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Abstract: A new hybrid visual servoing based tracking of multiple targets using a swarm of mobile robots is proposed. This 

distributed algorithm has position based visual servoing (PBVS) and image based visual servoing (IBVS). In addition, the 

proposed method consists of two approaches: interaction locally among robots and target tracking. Furthermore, neural network 

extended Kalman filter (NEKF) is used for reducing noises which is existed during tracking targets. When the targets are slower 

than the robots, Lyapunov function can be used for showing that the robots asymptotically converge to each vertex of the desired 

configurations meanwhile tracking the targets. Towards the algorithm practical execution, it is necessary to identify the 

observation ability of each robot in an efficient and inexpensive way. Infrared proximity sensors and monocular camera are 

applied to fulfill these requirements. Our simulation results describe the proposed algorithm confirms that the considered 

distributed tracking multi-targets method applying robots swarm is effective and straightforward to implement. 
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1. Introduction 

The problem of object tracking using a single robot has been 

used in many real applications, such as surveillance or 

exploration with the necessary high-degree of capabilities. 

Recently, a lot of interests have been shown to swarms of 

robots with low computational and sensing abilities. This can 

bring many benefits over tracking with a single robot for 

instance in terms of effectiveness, error tolerance, 

adaptableness, and so on [1, 2]. Developing features that robots 

swarms can exhibit, new applications have come out, such as 

odor source localization or tracing of toxic plume [3, 4, 5, 6], 

and have extended to support tracking of multiple targets [7, 8, 

9, 10, 11]. 

By combining controller method for local tracking and a high 

level behavioral based structure in a topological map of the 

environment is specified, the distributed robots navigate in the 

regions based on target density was proposed in [8]. Generally, 

these works are termed as cooperative target tracking. 

Additional associated works were primarily dedicated to 

implementing decentralized tracking approaches of mobile 

sensor networks or robot swarms for multiple xed targets were 

discussed in [8, 10, 11]. A problem of multiple odor sources 

localization by means of swarms of mobile robots was 

addressed in [8]. A decentralized approach for multiple targets 

tracking was implemented with a mobile sensor network 

according to the triangulation principle given in [10]. 

Local configurations accomplished by the above mentioned 

local interactions may result in a net type. These configurations 

present numerous redundant connections making certain 

utmost reliability and flexibility from the topology point of 

view. Based on the extent of the robots interaction each other, 

the network topologies should be grouped into entirely or 

partially connected [18]. The entirely connected topologies 

have each robot interact with all of other robots at the same 

time within a definite range. Therefore, it has too taut 

constraints on the motion robot, and more complexity of 

computations will be developed. Particularly, deadlocks may 

occur where some of the robots have become trapped in narrow 

place. These conditions occur in the majority of the prior 

works [12, 15, 16, 17]. 

This paper contribution is developing a new distributed 

algorithm that makes possible robots a  swarm for tracking 

multiple moving targets and/or capturing them with limited 

sensing ability while achieving dynamic configuration. The 

multi target tracking is coordinated problem for autonomous a 

swarm mobile robots, while the targets are visible for a limited 

number of mobile robots. To solve this problem, we use the 

combination of IBVS and PBVS to improve the performance 

of the method. A neural network extended kalman filter 

(NEKF) is used for reducing noises existed during the motion 

of the object [19, 20]. The IBVS is implemented in a two-step 

process. We consider the universal law of gravitation [13] for 

the relative degree of attraction among individual targets and 

interactions among locally existed swarms of robots [14]. 

Specially, the proposed targets tracking approach is achieved 

without using any identifiers, leader, explicit communication 

or common coordinate frame. To allow robots swarm in order 

to attain the objective of a collaborative task, the individual 

robots motion should be coordinated, preferable to have a 

decentralized form. 

The rest of the paper is arranged as follows: The computational 

model and system description is presented in section 2. In 

section 3 the algorithm of observation function is discussed. In 

section 4 the tracking function is presented. In section 5 the 

hybrid visual servoing algorithm for tracking moving multiple 

targets is presented. In section 6 presents the SLAM algorithm 

using NEKF. Simulation results are presented in Section 7. The 

conclusion of this paper is presented in section 8. 
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2. Problem Formulation 
 

2.1. Model overview and definition 

We consider a swarms of n mobile robots as {m1, . . ., mn}. 

