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Abstract 

In the present investigation, fatigue crack growth tests under mixed-mode (I and II) overload have been 

conducted on HSLA steel and subsequently genetic programming has been applied to predict post overload 

fatigue life. It is observed that the proposed model predicts fatigue life of HSLA steel with reasonable accuracy. 
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1. INTRODUCTION 

          High strength low alloy (HSLA) steels are designed and developed to provide better mechanical 

properties and greater resistance to atmospheric corrosion than conventional carbon steels. They have high 

strength, toughness, weldability, formability and corrosion resistance which render them suitable for use in a 

wide variety of structural applications. These structural components are frequently subjected to cyclic loading 

during their service lives which causes fatigue failure. As the failure due to fatigue is one of the prime concerns 

in structural design, its evaluation and prediction of fatigue life is thus very important to avoid catastrophic 

failure. For this purpose, the principles of fracture mechanics are used to determine whether the cracks will 

grow large enough to cause catastrophic failure before they can be detected during a periodic inspection. To 

predict fatigue crack growth life a large data base has to be created which requires large number of fatigue tests 

on varieties of materials. However, these tests are costly and also time consuming. With the advent of 

sophisticated computational facilities, now a day, alternative methods have been designed and developed to 

predict fatigue life based on experimental base line data in order to avoid costly fatigue tests. 

Fatigue crack propagation is a path dependent process and is strongly affected by the load sequence [1]. 

The load sequence may consist of simple constant amplitude load, superimposed overloads and under loads, 

variable amplitude loads, block loads etc. In real situations, components and structures are frequently exposed 
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to complex stress field because of the inconsistent variation of applied fatigue loads and the mode-mixity. Over 

many years, there have been many studies on crack behavior under complex stress fields [2–5]. However, 

studies on load interactions (particularly superimposed overloads) under mixed-mode (I and II) loading 

conditions [6–9] on fatigue behavior are still limited. As far as prediction of fatigue life under interspersed 

mixed-mode (I and II) overload is concerned, it is a complex phenomena due to the interaction effects that exist 

during fatigue crack growth under this loading situation. Therefore, evolutionary computational methods such 

as artificial neural network (ANN), genetic algorithm (GA), fuzzy-logic, adaptive neuo-fuzzy inference system 

(ANFIS) etc. have emerged as alternative modeling tools in the field of fatigue. Genel [10] has applied ANN for 

predicting the strain-life fatigue properties using tensile material data of steels. Fotovati and Goswami [11] have 

used ANN approach to predict fatigue crack growth rate in Ti-6Al-4V alloy at elevated temperature. Jarrah et 

al. [12] has applied ANFIS to model the fatigue behavior of unidirectional glass fiber / epoxy composites under 

tension-tension and tension-compression loading. Genetic programming (GP) has been applied by 

Vassilopoulos and Georgopoulos [13] in modeling fatigue life of FRP composite materials. As far as prediction 

of fatigue crack growth life under mixed-mode (I and II) by GP is concerned, almost no work has been reported 

till date. Thus, the present investigation aims at developing GP model to predict post overload fatigue crack 

growth life of HSLA (ASTM A633 Gr. A) steel under the above loading condition. 

2. EXPERIMENTATION 

 The material used in this study was HSLA (ASTM A633 Gr. A) steel. The chemical composition and 

the mechanical properties of the alloy are summarized in Table 1 and 2 respectively. Single edge notched 

tension (SENT) specimens having thickness of 6.47mm were used for conducting the fatigue crack growth tests. 

The specimens were made in the LT plane, with the loading aligned in the longitudinal direction. The detail 

geometry of the specimens is given in Fig. 1. 

Table 1 – Chemical compositions of HSLA steel (wt%) 

Material Fe C Mn P S Si Nb 

ASTM 

A633  

Gr. A 

Main 

constituent 

0.16 1.35 0.015 0.006 0.30 0.038 
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Table 2 – Mechanical properties of HSLA steel 

Material Tensile 

strength 

(σut ) 

MPa 

Yield 

strength 

(σys) 

MPa 

Young‟s 

modulus 

(E) 

MPa 

Poisson‟s 

ratio (ν) 

Plane 

Strain 

Fracture 

toughness 

(KIC) 

MPa√m 

Plane 

Stress 

Fracture 

toughness 

(KC) 

MPa√m 

Elongation 

ASTM 

A633 

Gr. A 

532.00 493.00 205,000 0.28 91.00 571.68 23 % 

in 40 mm 

  

 

 

 

