
www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 2 Issue 3 March 2013 Page No. 569-572

Nikita Jaiswal, IJECS Volume 2 Issue 3 March 2013 Page No. 569-572 Page 569

Increasing no. of nodes for Dijkstra algorithm without degrading the performance
Nikita Jaiswal , Rajesh Kumar Chakrawarti

COMPUTER SCIENCE AND ENGGINEARING
Shri vaishnav institute of technology and science Indore
njaiswl90@gmail.com, rajesh_kr_chakra@yahoo.com

Abstract:- In most of the shortest path problems like vehicle routing problems and network routing
problems, we only need an efficient path between two points—source and destination, and it is not necessary
to calculate the shortest path from source to all other nodes. Dijkstra algorithm is called “ Single Source
Shortest Path “.This paper introduces the Dijkstra algorithm in detail, and illustrates the method of
implementation of the algorithm and the disadvantages of the algorithm .this algorithm applied on Directed
weighted graph to find shortest path between two nodes ,but all weights in the graph should be non
negative. In this paper we also discuss about how we can improve this algorithm in terms of finding path
according to cost by increasing some no. of nodes.

I. INTRODUCTION
With the popularity of the computer and the

development of the geographic information science,

GIS has been increasingly extensive and in-depth

applications for its powerful functions. As one of

the most important functions, network analysis has

played an important role in lots of fields, such as

electric navigation, traffic tourism, urban planning

and electricity, communications, and other various

pipe network designs and soon. The key problem

about network analysis is his shortest path analysis.

The shortest path analysis not only refers to the

shortest distance in general geographic sense, but

also extends to other measurements, such as time,

cost, and the capacity of the line.

How do we find the shortest path between two

vertices on a weighted graph? To solve this kind of

problem Dijkastra algorithm is introduced.

Dijkstra’s Algorithm was created in 1959 by Dutch

computer scientist Edsger Dijkstra. While employed

at the Mathematical Centre in Amsterdam, Dijkstra

was asked to demonstrate the powers of ARMAC, a

sophisticated computer system developed by the

Mathematical Centre. Part of his presentation

involved illustrating the best way to travel between

two points and in doing so, the shortest path

algorithm was created. It was later renamed

Dijkstra’s Algorithm in recognition of its creator.

Dijkstra's algorithm is a graph search algorithm that

solves the single-source shortest path problem for a

graph with nonnegative edge path costs, producing

a shortest path. Because of weighted graph we can’t

used BFS, The problem is that vertices on the graph

are no longer visited in the same order of closest to

the source node. Dijkastra algorithm uses the greedy

http://www.ijecs.in/�

Nikita Jaiswal ,IJECS Volume 2 Issue 3 March 2013 Page No. 569-573 Page 570

approach to solve this problem. There are some

modifications done in BFS for Dijkastra algorithm.

BFS’s queues are replaced by priority queue.

Vertices are added to the Priority Queue by their

distance away from the source. The algorithm

Dijkstra is the theoretical foundation for solving the

problem about the shortest path

II. HOW DIJKASTRA WORKS
To know that how Dijkstra works we just take an

example:

Remark: The predecessor pointer pred[] is for

determining the shortest paths.

Step 1 :- Initialization

Priority queue

Step 2 :- As Adj(s) = {a ,b}, work on a and b and

update information

Priority queue :-

Step 3 :- After Step 1, a has the minimum key in the

priority queue. As Adj[a] = {b,c,d}, work on b,c,d

and update information

Nikita Jaiswal ,IJECS Volume 2 Issue 3 March 2013 Page No. 569-573 Page 571

Priority queue :-

Step 4 :- After Step 3,b (has the minimum key in

the priority queue. As Adj[b]={a ,c}, work on a' ,c)

and update information.

Priority queue :-

Step 5 :- After Step 4,c) has the minimum key in

the priority queue. As Adj[c]= {d} , work on d and

update information.

Priority queue :-

Nikita Jaiswal ,IJECS Volume 2 Issue 3 March 2013 Page No. 569-573 Page 572

Step 6 :- After Step 5,d * has the minimum key in

the priority queue. As Adj[d]={c} , work on c) and

update information.

Priority queue :-

Shortest Path Tree:

The above example shows the working of Dijkastra

algorithm. In this algorithm we also create

correlation matrix, adjacent matrix and distance

matrix.

III. DISADVANTAGES OF DIJKSTRA ALGORITHM
The major disadvantage of the algorithm is the fact

that it does a blind search there by consuming a lot

of time waste of necessary resources.

Another disadvantage is that it cannot handle

negative edges. This leads to acyclic graphs and

most often cannot obtain the right shortest path.

The Bellman–Ford algorithm computes single-

source shortest paths in a weighted digraph. It uses

the same concept as that of Dijkstra’s algorithm but

can handle negative edges as well. It has a better

running time than that of Dijkstra’s algorithm.

In the algorithm and computer program, correlation

matrix, adjacent matrix and distance matrix are used

to compute the shortest path based on network

matrix of Dijkstra. Many N*N arrays are defined to

store graphical date and compute. N is referred to

the number of the network nodes. When the number

of the nodes is very large, it occupies a lot of CPU

memory. For example, when the number of the

nodes is 3000 , it needs 4*3000*3000 = 36000000

bytes—36 MB memory, and if the number is 6000,

it needs 144 MB memory. If we do not improve the

Dijkstra algorithm, the algorithm is very difficult to

apply in network analysis for huge data.

IV. NEED FOR INCREASING NODE

As we know that Dijkstra algorithm gives shortest

path between 2 nodes. if we want to apply this

algorithm on map for going one city to another ,and

want to find out the shortest path between those 2

city’s, then Dijkstra will give the shortest path

according to the distance. But some times the cost

or we can say the money also affect the person.

Because its not necessary that buses or trains also

followed that path which is given by Dijkstra

Nikita Jaiswal ,IJECS Volume 2 Issue 3 March 2013 Page No. 569-573 Page 573

algorithm. This situation may be occurred. To solve

such kind of problem we just add a priority queue

and a cost wise graph in this algorithm. We gives a

choice for the person that “in which type of path u

want distance wise or cost wise. If person choose

distance wise then Dijkstra algorithm will applied

on the graph which contain distance as a weight. If

person choose cost wise then Dijkstra algorithm will

applied on the graph which contain cost as a weight.

Because of this it’s necessary to increase a node

which denotes the choice .also one addition graph is

needed in which cost (cost shows the money needed

to spend for travel between 2 nodes) is used as a

weight.

ACKNOWLEDGMENT

 The author wish to thank Mr. Rajesh Kumar

Chakrawarti, Reader, CSE Department, Shri

Vaishnav Institute of Technology and Science,

Indore (M.P) for his support and guidance.

REFERENCES

[1] Edward P.F. Chan & Ning Zhang “Finding

Shortest Paths in Large Network Systems”.page

7.

[2] Shawn J. Rutter “Dijkstra’s Algorithm Final

Project”.2009,page 10.

[3] Merin Puthuparampil “Report Dijkstra’s

Algorithm”.page 15

[4] Fuhao ZHANG*, Ageng QIU, Qingyuan LI

“Improve On Dijkstra Shortest Path Algorithm

For Huge Data”.2009. Page 4.

	Computer science and engginearing
	Introduction
	how dijkastra works
	disadvantages of dijkstra algorithm
	need for increasing node