Consider that an initial allocation of each robot is random and 

have distinct positions [21]. All robots move autonomously on 

a plane of 2D and they do not have identifiers and leader. It 

also assumed, they do not occupy the same coordinate system, 

and do not maintain any past actions memory that gives the 

property of self-stabilization inherently [22, 23]. A limited 

range observation leads each robot to identify other robots 

positions within its sight range only. Furthermore, there is no 

explicit communication among robots.  Let the position of a 

mobile robot mi is ri(t) at time t be a state vector denoted as 

ri(t) = [rix, riy]
T
 . Let us define kinematics of m'is by 

cosix i ir u  , siniy i ir u  , where ui is the translational 

velocity and i  is the angular velocity of mi. Using the model 

illustrated above, all the robots execute the same algorithm and 

executed for individual robot, and act asynchronously and 

autonomously to each other. 

 

 
 

Figure 1: Representations and definitions. (a) local coordinates 

(r'is) and sensing boundary (SB), (b) set of observations Oi , set 

of neighbors Ni, and triangular configuration Ti.  

 

We assume the axes of local coordinates frame of a robot mi is 

denoted by ixl  and  iyl  as shown in figure 1a, ixl  is the 

vertical axis of mi's local coordinate and its moving direction, 

and iyl  is the horizontal axis, after rotating counterclockwise 

by 90
o
 from the vertical axis. The origin position of mi is when 

ri(t) = (0, 0), we use ri for simplicity afterwards. The distance 

from the robot mis at position ri to the robot mjs at position rj 

is defined as dist(ri, rj). We denote du as a desired distance 

from mi and mj. Subsequently, mi observes inside its sensing 

boundary(SB)  located other robots. As shown in figure 1b, 

it estimates the observed robots distance up to their central 

positions, results in a set which contains the positions Oi(= rj, 

rk) relative to local coordinates of itself. Therefore, mi can 

choose two robots ms1 and ms2 inside its SB. They are the 

neighbors of mi and the set of their respective positions is 

denoted by Ni(= rs1, rs2). If ri and Ni are given, the three 

individual positions in a set {ri, rs1, rs2} is known as Triangular 

Configuration, symbolized as Ti, where the angle < rs1rirs2 is 

symbolized as αi. Following the definition for the Equilateral 

Configuration, denote it by Ei, as all the distance configuration 

change of Ti are equivalent to du. We require a measure 

signifying to what extent Ti configuration is the same as Ei. If 

Ti is given , the distance changes (Di) relative to ri can be 

expressed as follows 

 

2( ( , ) )
(1)

0

m n u
i

dist r r d if m n
D

otherwise

  
 


Where   1 2, | , , , .m n m n i i s sr r r r T r r r   For simplicity Di is 

denoted as (dk - du)
2
. By means of Ti and Ei , the Local 

Interaction formally can be defined as follows: for the given Ti, 

the local interaction permits ri of mi to persist du with Ni at 

every time in the direction of forming Ei. A number of extra 

assumptions can be taken for robot model construction: (1) the 

moving targets are slower than mi, (2) if the target is inside its 

SB, the estimation of distance and bearing of the target 

separately is possible from mi, and (3) at each time mi is 

allocated for a single target. Then we can properly explain the 

Targets Tracking problem depend on the local interaction as 

expressed below: 

For the given mobile robots m1 ,..., mn situated at randomly 

separate positions and targets under moving, how to allow 

robots to follow the targets through their positions shaped into 

Ei. 

Figure 2 illustrates the overall system control architecture. The 

controller inputs incorporate the measurement data acquired by 

the infrared sensors and monocular cameras for the predefined 

distance du among neighboring robots. 

 

 

 
 

Figure 2: Mobile robots system integration overview. 

 

 

3. The Observation function 
3.1. Algorithm of observation function 

Observation function [21] offers consistent estimation of the 

neighboring robots surface, which can be acquired with the 

steps listed below. Two one dimensional arrays in the memory 

of each robot are constructed by the measurement step as 

shown in figure 3a. Now, each array size can be automatically 

changed based on the angular interval of servo motor. When mi 

scans the surroundings at regular intervals using its infrared 

sensors and monocular camera, the distance to the surface of 

the neighboring robots is recorded in the first array of the 

corresponding cell. Meanwhile, angle of the servo motor is 
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stored in the second array in such a way that the distance array 

keep up a correspondence to the angle array of the motor. 

