution 

units. Thus, VecLIW minimizes the unparallel fraction of time 

(1 – S – V) by the execute of VLIW instructions in addition to 

vector instructions on parallel execution units. Obviously, the 

use of vector ISA alone results in unparallel fraction of time (1 

– V), which is greater than the corresponding VecLIW factor 

(1 – S – V). 

Generally, vector hardware works better than 

superscalar/VLIW processors on very regular code containing 

long vectors, whereas superscalar/VLIW processors tend to 

work better than vector processors when the structure of the 

code is somewhat more irregular, and when vectors are short. 

In addition, superscalar/VLIW processors offer the 

advantage that the same hardware can be used on the parts of 

code that are not vectorizable, whereas vector hardware is 

dedicated to vector use only. However, converting a vector 

instruction into scalar instructions degrades the performance 

because scalar ISA cannot convoy parallelism to processor. 

The use of vector ISA leads to multiple homogeneous, 

independent operations are packaged into a single short vector 

instruction, resulting compact, expressive, and scalable code. 

The vector code is compact because a single vector instruction 

can describe v scalar operations and address up to 3v element 

operands. This dramatically reduces instruction bandwidth 

requirements. 

Moreover, many of the looping constructs required to 

iterate a scalar processor over the v operations are implicit in 
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the vector instructions, reducing instruction bandwidth 

requirements even further. The code is expressive because 

software can pass on much valuable information to hardware 

about this group of v operations. Therefore, VecLIW combines 

the advantages of VLIW that exploits ILP and vector 

processing that exploits DLP. 

 

III. THE ARCHITECTURE OF VECLIW PROCESSOR 

 

VecLIW is a load-store architecture with simple 

hardware, fixed-length instruction encoding, and simple code 

generation model. It supports few addressing modes to specify 

operands: register, immediate, and displacement addressing 

modes. In the displacement addressing mode, a constant offset 

is signed extended and added to a scalar register to form the 

memory address for loading/storing 128-bit data. VecLIW has 

a simple and easy-to-pipeline ISA, which supports the general 

categories of operations (data transfer, arithmetic, logical, and 

control). According to the upper two bits (SV field) of the 

opcode, there are four types of the VecLIW instructions: 

(1) SV field = (00)2 for scalar-scalar instructions (.ss type), 

(2) SV field = (01)2 for scalar-vector instructions (.sv type), 

(3) SV field = (10)2 for vector-scalar instructions (.vs type), 

(4) SV field = (11)2 for vector-vector instructions (.vv type). 

For example sub.ss, sub.sv, sub.vs, and sub.vv 

perform scalar subtraction, scalar-vector subtraction, vector-

scalar subtraction, and vector-vector subtraction, respectively, 

on v-element operands, where 1 ≤ v ≤ MVL (maximum vector 

length). 

VecLIW uses fixed length for encoding scalar/vector 

instructions. All VecLIW instructions are 4×32-bit 

(VLIW[127:0]), which simplifies instruction decoding. Figure 

1 shows the VecLIW instruction formats (R-format, I-format, 

and J-format), which are very close to MIPS [23, 24].  

 
Fig. 1. VecLIW ISA formats 

 

The first 32-bit instruction (VLIW[31:0]) can be 

scalar/vector/control instruction. However, the remaining 32-

bit instructions (VLIW[63:32], VLIW[95:64], and 

VLIW[127:96]) must be scalars. This simplifies the 

implementation of VecLIW and does not effect on the 

performance drastically since a vector instruction can code up 

to eight vector operations instead of four scalar operations 

stored in VLIW. However, control instructions encode only 

one operation. In this paper, a subset of the VecLIW ISA is 

used to build a simple and easy to explain version of 32-bit 

VecLIW architecture. 

  

 
Fig.2. VecLIW datapath for executing multi-scalar/vector instructions. 

 

Instruction cache stores 128-bit VLIW instructions of 

an application. Data cache loads/stores scalar/vector data 

needed for processing scalar/vector instructions.  A single 

register file is used for both multi scalar/ vector elements. The 

control unit feeds the parallel execution units by the required 

operands (scalar/vector elements) and can produce up to four 

results each clock cycle. Scalar/vector loads/stores take place 

from/to the data cache of VecLIW in a rate of 128-bit (four 

elements: 4×32-bit) per clock cycle. Finally, the write back 

stage writes into the VecLIW register file up to 4×32-bit 

results per clock cycle coming from the memory system or 

from the execution units.  

The use of unified hardware for processing multi-

scalar/vector data makes efficient exploitation of resources 

even though the percentage of DLP is low. Comparing with 

the baseline scalar processor (five stage pipeline), the 

complexity of decode, execute, and 
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Write back stages of the VecLIW are about four times. 

However, fetch and memory access stages are 

approximately the same as in the well-known five-stage scalar 

pipeline. The design of the five-stage MIPS pipeline datapath 

used in the baseline scalar processor is explained in detail in 

[25]. 

In more details, VecLIW has a modified five-stage 

pipeline for executing multi-scalar/vector instructions by: (1) 

fetching 128-bit VLIW instruction, (2) decoding/reading 

operands of four individual instructions, (3) executing four 

scalar/vector operations, (4) accessing memory to load/store 

128-bit data, and (5) writing back four results. The VLIW 

instruction pointed by PC is read from the instruction cache of 

the fetch stage and stored in the instruction fetch/decode 

(IF/ID)  pipeline register. The control unit in the decode stage 

reads the fetched VLIW instruction from IF/ID pipeline  

 

 

register to generate the proper control signals needed for 

processing multiple scalar or vector data. The register file of 

the VecLIW has eight banks (B0 to B7), eight-element each 

(B0.0 to B0.7, B1.0 to B1.7, …, and B7.0 to B7.7). 

