P - TSP Seasonal Constrained Model

Vijayalakshmi $\mathbf{R}^{\mathbf{1}}$, Gurava Raju $\mathbf{P}^{\mathbf{2}}$, Sundara Murthy ${ }^{\mathbf{3}}$
Research scholor, Department of Mathematics, S.V. University, Tirupati, Andhra Pradesh. rvijayachandra2513@gmail.com
Teacher, Z P H School(Boys),Vadamalpet, Andhra Pradesh
guravarajuc @ gmail.com
Professor, Dept., of Mathematics, Sri Venkateswara University, Tirupati, Andhra Pradesh
profmurthy@gmail.com

Abstract

The Multiple Travelling Salesman Problem (MTSP) is a generalization of the well-known TSP, where more than one salesman is allowed to be used in the solution. The characteristics of the MTSP seem more appropriate for real life applications. In this paper we study a problem called P-TSP Seasonal Constrained Model. Let there are number of cities ' n ', the number of salesmen P, the third dimension is season S . Let M be common cities, which is subset of n for the salesman. Each salesman has to start their tour from head quarters that is city lin first season only and at the end of the season 1 all the salesmen have to meet at a common city which is in ' M '. Again they starts their tour from common city in next season and visit some more cities and at the end of season 2 each of them have to meet at another common city which is in ' M ' like this they travel upto $(r-1)^{\text {th }}$ season. Finally in $r^{\text {th }}$ season all the salesmen have to reach the head quarter city. All the salesman have to visit ' n_{0} ' cities other than the cities of ' M ' that is $n_{0}<n-m$. The objective is to complete p - tours in ' r ' seasons with minimum total cost/distance.

Key words: TSP Problem, Lexi-Search, Pattern Recognition Technique, Alphabet Table, Search Table.

INTRODUCTION:

Travelling Salesman Problem is a classical problem in combinatorial optimization. The problem is to plan a tour for travelling salesman to visit ' n ' different cities, so that he visits exactly once, returns to his point of origin with least distance. It is and NP-Hard problem in combinatorial optimization.
The method of solving this problem covering the work up to early 1960 is given as a review by Arnoff and Sengupta 1961. Bellmore and Nemhauser - 1968 made a survey of the work on this problem, covering the period upto 1967. Gupta - 1968 classifies the various methods of solving the TSP as:
[a] Combinatorial Approach [b] Network Approach [c] Linear Programming Approach [d] Graphical Approach [f] Heuristic approach.
The TSP has been generalized in many directions. Thus, one such which is called the "Truncated Travelling Salesman Problem" (Sundara Murthy - 1979) is presented as follows:

There are n cities i.e., $\mathrm{N}=\{1,2, \ldots, \mathrm{n}\}$. The distance $\mathrm{D}(\mathrm{i}, \mathrm{j})$, between any pair of cities (i, j) is known. A subset of the n cities constitutes the potential places for setting up a head quarters. A salesman has to visit only m out of the n cities is called truncation, with the restriction that his tour should include at least one city from potential headquarters. The problem is to find a feasible tour of m cities with a minimum length.

2.3. PROBLEM DESCRIPTION:

In this chapter we have a variant multiple TSP called P-TSP Seasonal Constrained Model. Let there be a set of ' n ' cities, P - salesmen and ' r ' seasons .

We consider ' n ' number of cities $N=\{1,2, \ldots, n\}$, the number of salesmen $\mathrm{P}=\{1,2, \ldots, \mathrm{p}\}$. An independent factor which influences the cost is introduced as a third deimension. In this model third dimension is season, let $S=\{1,2, \ldots, r\}$ is the season. Let $\mathrm{M}=\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{m}}\right\} \in \mathrm{N}$ be eligible common cities
for the salesman. All the salesman has to start their tour from head quarter city lin first season only, they visit few cities and at the end of a season 1 all the salesmen has to meet at a particular (same) common city which is in ' M ' . Again they starts their tour from that common city into next season ($2^{\text {nd }}$ season) and visit some more cities and at the end of season 2 each of them has to meet at another particular city which is in ' M ' like this they travel upto (r$1)^{\text {th }}$ season. Finally in $r^{\text {th }}$ season all the salesmen have to reach at head quarter city.

All the salesman together have to visit ' n_{0} ' cities other than ' m ' that is $n_{0}<n-m$. The distance array $D(i, j, k)$ indicates the distance / cost of a salesman by visiting the $\mathrm{j}^{\text {th }}$ city from $i^{\text {th }}$ city in $r^{\text {th }}$ season.
The objective is to find p - tours in ' r ' seasons with minimum total cost/distance, subject to conditions.