Subsequently, mi ensures cells of their distance array that hold 

a value of non-zero (from dmin lower bound limit to dmax upper 

bound limit) and reads cells of the corresponding array of 

angle. The measurement data is corrected in the update step 

according to a reference value. At the same time as data is 

recording in the arrays of distance and angle, simultaneously 

the estimated distance is recorded in the subsequent cell of the 

array as an integer value of intensity. After scanning 360 

degree, the algorithm Sobel edge detection [24] enhances the 

surface detection data to the original value.  

The robots positions are identified in the recognition step. mi 

selects the non-zero value cells starting from dmin to dmax in the 

array of updated distance. Next, rmin, rmax, and rs are the three 

feature points specified using dmin, dmax, cdis, and in the angle 

array there is their subsequent angle value cells, respectively. 

 
 

Figure 3: A mobile robot mj surface scanning observation. (a) 

arrays of distances and angles for mi ; (b) mi observes mj , the 

neighbor mobile robot. 

 

Through the average computation of a series of numeric values 

in the angle array of the motor, mi choose the cell that stores 

the value equal or nearest to the average, and sets cang central 

angle for this value. The central distance cdis is the distance 

cell corresponds to cang. As illustrated in figure 3b, 

computation of rs is done using cdis with the shortest distance 

value among the cells and cang. Then, ri is computed by 

dist(rmin, rmax) and varifies whether dist(rmin, rmax) is smaller 

than the controller reference diameter. 

If this distance greater than the controller reference diameter, 

the data stored in the cells can be taken as the border of an 

arena. If not, these cells data are taken as a robot. During the 

process mentioned above, if mobile robots are sensed the 

central point rj of them can be computed by adding cdis to the 

radius dr as shown in figure 3b. Therefore, the observation 

function outputs are Oi of the nearest robots. 

 

4. Tracking function 

4.1. Local interaction 

The role of infrared in this section is to detect the nearby 

mobile robots and by avoiding collision leads to motion. Now, 

we give details of the local interaction method [21] among 

mobile robots that capable to generate Ei of side length du from 

an arbitrary Ti using three neighboring mobile robots. This 

method consists of the interaction function ϕ with parameters ri 

and Ni at every time. Assume mi and its two neighbors mobile 

robots are ms1 and ms2 are placed inside its SB. As illustrated in 

figure 4a, these three robots have configuration of the form Ti 

with vertices are ri , rs1, and rs2, respectively. Primarily, mi 

computes the centroid of the triangle <rirs1rs2, indicated by rtc, 

relative to its local frame, and it measures the angle ϕ which is 

formed by the line linking the 2 neighbor mobile robots 1 2s sr r

and, ,i yl . By means of rtc and ϕ, mi computes the point rit for 

next movement by its present observation of neighbor mobile 

robots. 

 

 
Figure 4: Illustrations of Local interaction. (a) the two 

parameters of control: range di and bearing αi ; (b) desired 

configuration in equilateral triangular form. 

 

Usually, using this method, mi can retain a distance du among 

its two neighboring mobile robots at every time. Specifically, 

each mobile robot tries to structure of an isosceles triangle 

through Ni at every time, and by repetitively doing this, three 

mobile robots configuration has the form of Ei by themselves. 

As shown in figure 4b, we supposed that the circumscribed 

circle of an equilateral triangle with its centroid is rtc of <rirs1rs2 

and radius dc is du/√ 3. The position of each robot determined 

by the local interaction through computing the distance di from 

rtc and αi as shown in figure 4a.  

 

4.2. Target tracking 

The target tracking method provides an answer to how to 

locate mis moving direction on the way to a desired target, and 

at the same time how to put together the neighbor robots 

positions to form Ei based on the direction of desired target. 