Scalar/vector data are accessed from VecLIW register file 

using 3-bit bank number (Bn) concatenated with 3-bit start 

index (Si). 2×4×32-bit operands can be read and 4×32-bit can 

be written to the VecLIW register file each clock cycle. Thus, 

the control unit reads the Si.Bn fields of RS (register source), 

RT (register target), and RD (register destination) of each 

individual instruction in the fetched VLIW as well as VLR 

(vector length register) to generate the sequence of control 

signals needed for reading/writing multi-scalar/vector data 

from/to VecLIW register file. The VecLIW register file can be 

seen as 64×32-bit scalar registers or 8×8×32-bit vector 

registers (eight 8-element 

vector registers). Moreover, the start index (Si) could be 

nonzero (0 ≤ Si ≤ 7) and the vector data are stored in VecLIW 

banks in round-robin fashion. 

Four individual instructions packed in VLIW 

instruction are decoded and their operands are read from the 

unified register file (RsVal1/RtVal1, RsVal2/RtVal2, 

RsVal3/RtVal3, and RsVal4/RtVal4) according to four pairs 

of RS/RT fields (RS1/RT1, RS2/RT2, RS3/RT3, and 

RS4/RT4), respectively. 

Moreover, the 14-bit immediate values (VLIW[13:0], 

VLIW[45:32], VLIW[77:64], and VLIW[109:96]) of the 

Iformat are signed-/unsigned-extended into 4×32-bit 

immediate values (ImmVal1, ImmVal2, ImmVal3, and 

ImmVal4). These RsVal, RtVal, and ImmVal values are stored 

in the ID/EX   

pipeline register for processing in the execute stage. In 

addition to decoding the individual instructions of VLIW and 

accessing VecLIW register file, RS.Si, RT.Si, RD.Si, and 

ImmVal values are loaded into  counters called RScounter, 

RTcounter, RDcounter, and ImmCounter, respectively. For 

decoding vector instructions, the control unit stalls the fetch 

stage and iterates the process of reading vector elements, 

incrementing RScounter, RTcounter, and RDcounter by four 

and the immediate value (ImmCounters) by 16, and 

calculating the destination registers. Depending on the vector 

length (v), the control unit issues operands to the execution 

units through ID/EX pipeline register number of times equals 

[v/4], where 1≤v≤MVL, where MVL equals eight in the first 

implementation of VecLIW. After issuing each operation in 

the vector instruction, it is removed from IF/ID pipeline 

register and new VLIW instruction is fetched from instruction 

cache. 

The execute units of VecLIW operate on the operands 

prepared in the decode stage and perform operations specified 

by the control unit, which depends 

onopcode1/function1,opcode2/function2,opcode3/function3, 

and opcode4/function4 fields of the individual instructions in 

VLIW. For load/store instructions, the first execute unit adds 

RsVal1 and ImmVal1 to form the effective address. For 

register-register instructions, the execute units perform the 

operations specified by the control unit on the operands fed 

from the register file (RsVal1/RtVal1, RsVal2/RtVal2, 

RsVal3/RtVal3, and RsVal4/RtVal4) through ID/EX pipeline 

register. For register-immediate instructions, the execute units 

perform the operations on the source values (RsVal1, RsVal2, 

RsVal3, and RsVal4) and the extended immediate values 

(ImmVal1, ImmVal2, ImmVal3, and ImmVal4).  

In all cases, the results of the execute units is placed 

in the EX/MEM pipeline register. The VecLIW registers can 

be loaded/stored individually using load/store instructions. 

Displacement addressing mode is used for calculating the 

effective address by adding the singed extended immediate 

value (ImmVal1) to RS register (RsVal1) of the first 

individual instruction in VLIW. In addition, the ImmVal1 

register is incremented by 16 to prepare the address of the next 

4×32-bit element of the vector data. In the first 

implementation of our proposed VecLIW processor, four 

elements (128-bit) can be loaded/stored per clock cycle. 

Finally, the writeback stage of VecLIW stores the 

4×32-bit results come from the memory system or from the 

execution units in the VecLIW register file. Depending on the 

effective opcode of each individual instruction in VLIW, the 

register destination field is specified by either RT or RD. The 

control signals 4×Wr2Reg are used for enabling the writing 

4×32-bit results into the VecLIW register file. 

 

IV. SIMULATION RESULTS 

Figure 3 shows the top-level RTL schematic diagram 

of our proposed VecLIW. It is generated from synthesizing the 

Verilog HDL code of the VecLIW processor on Xilinx ISE 

tool. 

 
Fig. 3.Top-level RTL schematic diagram of the proposed 

VecLIW processor 

 



DOI: 10.18535/ijecs/v4i10.9 
 

B.Prasanna, Sharad Kulkarni, IJECS Volume 04 Issue 10 October, 2015 Page No.14589-14593  Page 14593 

The simulation results of the proposed VecLIW processor is as 

shown in fig4. 

 
Fig.4. Simulation results of proposed design 

 

V.CONCLUSION 

This paper proposes new processor architecture called 

VecLIW for accelerating data-parallel applications. VecLIW 

executes multi-scalar and vector instructions on the same 

parallel execution datapath. VecLIW has a modified five-stage 

pipeline for (1) fetching 128-bit VLIW instruction (four 

individual instructions), (2) decoding/reading operands of the 

four instructions packed in VLIW, (3) executing four 

operations on parallel execution units, (4) loading/storing 128- 

bit (4×32-bit scalar/vector) data from/to data memory, and (5) 

writing back 4×32-bit scalar/vector results. And this proposed 

design is simulated by using the Verilog HDL code. 
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