2.4. MATHEMATICAL FORMULATION:

$$
\begin{equation*}
\operatorname{MIN} \mathrm{Z}=\sum_{i \in N} \sum_{J \in N} \sum_{k \in S} D(i, j, k) \quad x(i, j, k) . \tag{1}
\end{equation*}
$$

Subject to constraints:

$$
\begin{align*}
& \sum_{i \in N} x\left(i, \alpha_{k}, k\right)=p \quad, \mathrm{k}=1,2, \ldots, \mathrm{r} \& \alpha_{\mathrm{k}} \in \mathrm{M} . . \tag{2}\\
& \sum_{i \in N} x\left(\alpha_{k}, i, k+1\right)=p \text { if } \mathrm{k}=\mathrm{r}, \mathrm{k}+1=1 \ldots \ldots . . \tag{3}\\
& \sum_{i \in N} \sum_{j \in N} \sum_{r \in S} x(i, j, k)=n_{0}+r+r \ldots \ldots \ldots . \tag{4}\\
& x(i, j, r)= \begin{cases}0 & \text { for } i \in N, j \in N \& r \in S\end{cases} \tag{5}
\end{align*}
$$

\qquad

Equation (1) represents the objective of the problem, that is the total minimum distance travelled by P salesmen.

Constraint (2) denotes total number of tours
Constraint (3) states at the end of the $\mathrm{k}^{\text {th }}$ season all the ' p ' salesmen come through $\mathrm{i}^{\text {th }}$ city to $\alpha_{k}^{\text {th }}$ city.

Constraint (4) indicates that the total number of connectivites.

Constraint (5) illustrates if $\mathrm{i}^{\text {th }}$ salesman visit to $\mathrm{j}^{\text {th }}$ city during $\mathrm{r}^{\text {th }}$ season then the value is 1 other wise 0

2.5. NUMERICAL ILLUSTRATION:

We consider a numerical example with 11 cities, 2 salesmen with 3 seasons (matrix of order $11 * 11 * 3$) and solved the problem by lexicographic search .

The concepts and the algorithm developed will be illustrated by a numerical example. For this problem we considered total number of cities $\mathrm{N}=\{1,2, \ldots, 11\}$, number of salesmen $\mathrm{P}=\{1,2\}$, the number of seasons $\mathrm{S}=\{1,2,3\}$ and common cities are denoted as $\mathrm{M}=\{1,4,8\}$, the two salesmen has to finish their tour by visiting $\mathrm{n}_{0}=8$ cities in 3 seasons where $\mathrm{n}=11$. The distance matrices according to seasons are given in table $\mathbf{- 1}$ as follows

TABLE-1

$C(i j, 1)=$| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 8 | 16 | - | 20 | 2 | 40 | - | 24 | - | 12 | 1 |
| 2 | 19 | 8 | 32 | - | 43 | 11 | 51 | - | 60 | - | 29 |
| 3 | -- | 62 | 8 | 36 | - | 47 | 30 | 55 | 08 | 63 | - |
| 4 | 39 | - | 25 | 8 | 67 | 17 | - | 61 | - | 53 | 41 |
| 5 | 2 | 35 | - | 4 | 8 | 54 | 9 | - | 45 | - | 38 |
| 6 | - | 44 | 27 | - | 66 | 8 | 59 | - | 33 | 18 | - |
| 7 | 65 | - | 71 | - | 15 | 21 | $8-$ | 50 | - | 68 | 56 |
| 8 | - | 52 | 10 | 42 | - | 58 | 31 | 8 | 73 | - | 26 |
| 9 | 69 | -- | 48 | 14 | 72 | -- | 22 | 57 | 8 | 74 | - |
| 10 | - | 34 | - | 75 | 46 | - | 70 | - | 76 | 8 | 28 |
| 11 | 23 | -- | 64 | 3 | - | 49 | - | 37 | - | 5 | 8 |

In cost matrices $C(i, j, 1), C(i, j, 2) \& C(i, j, 3), i, j \in N$, if $i=j$ the values are taken as ∞ because they are irrelevant of finding tours for the salesmen and '_, are dis connectivity.

All the $\mathrm{C}(\mathrm{i}, \mathrm{j}, \mathrm{k})$ are taken as positive integers but it can be easily seen that this is not a necessary condition and the distance/cost can as well real quantities. For example $\mathrm{C}(5,4,1)=4$ represents the distance/cost of the travelling salesman by visiting $4^{\text {th }}$ city from $5^{\text {th }}$ city in $1^{\text {st }}$ season is 4 units.

2.6 FEASIBLE TRIP:

Consider an ordered triple set $\{(1,11,1),(6,8,2),(1,5,1)$, $(4,6,2),(2,1,3),(11,4,1),(4,10,2),(3,1,3),(5,4,1),(9$,
$8,2),(8,2,3),(8,7,3),(7,3,3),(10,9,2)\}$ represents which is a feasible solution set
In the below figure-1, Circles represents the cities, Star represents the Headquarter city $\{1\}$, Hexagon represents the common cities, the values within the parenthesis represents the distance/cost of the travelled between two cities, the roman numerical represents seasons.