Here also we used both infrared sensors and monocular camera 

for simultaneously detecting the distance among the neighbors 

robots and searching the target object for tracking those targets 

in the SB. Under this method, it is considered that mi is faster 

than the targets which are moving. While recognizing multiple 

mobile targets, defined as {gk|1≤k ≤ n}, in figure 5a, mi chooses 

its tracks in the direction of a target gk. According to the law of 

gravitation, mi selects its path by means of the degree of 

attraction relative to the targets, defined the preferred vector fk, 

its magnitude is known by ||fk|| = ||1/d
2
k|| where dk is the 

distance from gk to mi. 
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Therefore, the identified targets set Gi is represented by the 

favorite vectors set fk|1 ≤ k ≤ n. Next mi chooses the highest 

magnitude of fk, with the value of ||fk||max. For selected fk, mi is 

allocated to a single target inside its SB at every time. As 

illustrated in figure 5b, mi identifies a favorite maximum area 

of target A(fmax) inside its SB unified with the plane upper half 

part in the direction of ||fk||max. mi confirms neighbors exist or 

not in any A(fmax). If neighbors are detected, mi chooses the 

first neighbor ms1 situated the minimum distance away from ri 

to describe rs1. If not, mi selects a virtual point rv placed at 

certain distance dv far from ri along ||fk||max to define the value 

of rs1. While the required target is not observed, mi searches 

inside its SB its first neighbor. As shown in figure 5c, mi 

identifies its h heading relative to its local frame. Consider 

A(h) represents the heading direction area inside SB and has 

intersection with plane from the upper half through h. mi 

ensures whether there present any neighbors within A(h). If the 

existence of neighbors within A(h) are detected, mi chooses ms1 

with the smallest distance far from mi. If not, mi searches ms1 

inside SB as method described above. The next neighbor ms2 is 

chosen by the entire distance from rs1 to ri along rs2 to be 

minimum. Therefore, by means of ri and Ni, rti can be 

computed by ϕ using local interaction method. 

 

 
Figure 5: Trajectory tracking method illustration. (a) favorite 

vectors computation ; (b) neighbor selection computation 

inside A(fmax); (c) neighbor selection computation inside A(h). 

 

5. Hybrid visual servoing algorithm  

In case of moving multiple targets, the existed algorithms 

should be customized to guarantee the stability and error-free 

tracking. This can be done by addition of moving target 

velocity in the control algorithm. Consider both PBVS for 

determining the pose of the targets in Cartesian coordinate and 

the IBVS controller of a point feature related to a 3D point P 

(expansion to numerous point features). The point feature is 

denoted by u = (ux, uy)
T
 in the image plane. These coordinates 

expresses the centered pixel coordinates with respect to the 

principal point of the camera. If the point P is fixed, the rate of 

change of u depend on the cameras linear velocity (vl) and 

angular velocity (ωl) [25]. 

In order to have vision based control method, we use only 

image data for solving this estimator. Therefore, the control 

law to be implemented is modified as, detail explanation is 

given in [28], 

 

†
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0

pl
u g

l

vv
J u Z K e



  
    

    

 

where †
uJ  is the pseudo inverse of Ju, Ẑ is the estimated depth 

obtained from the depth observer, gK  is a positive definite 

gain matrix, and e = ua - ud is error of the image feature with 

respect to the desired point and ˆ pv  is the estimated object 

feature velocity produced by the estimator of the target 

velocity. The figurative description of this method is shown in 

[28]. The proposed hybrid visual servoing algorithm for a 

swarm of mobile robots tracking multiple targets is described 

in Algorithm 1. 

 

_________________________________________________ 

Algorithm 1: Details of online Hybrid Visual Servoing 

algorithm for tracking moving targets with a swarm of mobile 

robots. 

_________________________________________________ 

 Input: A list of input data: 

 -The measurements of image features Mf(t), where Mf = 

 {Mfi : iє{1,..., m}}, and  

 -The pose of image features X at time t. 

 Output: A Hybrid algorithm U = H(x), that contains outputs  

    (v, ω) of the two IBVS and PBVS. 

 for i=1 to n do 

 for till the convergence do 

 if j є ( IBVS, PBVS ) then 

 if X(actual) ≠ X(desired) then 

 for j є IBVS do  

 -Acquire images intensity I from the corresponding  

o features in the IBVS algorithm, Ui =  hi(mf ). 

 -Compute optical flow (vl, ωl) as in equation (2). 

