
www.ijecs.in
International Journal Of Engineering And Computer Science ISSN: 2319-7242
Volume 4 Issue 10 Oct 2015, Page No. 14589-14593

B.Prasanna, Sharad Kulkarni, IJECS Volume 04 Issue 10 October, 2015 Page No.14589-14593 Page 14589

Advanced Vecliw Architecture For Executing Multi-Scalar/Vector

Instructions On Unified Datapath

B.Prasanna, Sharad Kulkarni M.S(E&C),FIETE,MISTE
Department of Electronics and communication Engineering

Audisankara Institute of Technology,Gudur

Abstract: This paper proposes new processor architecture for accelerating data-parallel applications based on the

combination of VLIW and vector processing paradigms. It uses VLIW architecture for processing multiple independent

scalar instructions concurrently on parallel execution units. Data parallelism is expressed by vector ISA and processed on

the same parallel execution units of the VLIW architecture. The proposed processor, which is called VecLIW, has unified

register file of 64x32-bit registers in the decode stage for storing scalar/vector data. VecLIW can issue up to four

scalar/vector operations in each cycle for parallel processing a set of operands and producing up to four results. However,

it cannot issue more than one memory operation at a time, which loads/stores 128-bit scalar/vector data from/to data

cache. Four 32-bit results can be written back into VecLIW register file. The complete design of our proposed VecLIW

processor is implemented using Verilog HDL.

Keywords: VecLIW architecture; vector processing; data-

level parallelism; unified datapath; FPGA/Verilog HDL

implementation.

I. INTRODUCTION

One of the most important methods for achieving

high Performance is taking advantage of parallelism. The

simplest way to take the advantage of parallelism among

instructions is through pipelining, which overlaps instruction

execution to reduce the total time to complete an instruction

sequence (see [1] for more detail). All processors since about

1985 use the pipelining technique to improve performance by

exploiting instruction-level parallelism (ILP). The instructions

can be processed in parallel because not every instruction

depends on its immediate predecessor. After eliminating data

and control stalls, the use of pipelining technique can achieve

an ideal performance of one clock cycle per operation (CPO).

To further improve the performance, the CPO would be

decreased to less than one. Obviously, the CPO cannot be

reduced

below one if the issue width is only one operation per clock

cycle. Therefore, multiple-issue scalar processors

fetch multiple. scalar instructions and allow multiple

operations to issue in a clock cycle. However, vector

processors fetch a single vector instruction (v operations) and

issue multiple operations per clock cycle.

Statically/dynamically scheduled superscalar processors issue

varying numbers of operations per clock cycle and use in-

order/out-of-order execution [2, 3]. Very long instruction word

(VLIW) processors, in contrast, issue a fixed number of

operations formatted either as one large instruction or as a

fixed instruction packet with the parallelism among

independent operations explicitly indicated by the instruction

[4].

VLIW and superscalar implementations of traditional

scalar instruction sets share some characteristics: multiple

execution units and the ability to execute multiple operations

simultaneously. However, the parallelism is explicit in VLIW

instructions and must be discovered by hardware at run time in

superscalar processors. Thus, for high performance, VLIW

implementations are simpler and cheaper than super scalars

because of further hardware simplifications. However, VLIW

architectures require more compiler support.

VLIW architectures are characterized by instructions

that each specify several independent operations. Thus, VLIW

is not CISC instruction, which typically specify several

dependent operations. However, VLIW instructions are like

RISC instructions except that they are longer to allow them to

specify multiple independent simple operations. A VLIW

instruction can be thought of as several RISC instructions

packed together, where RISC instructions typically specify

one operation. The explicit encoding of multiple operations

into VLIW instruction leads to dramatically reduced hardware

complexity compared to superscalar. Thus, the main

advantages of VLIW are that the highly parallel

implementation is much simpler and cheaper to build the

equivalently concurrent RISC or CISC chips. See[6] for

architectural comparison between CISC, RISC, and VLIW.

On multiple execution units, this paper proposes new

processor architecture for accelerating data-parallel

applications by the combination of VLIW and vector

processing paradigms. It is based on VLIW architecture for

processing multiple scalar instructions concurrently.