Figure- 1 [FEASIBLE SOLUTION]

In the above feasible solution first sales man starts his tour from headquarter city (1) in first season. He visits from city 5 from city 1 at distance/cost 2 units, from city 5 he travel to city 4 which is a common city with a distance 4 units. Again he starts from common city (4) in second season, he visits city 10 from city 4 with a distance of 3 units, from city 10 he travel to city 9 with a distance 7 units and from city 9 he travel to city 8 which another common city with a distance 4 units. Again he starts his tour from second common city 8 in third season, he visits city 7 from city 8 with a distance of 4 units, from city 7 he travel to city 3 with a distance of 5 units and from city 3 he travel to city 1 (headquarter) with a distance of 3 units.
Second salesmen starts his from headquarter city (1) in first season. He visits city 11 from city 1 at a distance/cost 1 unit, from city 11 he travel to city 4 which is a common city with a distance 3 units. Again he starts from common city (4) in second season, he visits city 6 from city 4 with a distance 2
units, from city 6 he travel to city 8 which another common city with a distance 1 unit. Again he starts tour from second common city 8 in third season, he visits city 2 from city 8 with a distance 4 units, from city 2 he travel to city 1 (headquarter) with a distance of 2 units.

2.7. SOLUTION PROCEDURE:

In the above figure-1, for the feasible solution we observed that there are 14 ordered triples $\{(1,11,1),(6,8,2),(1,5$, $1),(4,6,2),(2,1,3),(11,4,1),(4,10,2),(3,1,3),(5,4,1)$, $(9,8,2),(8,2,3),(8,7,3),(7,3,3),(10,9,2)\}$ taken along with the value from the cost matrices in the numerical example in table-1. The $\mathbf{1 4}$ ordered triples are selected such that they represents a feasible solution according to constraints of mathematical formulation and is represented in figure-1. So the problem is that we have to select fourteen ordered triples from the cost matrices along with values such that the total cost is minimum and represents a feasible solution. For this selection of fourteen ordered triples from cost matrices we arranged ordered triples with the increasing order of their values and call this formation as alphabet table and we will develop an algorithm for the selection of fourteen ordered triples along with the checking for the feasibility.

2.8. CONCEPTS AND DEFINITIONS:

A tour is a feasible trip - schedule for the salesman. Tripschedule of the salesman can be represented by an approximate nxnx x indicator array $\mathrm{X}=\{\mathrm{x}(\mathrm{i}, \mathrm{j}, \mathrm{k}) ; \mathrm{x}(\mathrm{i}, \mathrm{j}$, k$)=0$ or 1$\}$ in which $\mathrm{x}(\mathrm{i}, \mathrm{j}, \mathrm{k})=1$ indicates that the salesman visits city j from city i in $\mathrm{k}^{\text {th }}$ season.

DEFINITION OF A PATTERN:

An indicator three-dimensional array which is associated with an assignment is called a 'pattern'. A Pattern is said to be feasible if X is a solution.

$$
V(x)=\sum_{i \in N} \sum_{j \in N} \sum_{k \in S} D(i, j, k) . x(i, j, k)
$$

The value $\mathrm{V}(\mathrm{x})$ gives the total cost/distance of the tour for the solution represented by X . The pattern represented in the table-2 is a feasible pattern. The value $\mathrm{V}(\mathrm{X})$ gives the total cost of the tour for the solution represented by X . Thus the value of the feasible pattern gives the total cost represented
by it. In the algorithm, which is developed in the sequel, a search is made for a feasible pattern with the least value. Each pattern of the solution X is represented by the set of ordered triples $\{(\mathrm{i}, \mathrm{j}, \mathrm{k})\}$ for which $\mathrm{X}(\mathrm{i}, \mathrm{j}, \mathrm{k})=1$, with understanding that the other $\mathrm{X}(\mathrm{i}, \mathrm{j}, \mathrm{k})$'s are zeros.

Table - 2

$X(i, j, 1)$
$=\left[\begin{array}{lllllllllll}0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

The above pattern represents a feasible pattern, the ordered triples and the corresponding distance/cost values according to pattern is given as follows
$(1,5,1)+(1,11,1)+(5,4,1)+(11,4,1)+(4,6,2)+(4,10,2)+(6,8,2)+$
$(9,8,2)+(10,9,2)+(2,1,3)+(3,1,3)+(7,3,3)+(8,2,3)+(8,7,3)=$
$2+1+4+3+2+3+1+4+7+2+3+5+4+4=45$ units.