Fig. 1 – Single Edge Notch Tension (SENT) Specimen geometry 
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  All the tests were performed on a servo-hydraulic Instron-8502 machine having a load capacity of 250 

kN, interfaced to a computer for machine control and data acquisition. The test specimens were fatigue pre-

cracked under mode-I loading to an a/w ratio of 0.3 and were subjected to constant load test (i.e. progressive 

increase in ΔK with crack extension) maintaining a load ratio of 0.1. The sinusoidal loads were applied at a 

frequency of 6 Hz. The crack growth was monitored with the help of a COD gauge mounted on the face of the 

machined notch. The fatigue crack was allowed to grow up to an a/w ratio of 0.4 and subsequently subjected to 

single overload spike at a loading rate of 8 kN/min. The overloading was done by using a mixed-mode loading 

device similar to the one used in the authors‟ earlier work [14].  The overloading angle is defined as the angle 

between the loading axis and the normal to the plane of crack propagation. The arrangement of the experimental 

set-up in mode-I (β = 0
o
) is shown in Fig. 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 – Experimental set-up showing mixed mode fixture in mode-I position 

The following equations are used to determine stress intensity factors in mode-I and II (KI and KII) for 

different angles of overload application. 

Crack 
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wB

aF
gfK

 .cos
).(I                                                                                               (1)

wB

aF
gfK

 .sin
).(II       (2)                  where,

432 )/(39.30)/(72.21)/(55.10)/(231.012.1)( wawawawagf   

The specimens were subjected to mode I, mode II, and mixed-mode overloads at different loading angles, β (= 

18
o
, 36

o
, 54

o
 and 72

o
)
 
at an overloading ratio of 2.5. Overloading ratio is defined as        

BK

K
R

max

ol

eqol                                                        (3) 

where BKmax is the maximum stress intensity factor for base line test. The equivalent stress intensity factors  ol

eqK  

are calculated according to the following equation: 

   2ol

II1

2ol

I

ol

I

ol

eq 45.05.0 KKKK                                        (4) 

where α1 = (KIC/KIIC) = 0.95 according to strain energy density theory and KI
ol

 and 
ol

IIK  are the of stress intensity 

factors of modes I and II during the overload respectively. Then the fatigue test was continued in mode I. Since, 

plotting of all the overloading angle data points in a single graph is difficult to differentiate due to large amount 

of scatter, only three overloading angles (i.e. β = 18
o
, 36

o
, and 72

o
) along with base line data of a – N curve has 

been plotted in Fig. 3. 

 

Fig. 3 – Comparison of experimental a – N curves for different overloading angles (β = 18
o
, 36

o
, and 72

o
) 
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The determination of fatigue crack growth rate (da/dN) from raw laboratory data (shown in Fig. 3 as a 

sample copy) is of course a tedious task because of large amount of scatter. Out of various techniques proposed 

till date, the exponential equation method [15] has been proved to be better as it is possible to fit the entire a - N 

data in a single equation. The same method has been adopted in this work to determine the crack growth rate 

which is described below. 

It has been already established [15] that the experimental a - N data can be well fitted by an exponential 

equation of the form:  

 
)(

ij
ijij NNm

eaa


     (5) 

where,  ai and aj = crack length in i
th

 step and j
th

 step in „mm‟ respectively, 

Ni and Nj = No. of cycles in i
th

 step and j
th

 step respectively, 

mij= specific growth rate in the interval i-j, 

i = No. of experimental steps, 

and j = i+1  

In the above equation the exponent „mij‟(i.e. specific growth rate) is an important parameter which can be 

obtained by taking logarithm of equation (5) as follows:  
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The raw values of specific growth rate (mij) from experimental a–N data are calculated using the above 

equation. These are then fitted with corresponding crack lengths by a polynomial curve-fit which gives a 3
rd

 

order polynomial equation of „m‟ vs. „a‟. To get a better result, crack lengths (modified) at small increments 

(0.005 mm) are obtained in excel sheet keeping the initial and final values (recorded from fatigue test) intact. 

Using the above polynomial equation the new (smoothened values) of mij are obtained which can be 

subsequently used to get the smoothened values of the number of cycles as per the following equation: 

i
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i

j

j
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N
m

a
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
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Finally, the crack growth rates (da/dN) are calculated directly by using the above calculated „N‟ values and 

modified „a‟ values as follows: 
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The smoothened values of a – N and da/dN – ΔK have been presented in Figs. 4 and 5 respectively which 

illustrate the respective superimposed experimental data sets for different overloading angles (i.e. β = 0
o
, 18

o
, 

36
o
, 54

o
, 72

o
 and 90

o
) including base line data of HSLA steel.  