Moreover, data-level parallelism (DLP) is expressed

efficiently using vector instructions and processed on the same

parallel execution units of the VLIW architecture. Thus, the

proposed processor, which is called VecLIW, exploits ILP

using VLIW instructions and DLP using vector instructions.

http://www.ijecs.in/

DOI: 10.18535/ijecs/v4i10.9

B.Prasanna, Sharad Kulkarni, IJECS Volume 04 Issue 10 October, 2015 Page No.14589-14593 Page 14590

The use of vector instruction set architecture (ISA) lead to

expressing programs in a more concise and efficient way (high

semantic), encoding parallelism explicitly in each vector

instruction, and using simple design techniques (heavy

pipelining and functional unit replication) that achieve high

performance at low cost [7, 8]. Thus, vector processors remain

the most effective way to exploit data-parallel applications [9,

10].

Therefore, many vector architectures have been

proposed in the literature to accelerate data-parallel

applications [11-17]. Commercially, the Cell BE architecture

[18] is based on heterogeneous, shared-memory chip

multiprocessing with nine processors: Power processor

element is optimized for control tasks and the eight synergistic

processor elements (SPEs) provide an execution environment

optimized for data processing. SPE performs both scalar and

data-parallel SIMD execution on wide data paths. NEC

Corporation introduced SX-9 processors that run at 3.2 GHz,

with eight-way replicated vector pipes, each having two

multiply units and two addition units [19]. The peak vector

performance of SX-9 processor is 102.4 GFLOPS. For non-

vectorized code, there is a scalar processor that runs at half the

speed of the vector unit, i.e. 1.6 GHz.

To exploit VLIW and vector techniques, Salami and

Valero [20] proposed and evaluated adding vector capabilities

to a μSIMD-VLIW core to speed-up the execution of the DLP

regions, while reducing the fetch bandwidth requirements.

Wada et al. [21] introduced a VLIW vector media coprocessor,

“vector coprocessor (VCP),” that included three asymmetric

execution pipelines with cascaded SIMD ALUs. To improve

performance efficiency, they reduced the area ratio of the

control circuit while increasing the ratio of the arithmetic

circuit. This paper combines VLIW and vector processing

paradigms to accelerate data-parallel applications. On unified

parallel datapath, our proposed VecLIW processes multiple

scalar instructions packed in VLIW and vector instructions by

issuing up to four scalar/vector operations in each cycle.

However, it cannot issue more than one memory

operation at a time, which loads/stores 128-bit scalar/vector

data from/to data cache. Four 32-bit results can be written

back into VecLIW register file. The complete design of our

proposed VecLIW processor is implemented using VHDL

targeting the Xilinx FPGA Virtex5, XC5VLX110T-3FF1136

device.

The rest of the paper is organized as follows.

Applying Amdahl'Law on VecLIW is presents in Section II.

The VecLIW architecture is depicted in detail in Section III.

Section IV describes the FPGA/Verilog HDL implementation

of VecLIW. Finally, Section V concludes this paper and gives

directions for future work.

II. APPLYING AMDAHL'S LAW ON VECLIW

Vector ISA reduces the semantic gap between

programs and hardware [9]. Programmer can express

parallelism to hardware using vector instructions. Otherwise,

vector compilers did ultimately get good at synthesizing vector

operations even when they were not explicitly expressed.

Thus, the generated code says something higher-level, and

then the processor manipulates the simple operations on its

own.

Programs have several different portions of their

runtime that can be accelerated to differing degrees. On

VecLIW, programs can be divided into scalar (unvectorizable)

and vectorizable parts. Vectorizable parts can be accelerated to

differing degrees on parallel execution units using vector ISA.