2.8.2 DEFINITION OF AN ALPHABET - TABLE AND

 A WORD:There are $\mathrm{N}=\mathrm{n} * \mathrm{n} * \mathrm{r}$ ordered triples in the three-dimensional array C. For convenience these are arranged in ascending order of their corresponding cost and are indexed from 1 to $\mathrm{n} * \mathrm{n}$ *r (Sundara Murthy-1979). Let D be the corresponding array of cost. If $\mathrm{a}, \mathrm{b} \in \mathrm{SN}$ and $\mathrm{a}<\mathrm{b}$ then $\mathrm{D}(\mathrm{a}) \leq \mathrm{D}$ (b). Let the arrays $\mathrm{R}, \mathrm{C}, \mathrm{K}$ be the row, column and season indices of the ordered triples represented by S.No and DC be the array of cumulative sum of the elements of D. The arrays S.No, D, $\mathrm{DC}, \mathrm{R}, \mathrm{C}, \mathrm{K}$ for the numerical example are given in the table-3. If $p \in S$.no then $(R(p), C(p), K(p))$ is the ordered triple and $D(a)=D(R(a), C(a), K(a))$ is the value of the ordered triple and $\mathrm{DC}(\mathrm{a})=\sum_{\mathrm{i}=1}^{\mathrm{a}} \mathrm{D}(\mathrm{i})$ for convinence ' C ' in array represented in column.

ALPHABET TABLE - 3

S.No	D	DC	R	C	K
1	1	1	1	11	1
2	1	2	6	8	2
3	1	3	1	9	3
4	2	5	1	5	1
5	2	7	5	1	1
6	2	9	4	6	2
7	2	11	2	1	3
8	3	14	11	4	1
9	3	17	4	10	2
10	3	20	3	1	3
11	3	23	11	8	3
12	4	27	5	4	1
13	4	31	9	8	2
14	4	35	8	2	3
15	4	39	8	7	3
16	4	43	8	9	3
17	4	47	9	2	3
18	5	52	10	8	2
19	5	57	7	3	3
20	7	64	10	9	2
21	8	72	3	9	1
22	8	80	7	3	2
23	8	88	6	4	3
24	9	97	5	7	1
25	9	106	6	10	2
26	9	115	3	5	3
27	10	125	8	3	1
28	10	135	3	5	2
29	10	145	11	5	3
30	11	156	2	6	1

Let S.No $=\{1,2, \ldots\}$ be the set of indices, D be an array of corresponding costs of the ordered triples and DC be the array of cumulative sum of elements in D. Let arrays R, C and K be respectively, the row, column and season indices of the ordered triples. Let $\mathrm{L}_{\mathrm{k}}=\left\{\mathrm{a}_{1}, \mathrm{a}_{2},----, \mathrm{a}_{\mathrm{k}}\right\}, \mathrm{a}_{\mathrm{i}} \in$ S.No be an ordered sequence of k indices from S.No. Hence for uniqueness the indices are arranged in the increasing order2.8.4 such that $a_{i} \leq a_{i+1}, i=(1,2, \cdots-, k-1)$. The set S.No is defined as the "Alphabet-Table" with alphabetic order as (1, $2,-\cdots, n * n * r$ and the ordered sequence L_{k} is defined as a "word" of length k. A word L_{k} is called a "sensible word". If $a_{i}<a_{i+1}$, for $i=1,2,---, k-1$ and if this condition is not met it is called a "insensible word". A word L_{k} is said to be feasible if the corresponding pattern X is feasible and same is with the case of infeasible. A Partial word L_{k} is said to be feasible if the block of words represented by L_{k} has at least one feasible word or, equivalently the partial pattern represented by L_{k} should not have any inconsistency.

Any of the letters in S.No can occupy the first place in the partial word L_{k}. Our interest is only in set of words of length atmost equation, since the words of length greater than n are necessarily infeasible, as any feasible pattern can have only n unit entries in it. If $\mathrm{k}<\mathrm{n}, \mathrm{L}_{\mathrm{k}}$ is called a partial word and if $\mathrm{k}=\mathrm{n}$, it is a full length word or simply a word. A partial word L_{k} represents, a block of words with L_{k} as a leader i.e. as its first k letters. A leader is said to be feasible, if the block of word, defined by it has at least one feasible word.

2.8.3 Value of the Word:

The value of the (partial) word $\mathrm{L}_{\mathrm{k}}, \mathrm{V}\left(\mathrm{L}_{\mathrm{k}}\right)$ is defined recursively as $\mathrm{V}\left(\mathrm{L}_{\mathrm{k}}\right)=\mathrm{V}\left(\mathrm{L}_{\mathrm{k}-1}\right)+\mathrm{D}\left(\mathrm{a}_{\mathrm{k}}\right)$ with V $\left(L_{o}\right)=0$ where $D\left(a_{k}\right)$ is the cost array arranged such that D $\left(a_{k}\right)<D\left(a_{k+1}\right)$. Since X is the (partial) pattern is represented by L_{k}, (Sundara Murthy - 1979).
For example the word $L_{4}=(1,2,4,6)$ then value of L_{4} is

$$
\begin{gathered}
\mathrm{V}\left(\mathrm{~L}_{4}\right)=\mathrm{V}\left(\mathrm{~L}_{4-1}\right)+\mathrm{D}\left(\mathrm{a}_{4}\right) \\
=\mathrm{V}\left(\mathrm{~L}_{3}\right)+\mathrm{D}\left(\mathrm{a}_{4}\right) \\
=4+2=6
\end{gathered}
$$