 -The robot translate and rotate from X(actual)  

o towards X(desired) by applying both the 

local  

o interaction and tracking methods 

simultaneously.  

 return; 

 if j є PBVS then 

 for X(actual)(t) ≠ X(desired) do 

 -Compute the pose using PBVS algorithm. 

 return X(actual) 

 -Compute the outputs (vl, ωl) of the hybrid algorithm, 

Uj   

 = Hj(x). 

 if IBVS or PBVS then 

 -Compute linearization through switching between the  

 output signals of the algorithms IBVS and PBVS by  

 applying NEKF controller. 

 return; 

 return; 

__________________________________________________ 

 

6. SLAM algorithm using Neural Network 

Extended Kalman filter 

 
The hybrid filter of an artificial neural network (ANN) 

performs as an observer for learning the uncertainty of the 

system on-line along with an EKF. An adaptive state 

estimation method using an EKF and a neural network is 

implemented for reducing noise. The omnidirectional wheeled 

mobile robot with values of encoder (vl, ωl) learns values 

(x't, y't, θ't) which are information values driven from working 

environment (xt, yt, θt) using algorithms of multilayer 

perceptron (MLP). Figure 6 gives a schematic diagram of this 

process, where μt is the mean value of the feedback and Σt is 

the covariance [19, 20, 26, 27]. 
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Figure 6: Architecture of Hybrid filter for SLAM. 

 

6.1. Prediction step 

Prediction step is the first phase of NEKF, the standard state 

propagation equations are used for propagating the joint state 

vector and the state. The equations are: 
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where, ftrue(.) is theoretical motion model, 

( 1| 1) ( 1| 1) | 1ˆ ˆ( , , )uNet u t t t t t tx NN x x u      is the output of the neural 

network, ( 1| 1)ˆu t tx    is the robot state estimate at 1t  , and | 1t tu   

is the control vector of the robot motion that initiates its motion 

from state 1t   to state t. The network input is formed from the 

previous robot state vector ( 1| 1)ˆu t tx   and controls | 1t tu  : 

 

( 1| 1) | 1ˆ ˆ[( ) ( ) ] (4)T T
Net u t t t tx x u    

 

6.2. Update step 

The update step of NEKF implemented by applying the 

following equations in the same way as in the standard EKF: 
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Where, St is the state vector innovation covariance, | 1ˆt tx   is the 

predicted joint state vector, | 1t t  is the covariance of the 

predicted joint state vector, Ht is measurement model h(.) 

Jacobian, Rt is the covariance matrix of the measurement 

model, and Kt is the gain in the NKEF filter. zt is the 

measurement of positions of the observed features in the image 

Plane in visual SLAM (VSLAM) and ˆtz  is the predicted 

positions vector of features, |ˆ t tx  the joint state vector updated 

values, and |t t  the covariance of the updated values of the 

joint state vector. The robot can distinguish its pose using these 

recursive estimation methods. 

 

7. Simulation platform 
The simulation platform used in this paper is explained in this 

section. The objective of the simulation at this level is for 

tracking multiple of objects which are learned offline. A 

swarms of mobile robots are moving towards the moving 

objects by using the features of the moving object under the 

condition of local interaction method. This is done by 

considering the omnidirectional wheeled mobile robots that 

acquires image features from the monocular cameras for vision 

based controller and state estimation. The simulation platform 

is based on robotino mobile robots. Figure 7 shows a swarm of 

robotino mobile robots setup that have USB wireless access 

points and web cameras. Table 1 shows the specifications 

omnidirectional mobile robots. The proposed a swarm of 

mobile robots tracking multiple moving objects algorithm 

carried out by the mobile robots velocities which are obtained 

from the features velocities. 

 
 

Figure 7: a swarm of mobile robots tracking multiple moving 

objects platform. 

 

8. Simulation Results 
Multi-targets tracking simulations using a swarm of mobile 

robots are carried out in Matlab-Simulink based on optical 

flow visual controller, neural extended kalman filter, PID 

controller, kinematics and dynamics models of the mobile 

robots as shown in simulink model Figure 8. The parameter 

values used for simulation are given in Table 1. The mobile 

robot trajectory is a straight line with inputs x = Vxd * t and y = 

Vyd * t. Here Vxd and Vyd are constant velocity inputs along x 

and y direction respectively, and t is time. 

Table 1: Omnidirctional wheeled mobile robot parameters used 

in simulations. 