On the other hand, scalar parts may be accelerated on

multiple execution units using VLIW. Thus, on VecLIW, not

only vectorizable parts are sped up but also scalar parts. It is

well known that Amdahl's Law [22] governs the speedup of

using parallel processing on a problem versus using sequential

processing. It states that the performance improvement to be

gained from using some faster mode of execution is limited by

the fraction of the time the faster mode can be used. The main

advantage of the VecLIW is the increase of the faster mode

fraction by parallel processing VLIW/vector instructions on

multiple execution units. Consider an application consists of a

scalar code, which cannot be vectorizable, and vectorizable

code, which spends V fraction of time on the baseline scalar

processor. This vectorizable code can be decomposed further

into V1, V2, …, Vm fractions that can be sped up by executing

vector instructions on multiple execution units by factors of

P1, P2, …, Pm, respectively, where V = V1 + V2 + … + Vm.

Moreover, the unvectorizable, scalar code that can be sped up

using VLIW spends S fraction of time on the baseline scalar

processor, where scalar code that cannot be sped up using

VLIW or vector instructions spends (1 – S – V) fraction of

time. S can be decomposed further into S1, S2, …, Sn fractions

that can be sped up by factors of q1, q2, …, qn, respectively,

where S = S1 + S2 + … + Sn. Thus, Amdahl's Law

predicts an overall speedup equals
𝟏

(𝟏 − 𝑺 − 𝑽) +
𝑺𝟏
𝒒𝟏

+
𝒔𝟐
𝒒𝟐

+⋯+
𝒔𝒏
𝒒𝒏

+
𝑽𝟏
𝑷𝟏

+
𝑽𝟐
𝑷𝟐

+. . +
𝑽𝒎
𝑷𝒎

Using Amdahl's Law, the scalar parts (1 – S – V) that

are not sped up using VLIW or vector instructions will

dominate the running time as increasing the parallel execution

units. Thus, VecLIW minimizes the unparallel fraction of time

(1 – S – V) by the execute of VLIW instructions in addition to

vector instructions on parallel execution units. Obviously, the

use of vector ISA alone results in unparallel fraction of time (1

– V), which is greater than the corresponding VecLIW factor

(1 – S – V).

Generally, vector hardware works better than

superscalar/VLIW processors on very regular code containing

long vectors, whereas superscalar/VLIW processors tend to

work better than vector processors when the structure of the

code is somewhat more irregular, and when vectors are short.

In addition, superscalar/VLIW processors offer the

advantage that the same hardware can be used on the parts of

code that are not vectorizable, whereas vector hardware is

dedicated to vector use only. However, converting a vector

instruction into scalar instructions degrades the performance

because scalar ISA cannot convoy parallelism to processor.

The use of vector ISA leads to multiple homogeneous,

independent operations are packaged into a single short vector

instruction, resulting compact, expressive, and scalable code.

The vector code is compact because a single vector instruction

can describe v scalar operations and address up to 3v element

operands. This dramatically reduces instruction bandwidth

requirements.

Moreover, many of the looping constructs required to

iterate a scalar processor over the v operations are implicit in

DOI: 10.18535/ijecs/v4i10.9

B.Prasanna, Sharad Kulkarni, IJECS Volume 04 Issue 10 October, 2015 Page No.14589-14593 Page 14591

the vector instructions, reducing instruction bandwidth

requirements even further. The code is expressive because

software can pass on much valuable information to hardware

about this group of v operations. Therefore, VecLIW combines

the advantages of VLIW that exploits ILP and vector

processing that exploits DLP.

III. THE ARCHITECTURE OF VECLIW PROCESSOR

VecLIW is a load-store architecture with simple

hardware, fixed-length instruction encoding, and simple code

generation model. It supports few addressing modes to specify

operands: register, immediate, and displacement addressing

modes. In the displacement addressing mode, a constant offset

is signed extended and added to a scalar register to form the

memory address for loading/storing 128-bit data. VecLIW has

a simple and easy-to-pipeline ISA, which supports the general

categories of operations (data transfer, arithmetic, logical, and

control). According to the upper two bits (SV field) of the

opcode, there are four types of the VecLIW instructions:

(1) SV field = (00)2 for scalar-scalar instructions (.ss type),

(2) SV field = (01)2 for scalar-vector instructions (.sv type),

(3) SV field = (10)2 for vector-scalar instructions (.vs type),

(4) SV field = (11)2 for vector-vector instructions (.vv type).