2.8.3 LOWER BOUND OF A PARTIAL WORD LB $\left(L_{K}\right):$

A lower bound $\mathrm{LB}\left(\mathrm{L}_{\mathrm{k}}\right)$ for the values of the block of words represented by L_{k} can be defined as follows:

$$
\mathrm{LB}\left(\mathrm{~L}_{\mathrm{K}}\right)=\mathrm{V}\left(\mathrm{~L}_{\mathrm{K}}\right)+\mathrm{DC}\left(\mathrm{a}_{\mathrm{K}}+\mathrm{m}-\mathrm{k}\right)-\mathrm{DC}\left(\mathrm{a}_{\mathrm{K}}\right)
$$

Consider the partial word $\mathrm{L}_{4}=(1,2,4,6)$, here $\mathrm{a}_{\mathrm{K}}=6$, $\mathrm{m}=14$ and $\mathrm{k}=4$

$$
\begin{gathered}
\mathrm{LB}\left(\mathrm{~L}_{4}\right)=\mathrm{V}\left(\mathrm{~L}_{4}\right)+\mathrm{DC}(6+14-4)-\mathrm{DC}(6) \\
=6+\mathrm{DC}(16)-\mathrm{DC}(6) \\
=6+43-9 \\
=40
\end{gathered}
$$

FEASIBILITY CRITERION OF A PARTIAL WORD:

An algorithm was developed, in order to check the feasibility of a partial word $L_{k+1}=\left\{a_{1}, a_{2}, \cdots-a_{k}, a_{k+1}\right\}$ given that L_{k} is a feasible word. We will introduce some more notations which will be useful in the sequel.
$>$ IR be an array where $\operatorname{IR}(\mathrm{i})=1, \mathrm{i} \in \mathrm{N}$ indicates that the sales man is visits some city from city i Otherwise IR (i) $=0$
$>$ IC be an array where $\operatorname{IC}(\mathrm{j})=1, \mathrm{i} \in \mathrm{N}$ indicates that the sales man is coming to city i from another city, otherwise $\mathrm{IC}(\mathrm{j})=$ 0
$>$ IK be an array where IK (i) $=1, \mathrm{i} \in \mathrm{S}$ represents that the salesman at season (facility) i travels one pair of cities.
$>\mathbf{S W}$ be an array where SW (i) $=\mathrm{j}$ indicates that the sales man is visiting city j from city i, Otherwise $\mathrm{SW}(\mathrm{i})=0$
$>$ SWI be an array where SWI $(\mathrm{j})=\mathrm{i}$ indicates that the salesman is visiting city i from city j , otherwise $\operatorname{SWI}(\mathrm{j})=0$.
$>\mathbf{L}$ be an array where $\mathrm{L}(\mathrm{i})=\alpha_{\mathrm{i}}, \mathrm{i} \in \mathrm{N}$ is the letter in the $\mathrm{i}^{\text {th }}$ position of a word.
Then for a given partial word $L_{K}=\left(a_{1}, a_{2}, \ldots ., \mathrm{a}_{\mathrm{K}}\right)$ the values of the arrays $I R, I C, I K, S W, S W I$ and L as follows.
$\operatorname{IR}\left(\mathrm{R}\left(\mathrm{a}_{\mathrm{i}}\right)\right)=1$,
$\mathrm{i}=1,2,3 \ldots \ldots . \mathrm{K}$
$\operatorname{IC}\left(\mathrm{C}\left(\mathrm{a}_{\mathrm{i}}\right)\right)=1$,
$\mathrm{i}=1,2,3 \ldots \ldots . \mathrm{K}$
$\operatorname{IK}\left(\mathrm{K}\left(\mathrm{a}_{\mathrm{i}}\right)\right)=1, \quad \mathrm{i}=1,2,3 \ldots \ldots \mathrm{~K}$
$\operatorname{SW}\left(\mathrm{R}\left(\mathrm{a}_{\mathrm{i}}\right)\right)=\mathrm{C}\left(\mathrm{a}_{\mathrm{i}}\right), \quad \mathrm{i}=1,2,3 \ldots \ldots . . \mathrm{K}$
$\operatorname{SWI}\left(C\left(a_{i}\right)\right)=R\left(a_{i}\right)$
$L(i)=a_{i}, \quad i=1,2,3 \ldots \ldots . . K$
For example consider a sensible partial word $L_{7}=\{1,2,4$, $6,7,8,9\}$ which is feasible. The array IR, IC, IK, SW, and L takes the values represented in table -4 given below.

TABLE - 4

The recursive algorithm for checking the feasibility of a partial word L_{p} is given as follows In the algorithm first we equate IX $=0$. At the end if IX $=1$ then the partial word is feasible, otherwise it is infeasible. For this algorithm we have $R A=R\left(a_{p+1}\right), ~ C A=C\left(a_{p+1}\right)$ and $K A=K\left(a_{p+1}\right)$.