Parameters Symbol Value Units 

Robot mass m 11 Kg 

Common radius of wheels r 0.04 m 

Initial distance between actual and 

desired pose 

ρ 4 m 

Robot moment of inertia IQ 0.0176 Kgm
2
 

Proportional gain Kp 500  

Derivative gain Kd 100  

Integral gain Ki 900  

Input velocity along x from 

trajectory generator 

Vxd 25 m/s 

Input velocity along y from 

trajectory generator 

Vyd 25 m/s 

Desired angular velocity ωd 0 rad/s 
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Figure 8: The simulink model for the mobile robot with controllers. 

 

Figure 9 is the simulation result performed on swarms of 

mobile robots, where distance interval between individual 

robot and their Ni are shown with respect to time. This figure 

illustrates the mobile robot moves as the required given path. 

Figure 10 shows the three torque inputs for wheels of the 

mobile robot and will get constant value after few seconds of 

motion which leads to the desired pose near to the object: (a) 

for robot 1, (b) for robot 2, (c) for robot 3. Figures 11 and 12 

show the desired and actual velocities of the linear velocity 

components inputs along the x and y axis: (a) for robot 1, (b) 

for robot 2, (c) for robot 3, respectively. It can be seen from the 

figures that the motion of the robot is becomes stable after a 

small time interval. Figure 13 shows the velocities of left, right 

and middle wheels: (a) for robot 1, (b) for robot 2, (c) for robot 

3. The plots show the velocities of the wheels along the straight 
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Figure 9: Variations of distance between ri and rs1. 

 

 
 

 

 
 

 

 

 

Figure 10: Torque inputs to the dynamics of the mobile robot: 

(a) for robot 1, (b) for robot 2, (c) for robot 3. 

 

 
 

 
 

 
 

Figure 11: The actual and desired component velocity inputs of 

wheels along x: (a) for robot 1, (b) for robot 2, (c) for robot 3. 
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Figure 12: The actual and desired component velocity inputs of 

wheels along y: (a) for robot 1, (b) for robot 2, (c) for robot 3. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 
Figure 13: The velocities of the 3 wheels: (a) for robot 1, (b) 

for robot 2, (c) for robot 3. 
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Figure 14: The inputs velocity errors: (a) for robot 1, (b) for 

robot 2, (c) for robot 3 ( , ,x xa xd ya yd a de v v e v v e        ). 

 
Figure 15: Variation of point feature velocity pv and the 

estimated point feature velocity ˆ pv . 
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Figure 16: Show the desired and actual straight line trajectory 

of the mobile robot: (a) for robot 1, (b) for robot 2, (c) for robot 

3. 

 

line after making rotational motion in order to search the 

object. For making translational motion the signs of the left 

and the right wheels motor functions should be opposite, the 

reason behind it is that the three wheels of the omnidirectional 

mobile robots are 120 degrees separated from each other. 

Figure 14 shows the velocity errors occurs during the motion 

of the mobile robot, which tends to zero while the robot moves 

towards the desired pose: (a) for robot 1, (b) for robot 2, (c) for 

robot 3. Figure 15 shows n moving object feature velocity and 

the estimated velocity which estimates the velocity of the point 

features. Figure 16 shows the actual and the desired trajectories 

of the omnidirectional wheeled mobile robots: (a) for robot 1, 

(b) for robot 2, (c) for robot 3. The speeded up robust feature 

(SURF) method is used to obtain feature matches on current  

and target. In [29] presented a robust image interest point 

detector and descriptor which is called SURF.  

 

10. Conclusion 
A real-time tracking method is presented in this chapter, 

allowing swarms of mobile robots to track multiple targets that 

are moving as having meshes structure of regular triangle 

during local interactions. The presented algorithm is distributed 

and free from deadlock, also it does not require a leader, 

beacon, universal coordinate system, previous states memory, 

or explicitly given communication means. By utilizing infrared 

sensors and monocular camera, every mobile robot could 

acquire information for relative positioning along with the 

neighboring robots surface geometry. In general it can be 

summed up as follows: (1) the proposed tracking algorithm 

shows the globally asymptotically convergence properties and 

demonstrated by the entire simulations. (2) Infrared sensors 

and camera were used. Their features consist of high 

reliability, low cost and simple to integrate into mobile robots. 

(3) The proposed algorithm can be successfully functional to 

sensor networks of mobile robots for surveillance operations or 

holding toxic materials. 
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