For example sub.ss, sub.sv, sub.vs, and sub.vv

perform scalar subtraction, scalar-vector subtraction, vector-

scalar subtraction, and vector-vector subtraction, respectively,

on v-element operands, where 1 ≤ v ≤ MVL (maximum vector

length).

VecLIW uses fixed length for encoding scalar/vector

instructions. All VecLIW instructions are 4×32-bit

(VLIW[127:0]), which simplifies instruction decoding. Figure

1 shows the VecLIW instruction formats (R-format, I-format,

and J-format), which are very close to MIPS [23, 24].

Fig. 1. VecLIW ISA formats

The first 32-bit instruction (VLIW[31:0]) can be

scalar/vector/control instruction. However, the remaining 32-

bit instructions (VLIW[63:32], VLIW[95:64], and

VLIW[127:96]) must be scalars. This simplifies the

implementation of VecLIW and does not effect on the

performance drastically since a vector instruction can code up

to eight vector operations instead of four scalar operations

stored in VLIW. However, control instructions encode only

one operation. In this paper, a subset of the VecLIW ISA is

used to build a simple and easy to explain version of 32-bit

VecLIW architecture.

Fig.2. VecLIW datapath for executing multi-scalar/vector instructions.

Instruction cache stores 128-bit VLIW instructions of

an application. Data cache loads/stores scalar/vector data

needed for processing scalar/vector instructions. A single

register file is used for both multi scalar/ vector elements. The

control unit feeds the parallel execution units by the required

operands (scalar/vector elements) and can produce up to four

results each clock cycle. Scalar/vector loads/stores take place

from/to the data cache of VecLIW in a rate of 128-bit (four

elements: 4×32-bit) per clock cycle. Finally, the write back

stage writes into the VecLIW register file up to 4×32-bit

results per clock cycle coming from the memory system or

from the execution units.

The use of unified hardware for processing multi-

scalar/vector data makes efficient exploitation of resources

even though the percentage of DLP is low. Comparing with

the baseline scalar processor (five stage pipeline), the

complexity of decode, execute, and

DOI: 10.18535/ijecs/v4i10.9

B.Prasanna, Sharad Kulkarni, IJECS Volume 04 Issue 10 October, 2015 Page No.14589-14593 Page 14592

Write back stages of the VecLIW are about four times.

However, fetch and memory access stages are

approximately the same as in the well-known five-stage scalar

pipeline. The design of the five-stage MIPS pipeline datapath

used in the baseline scalar processor is explained in detail in

[25].

In more details, VecLIW has a modified five-stage

pipeline for executing multi-scalar/vector instructions by: (1)

fetching 128-bit VLIW instruction, (2) decoding/reading

operands of four individual instructions, (3) executing four

scalar/vector operations, (4) accessing memory to load/store

128-bit data, and (5) writing back four results. The VLIW

instruction pointed by PC is read from the instruction cache of

the fetch stage and stored in the instruction fetch/decode

(IF/ID) pipeline register. The control unit in the decode stage

reads the fetched VLIW instruction from IF/ID pipeline

register to generate the proper control signals needed for

processing multiple scalar or vector data. The register file of

the VecLIW has eight banks (B0 to B7), eight-element each

(B0.0 to B0.7, B1.0 to B1.7, …, and B7.0 to B7.7).

Scalar/vector data are accessed from VecLIW register file

using 3-bit bank number (Bn) concatenated with 3-bit start

index (Si). 2×4×32-bit operands can be read and 4×32-bit can

be written to the VecLIW register file each clock cycle. Thus,

the control unit reads the Si.Bn fields of RS (register source),

RT (register target), and RD (register destination) of each

individual instruction in the fetched VLIW as well as VLR

(vector length register) to generate the sequence of control

signals needed for reading/writing multi-scalar/vector data

from/to VecLIW register file. The VecLIW register file can be

seen as 64×32-bit scalar registers or 8×8×32-bit vector

registers (eight 8-element

vector registers). Moreover, the start index (Si) could be

nonzero (0 ≤ Si ≤ 7) and the vector data are stored in VecLIW

banks in round-robin fashion.