ALGORITHM-1 : (Feasible checking) :

Step 101 : IX=0
Step 102 : $\mathrm{MX}(\mathrm{RA})=1$
Step 104 : Is RA=1
Step 106 : Is KA=1
Step 108 : Is $\operatorname{SW}(\mathrm{CA})=0$
go to 102
yes go to 104 , no go to 122 yes go to 106 , no go to 112 yes go to 108 , no go to 144 yes go to 142 , no go to 110 Step 110 : Is $\operatorname{ST}(\mathrm{CA})=$ KA yes go to 110 a , no go to 144 Step 110a : Is $\operatorname{SWI}($ RA $)$)=0 yes go to 142 , no go to 112 Step 112 : Is $\operatorname{STC}(R A))=$ KA yes go to 114 , no go to 144 Step 114 : Is $\operatorname{SW}(C A)=0 \quad$ yes go to 142 , no go to 115 Step 115 : Is $\operatorname{MX}(\mathrm{CA})=1 \quad$ yes go to 116 , no go to 118 Step 116 : Is $\operatorname{ST}(\mathrm{CA})=$ KA yes go to 142 , no go to 144 Step 118 : Is $\mathrm{KA}=\mathrm{ST}(\mathrm{CA})-1$ yes go to 142 , no go to 144 Step 122 : Is $\operatorname{MX}(C A)=1$ yes go to 124 , no go to 134 Step 124 : Is (CA)=1

Step 126 : Is KA=r yes go to 126 , no go to 129 yes go to 128 , no go to 144 Step 128 : Is KA=ST(SWI(RA)) yes go to 142 , no go to 144

Step 129 : Is $\operatorname{ST}(\mathrm{CA})=0$ yes go to 132 , no go to 130
Step 130 : Is $S T(R A)=S T(C A)-1$

Step 132 : Is $\operatorname{ST}(\mathrm{SWI}(\mathrm{RA}))=\mathrm{KA}$
yes go to 132 , no go to 144 yes go to 134 , no go to 144
Step 134 : Is $(S W(C A))=0$ yes go to 138 , no go to 136
Step 136 : Is ST(SW(CA))=KA
yes go to 138 ,
no go to 144
Step 138 : Is $\operatorname{SWI}($ RA $)$)=0 yes go to 142 , no go to 140
Step 140 : Is $\operatorname{ST}(\operatorname{SWI}(R A))=K A \quad$ yes go to 142 , no go to 144

Step 142 : IX=1
Step 144 : END

ALGORITHM-II : LEXI-SEARCH ALGORITHM

Step 1 : (Initialization)
The arrays $\mathrm{SN}, \mathrm{D}, \mathrm{CD}, \mathrm{R}, \mathrm{C}, \mathrm{K}, \mathrm{Max}$ and B are made available MX, IR, IC, ST, L, V, LB, SW, SWI, STC, RX, $\operatorname{SW}(1, i), \operatorname{SW}(2, i), \operatorname{SWI}(1, i), \operatorname{SWI}(2, i)$ are initialized to zero. The values $\mathrm{I}=1, \mathrm{~J}=0, \mathrm{VT}=999, \mathrm{~m}=3, \mathrm{n}=11, \mathrm{RA}=0, \mathrm{CA}=0$, $K A=0$,
Step 2 : $\mathbf{J}=\mathbf{J}+1$
Is ($\mathrm{J} \geq$ Max $) \quad$ yes go to 11 , no go to 3
Step 3 : $\mathrm{L}(\mathrm{I})=\mathrm{J}$
$R A=R(J)$
$\mathrm{CA}=\mathrm{C}(\mathrm{J})$
$\mathrm{KA}=\mathrm{K}(\mathrm{J}) \quad$ go to 4
Step $4: V(I)=V(I-1)+D(J)$
$\mathrm{LB}(\mathrm{I})=\mathrm{V}(\mathrm{I})+\mathrm{CD}(\mathrm{J}+\mathrm{n}+\mathrm{r}-\mathrm{I})-\mathrm{CD}(\mathrm{J}) \quad$ go to 5
Step 5 : Is $\mathrm{LB}(\mathrm{I}) \geq \mathrm{VT} \quad$ yes go to 11 , no go to 6
Step 6 : [Check the feasibility of using algorithm-1]

Is $\mathrm{IX}=1$
Step 7 : $\mathrm{Is} \mathrm{I}=\mathrm{n}+\mathrm{m}$
Step 8 : I=I+1
yes go to 8 a , no go to 2
yes go to 9 , no go to 8 go to 2

Step 8a: $\operatorname{IR}(R A)=\operatorname{IR}(R A)+1$;
$\operatorname{IC}(\mathrm{CA})=\mathrm{IC}(\mathrm{CA})+1$;
$\operatorname{MX}(C A)=1$; yes go to 8 b , no $\mathrm{ST}(\mathrm{RA})=\mathrm{KA}$