Four individual instructions packed in VLIW

instruction are decoded and their operands are read from the

unified register file (RsVal1/RtVal1, RsVal2/RtVal2,

RsVal3/RtVal3, and RsVal4/RtVal4) according to four pairs

of RS/RT fields (RS1/RT1, RS2/RT2, RS3/RT3, and

RS4/RT4), respectively.

Moreover, the 14-bit immediate values (VLIW[13:0],

VLIW[45:32], VLIW[77:64], and VLIW[109:96]) of the

Iformat are signed-/unsigned-extended into 4×32-bit

immediate values (ImmVal1, ImmVal2, ImmVal3, and

ImmVal4). These RsVal, RtVal, and ImmVal values are stored

in the ID/EX

pipeline register for processing in the execute stage. In

addition to decoding the individual instructions of VLIW and

accessing VecLIW register file, RS.Si, RT.Si, RD.Si, and

ImmVal values are loaded into counters called RScounter,

RTcounter, RDcounter, and ImmCounter, respectively. For

decoding vector instructions, the control unit stalls the fetch

stage and iterates the process of reading vector elements,

incrementing RScounter, RTcounter, and RDcounter by four

and the immediate value (ImmCounters) by 16, and

calculating the destination registers. Depending on the vector

length (v), the control unit issues operands to the execution

units through ID/EX pipeline register number of times equals

[v/4], where 1≤v≤MVL, where MVL equals eight in the first

implementation of VecLIW. After issuing each operation in

the vector instruction, it is removed from IF/ID pipeline

register and new VLIW instruction is fetched from instruction

cache.

The execute units of VecLIW operate on the operands

prepared in the decode stage and perform operations specified

by the control unit, which depends

onopcode1/function1,opcode2/function2,opcode3/function3,

and opcode4/function4 fields of the individual instructions in

VLIW. For load/store instructions, the first execute unit adds

RsVal1 and ImmVal1 to form the effective address. For

register-register instructions, the execute units perform the

operations specified by the control unit on the operands fed

from the register file (RsVal1/RtVal1, RsVal2/RtVal2,

RsVal3/RtVal3, and RsVal4/RtVal4) through ID/EX pipeline

register. For register-immediate instructions, the execute units

perform the operations on the source values (RsVal1, RsVal2,

RsVal3, and RsVal4) and the extended immediate values

(ImmVal1, ImmVal2, ImmVal3, and ImmVal4).

In all cases, the results of the execute units is placed

in the EX/MEM pipeline register. The VecLIW registers can

be loaded/stored individually using load/store instructions.

Displacement addressing mode is used for calculating the

effective address by adding the singed extended immediate

value (ImmVal1) to RS register (RsVal1) of the first

individual instruction in VLIW. In addition, the ImmVal1

register is incremented by 16 to prepare the address of the next

4×32-bit element of the vector data. In the first

implementation of our proposed VecLIW processor, four

elements (128-bit) can be loaded/stored per clock cycle.

Finally, the writeback stage of VecLIW stores the

4×32-bit results come from the memory system or from the

execution units in the VecLIW register file. Depending on the

effective opcode of each individual instruction in VLIW, the

register destination field is specified by either RT or RD. The

control signals 4×Wr2Reg are used for enabling the writing

4×32-bit results into the VecLIW register file.

IV. SIMULATION RESULTS

Figure 3 shows the top-level RTL schematic diagram

of our proposed VecLIW. It is generated from synthesizing the

Verilog HDL code of the VecLIW processor on Xilinx ISE

tool.

Fig. 3.Top-level RTL schematic diagram of the proposed

VecLIW processor

DOI: 10.18535/ijecs/v4i10.9

B.Prasanna, Sharad Kulkarni, IJECS Volume 04 Issue 10 October, 2015 Page No.14589-14593 Page 14593

The simulation results of the proposed VecLIW processor is as

shown in fig4.

Fig.4. Simulation results of proposed design

V.CONCLUSION

This paper proposes new processor architecture called

VecLIW for accelerating data-parallel applications. VecLIW

executes multi-scalar and vector instructions on the same

parallel execution datapath. VecLIW has a modified five-stage

pipeline for (1) fetching 128-bit VLIW instruction (four

individual instructions), (2) decoding/reading operands of the

four instructions packed in VLIW, (3) executing four

operations on parallel execution units, (4) loading/storing 128-

bit (4×32-bit scalar/vector) data from/to data memory, and (5)

writing back 4×32-bit scalar/vector results. And this proposed

design is simulated by using the Verilog HDL code.

REFERENCES

[1] J. Hennessay and D. Patterson, Computer Architecture A

Quantitative Approach, 5th ed, Morgan-Kaufmann, September

2011.

[2] J. Mike, Superscalar Microprocessor Design, Prentice Hall

(Prentice Hall Series in Innovative Technology), 1991.

[3] J. Smith and G. Sohi, “The micro architecture of

superscalar processors,” Proceedings of the IEEE, vol. 83, no.

12, pp. 1609-1624, December 1995.

[4] J. Fisher, “VLIW architectures and the ELI-512,” Proc.

10th International Symposium on Computer Architecture,

Stockholm, Sweden, pp. 140-150, June 1983.

[5] J. Fisher, P. Faraboschi, and C. Young, Embedded

Computing: A VLIW Approach to Architecture, Compilers

and Tools, Morgan Kaufmann, 2004.

[6] Philips, Inc., An Introduction to Very-Long Instruction

Word (VLIW) Computer Architecture, Philips

Semiconductors, 1997.

 [7] R. Espasa, M. Valero, and J. Smith, “Vector architectures:

past, present and future,” Proc. 2nd International Conference

on Supercomputing, Melbourne, Australia, pp. 425-432, July

1998.

[8] F. Quintana, R. Espasa, and M. Valero, “An ISA

comparison between superscalar and vector processors,” in

VECPAR, vol. 1573, Springer- Verilog London, pp. 548-560,

1998.

[9] J. Smith, “The best way to achieve vector-like

performance?,” Keynote Speech, in 21st International

Symposium on Computer Architecture, Chicago, IL, April

1994.

[10] C. Kozyrakis and D. Patterson, “Vector vs. superscalar

and vliw architectures for embedded multimedia benchmarks,”

Proc. 35th International Symposium on Microarchitecture,

Istanbul, Turkey, pp. 283-293, November 2002.

[11] K. Asanovic, Vector Microprocessors, Ph.D. Thesis,

Computer Science Division, University of California at

Berkeley, 1998.

[12] S. Kaxiras, “Distributed vector architectures,” Journal of

Systems Architecture, Elsevier Science B.V., vol. 46, no. 11,

pp. 973-990, 2000.

[13] C. Kozyrakis, Scalable Vector Media-processors for

Embedded Systems, Ph.D. Thesis, Computer Science

Division, University of California at Berkeley, 2002.

[14] R. Krashinsky, Vector-Thread Architecture and

Implementation, Ph.D. Thesis, Massachusetts Institute of

Technology, 2007.

[15] J. Gebis, Low-complexity Vector Microprocessor

Extensions, Ph.D. thesis, University of California at Berkeley,

2008.

[16] C. Batten, Simplified Vector-Thread Architectures for

Flexible and Efficient Data-Parallel Accelerators, Ph.D.

Thesis, Massachusetts Institute of Technology, 2010.

Author’s Profile:

Prasanna.Bandila received his B.TECH

degree in Electronics and Communication Engineering from Jagan’s

College of Engineering & Technology,Choutpalem, SPSR

Nellore(Dist), affiliated to JNTU Anantapur. He is currently pursuing

M.Tech VLSI in Audisankara Institute of Technology, Gudur,SPSR

Nellore (Dist), affiliated to JNTU Anantapur.

 Sharad Kulkarni He received his

M.S(E&C) degree in Birla Institute of Technology & Science

,Pilani,Jaipur. He is presently working as Professor and HOD in the

department of ECE, Audisankara Institute of Technology, Gudur,

SPSR Nellore (Dist), affiliated to JNTU Anantapur.