Step $8 \mathrm{~b}: \mathrm{ST}(\mathrm{CA})=\mathrm{KA}+1$
go to 8 c

Step 8c: $\operatorname{MX}(R A) \neq 1$;
$\operatorname{MX}(C A) \neq 1$; yes go to $8 d$, no $S W(R A)=C A$;
$\operatorname{SWI}(\mathrm{CA})=$ RA

Step 8d : IR(RA)=RX
Step 8e : $\mathbf{M X}($ RA $)=1$
yes $\operatorname{SW}($ RX,RA $)=C A$; SWI(RX,CA)=RA, no goto 2

Step 9 : VT=V(I)
$\mathrm{L}(\mathrm{I})=\mathrm{J}$, record VT go to 10

Step 10 : I= I-1;

$$
\begin{aligned}
& \mathrm{J}=\mathrm{L}(\mathrm{I}) ; \\
& \mathrm{RA}=\mathrm{R}(\mathrm{~J}) ; \\
& \mathrm{CA}=\mathrm{C}(\mathrm{~J}) ; \quad \text { go to } 10 \mathrm{a}
\end{aligned}
$$

Step 10a: $\operatorname{IR}(R A)=\operatorname{IR}(R A)-1$;
$\operatorname{IC}(\mathrm{CA})=\operatorname{IC}(\mathrm{CA})-1 ; \quad$ go to 10 b

Step 10b : $\operatorname{IR}(\mathrm{RA})=\mathrm{RX}$;
$\mathrm{IC}(\mathrm{CA})=\mathrm{CX} ; \quad$ go to 10 c
Step 10c: MX(RA) $\neq 1$;
$\operatorname{MX}(\mathrm{CA}) \neq 1 ; \quad$ yes go to 10 d, no go to 10 e

Step 10d: SW (RA) $=0$;
SWI(CA) $=0$;
ST(RA) $=0$;
go to 2

Step 10e : $\operatorname{MX}(R A)=1 ; \quad$ yes go to 10 f , no go to 10
Step 10f : SW(RA)=0;

$$
\mathrm{SW}((\mathrm{RX}+1), \mathrm{RA})=0 ;
$$

$$
\operatorname{SWI}((\mathrm{RX}+1), \mathrm{CA})=0 ; \quad \text { goto } 2
$$

Step 11 : $\mathrm{IS}(\mathrm{I}=1)$
yes go to 12 , no go to 10
Step 12 : STOP

SEARCH TABLE:

The working details of getting an optimal word using the above algorithm for the illustrative numerical example is given in the Table - 5. The columns named (1), (2), (3),..., gives the letters in the first, second, third and so on places respectively. The columns R, C and K give the row, column and season indices of the letter. The last column gives the remarks regarding the acceptability of the partial words. In the following table A indicates ACCEPT and R indicates REJECT.

SEARCH TABLE

TABLE - 5

At the end of the search the current value of VT is 43 and it is the value of the optimal feasible word $\mathrm{L}_{14}=(1$, $2,4,6,7,8,9,10,12,15,16,17,18,19)$. It is given in the $42^{\text {nd }}$ row of the search table and the corresponding order triples are $(1,5,1),(1,11,1),(5,4,1),(11,4,1),(4,6,2)$, $(4,10,2),(6,8,2),(10,8,2),(2,1,3),(3,1,3),(7,3,3),(8,9,3)$, $(9,2,3),(8,7,3)$ Then the following figure $\mathbf{- 2}$ represents the optimal solution .

Figure- 2 [OPTIMAL SOLUTION]

In the above optimal solution first salesman starts his tour from headquarter city 1 in first season. He visits city 5 from city 1 at distance/cost 2 units, from city 5 he travels to city 4 which is a common city with a distance 4 units. Again he starts from common city 4 in second season, he visits city 10 from city 4 with a distance a of 3 units, from city 10 he travel to city 8 which another common city with a distance 4 units. Again he starts his tour from second common city 8 in third season, he visits city 7 from city 8 with a distance of 4 units, from city 7 he travel to city 3 with a distance of 5 units and from city 3 he travel to city 1 (headquarter) with distance of 3 units.

Second salesmen starts his from headquarter city 1 in first season. He visits city 11 from city 1 at distance/cost 1 unit, from city 11 he travel to city 4 which is a common city with distance 3 units. Again he starts from common city 4 in second season, he visits city 6 from city 4 with a distance of 2 units, from city 6 he travel to city 8 which another common city with a distance 1 unit. Again he starts tour from second common city 8 in third season, he visits city 9 from city 8 with a distance of 4 units, from city 9 he travel to city 2 with a distance of 4 units, from city 2 he travel to city 1 (headquarter) with a distance of 2 units.
The array IR, IC, IS, SW, SWI and L takes the values represented in the Table-6 given below.

Table - 6

	1	2	3	4	5	5	7	8	9	10	11	12	13	14
L	1	2	4	6	7	3	9	10	12	15	15	17	18	19
IR	2	1	1	2	1	1	1	2	1	1	1			
IC	2	1	1	2	1	1	1	2	1	1	1			
IK	1	\vdots	3	2	1	2	3	3	2	2	1			
SW	11,5	1	1	10,5	4	3	3	9,7	2	8	4			
SWI	2,3	5	7	11,5	1	4	8	10,6	8	4	1			

The Pattern represented by the above optimal feasible word is given below in the following table-7.

Table - 7
$X(i, j, 1)=\left[\begin{array}{lllllllllll}0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
$X(i, j, 2)=\left[\begin{array}{lllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
$X(\mathrm{i}, \mathrm{j}, 3)=\left[\begin{array}{lllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

The above pattern represents an optimal pattern, the ordered triples and the corresponding distance/cost values according to pattern is given as follows
$(1,5,1)+(1,11,1)+(5,4,1)+(11,4,1)+(4,6,2)+(4,10,2)+(6,8,2)+$
$(10,8,2)+(2,1,3)+(3,1,3)+(7,3,3)+(8,9,3)+(9,2,3)+(8,7,3)=$
$2+1+4+3+2+3+1+4+2+4+4+4+4+5=43$ units.
CONCLUSION:
In this chapter, we have studied a model of travelling salesman problem called P-TSP Seasonal Constrained Model. We developed a Lexi-Search Algorithm using Pattern Recognition Technique for geting an optimal solution. First the model is formulated into a zero-one programming problem.

REFFERENCES:

1. ARNOFF, E. L AND SENGUPTA, S.S. The TSP progress in OR., Willey, New York, 1 (1961) 150157.
2. BELLMORE, M. AND NEMHAUSER, G. The TSPA Survey, Ops. Res. 16, , (1968) 538-558.
3. GUPTA, J. N. D. Combinatorial Search Algorithm for a scheduling problem. M.Tech Thesis, IIT, Kharagpur, 1967.
4. GUPTA, J. N. D. TSP - A Survey of Theoretical Developments and applications. Opsearch, 5(4) (1968) 181-192.
5. ANEJA, Y.P. AND NAPIAR K.P.K. BICRITERIA transportation problems, Management Science, 25 (1979) 73-78.
6. BALACHANDRAN, V. An Integer Generalized Transportation model for optimal Job Assignment in Computer Networks, 24 (1976) 742 - 759.
7. BALAKRISHNA, U. Operations Research, Ph. D thesis, S. V. University, Tirupati, India 2009.
8. BHAVANI, V. \& SUNDARA MURTHY M. Truncated M-Travelling Salesmen Problem, OPSEARCH, 43(2) 2006.
9. BHAVANI, V. Combinatorial Programming Problems (TSP) M.Phil Thesis, SVU College of Engg, Tirupati, A.P., India, 1997.
10. CHABINI, I. Discrete dynamic shortest path problems in transportation applications, Transportation Research Record 1645, 1998.
11. CHANNAS, S., KOLODZIEJCZYK, W., AND MACHAJ, A. A FUZZY approach to the transportation problem, Fuzzy Sets and Systems, 13(1984) 211-221.
12. CHRISTOFIDES, N AND ELION.S. Algorithm for large scale TSP. Opns. Res. Qtly, 23(1972) 511 - 518.
13. CRORES, G. A. "A method for solving TSP" Opns. Res. 6 (3) (1958)791.
14. DAS. S. "The Most Economical Route for a TSP" paper presented in ORSI. 1978.
15. LITTLE, J.D.C. MURTHY K.G. SWEENY, D.W. An algorithm for the TSP. Opns. Res., 11 (1963) 972-982.
16. NAGANNA B. Operations Research. Ph. D thesis, S. V. University, Tirupati, India. (2007),
17. NAGANNA, B., SOBHAN BABU, K., and SUNDARA MURTHY M., Continuous Time dependent Travelling Salesman Problem, International Journal of Mathematics Research, 3(1) (2011) 69-78.
18. PANDIT, S.N.N. and RAJBHOUGSHI. Restricted TSP through n sets of nodes. Paper presented at the $9^{\text {th }}$ Annual Convention of ORSI, Calcutta, 1976.
19. SHILA DAS, NAZIMUDDIN AHMED, A Travelling Salesman Problem (TSP) with Multiple Job Facilities published, opsearch, 38(4) (2001)2595-2600.
20. SOBHAN BABU.K., CHANDRA KALA. K., NAGANNA, B and SUNDARA MURTHY. M, A Lexi-Search Approach for Variant Multiple Travelling Salesmen Problem, International journal of advanced sciences in computer sciences 1(3) (2010) 169-172.
21. SUNDARA MURTHY, M AND BHAVANI. V - 2006. Truncated M-TSP, Opsearch, 43(2)152-177.