 

 

 

 

 

 

 

Fig. 4 – Smoothened values of a – N curves for different overloading angles 

 

 

 

 

 

 

 

 

Fig. 5 – Smoothened values of da/dN – ∆K curves for different overloading angles 

4. GENETIC PROGRAMMING APPROACH 

Genetic programming (GP), an extension of genetic algorithms (GA), is an evolutionary algorithm-based 

methodology, which consists of evolving computer programs that perform a user-defined task. GP, first 

developed by Koza [16] in 1990, is based on the Darwinian principle of reproduction and survival of the fittest. 

It is similar to the biological genetic operations such as crossover and mutation. In GP, there is a population of 

computer programs (individuals) that reproduce with each other. Over time, the best individuals will survive 
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and eventually evolve to do well in the given environment (Fig. 6). A high-level description of GP algorithm 

can be divided into a number of sequential steps [17]: 

1. An initial population (generation 0) of models is generated in random which is represented by tree-like 

structure comprising of functions and terminals. Each tree, having variable length, is constructed of 

nodes and represents one candidate model. The nodes can be terminal nodes (called also leafs) placed at 

the end of a branch signifying an input or a constant, or non-terminal nodes representing functions 

performing some action on their terminal nodes. A typical model representing the expression

1

0

2310
x

x
xxxx   is shown in Fig. 7.  

2. The performance of each model in the population is evaluated by simulating the corresponding model 

and calculating some fitness measure like Mean Square Error, Mean Relative Error and so on, that can 

measure the capability of the model to solve the problem with respect to the experimental data. 

3. The reproduction operators are used to copy existing programs into the new generation. 

4. A new population of models is created, using certain selection schemes (like proportional selection, 

tournament selection, rank based selection, e.t.c.) and evolutionary operators like crossover and 

mutation from randomly chosen set of parents. For the new population, step 2 onwards is repeated until 

a predefined termination criterion is satisfied, or a fixed number of generations are completed. After 

some number of generations the algorithm converges at a near-optimum for the problem model. 

For the present work the main points of the implemented GP evolutionary algorithm in pseudo code has 

been shown in Fig. 8. First, the initial population P(t) of random organism (i.e., models for prediction of crack 

growth rate da/dN) consisting of the available function and terminal genes is generated. The organisms are in 

fact computer programs of various shapes and sizes. The variable t represents the generation time.  
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Figure 6 – Genetic Programming Flow Chart [18] 

 

 

 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

t 0 

t t+1 

evolutionary algorithm 

begin 

  

initialize P(t) 

evaluate P(t) 

while (not termination_condition) do 

begin 

alter P(t) by applying genetic operators 

evaluate P(t) 

end 

end 
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Figure 7 – Evaluationary algorithm in pseudo code 

 

 

 

 

 

 

 

 

 

 

Figure 8 – A tree representation of a simple model 
 

 

 

5. APPLICATION OF GP FOR CRACK GROWTH RATE DETERMINATION 

In the present study genetic programming is used as a stochastic non-linear regression tool since one 

output i.e. crack growth rate (da/dN) is assigned to three input variables i.e. overloading angle (β), maximum 

stress intensity factor (Kmax) and stress intensity factor range (ΔK). During the process, computer programs are 

evolved to describe the relation between these two parameters, i.e. output = f(input), or da/dN = f(β, Kmax, ΔK). 

The best fitted program, according to the criterion of minimizing the error between targeted output and selected 

program outputs, is used to predict outputs for unknown input variables.  

During the design of GP model the experimental data of the aforementioned data base has been used to 

predict the fatigue crack growth rate (da/dN) of HSLA steel. For the application of GP method the GP software 

tool of RML Technologies, Inc, DiscipulusTM [18] was used. DiscipulusTM genetic programming software is a 

powerful regression and classification tool.                                                     

In the context of the present work, the fatigue crack growth rate (FCGR) data of HSLA steel under 

mixed-mode (I and II) overloading conditions were treated as follows: All FCGR data, except the set β = 36
o
, 

were used for the training of the model; a total of 5 sets (i.e. β = 0
o
, 18

o
, 54

o
, 72

o
 and 90

o
) with one set 

consisting of 300 input and output parameters respectively. Given the number of input and output parameters in 
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the training set, the process is characterized as a non-linear stochastic regression analysis. During the training 

phase the genetic programming tool established several relations (by regression analysis) in the form of 

computer programs between the input and output variables. It is worthwhile to mention here that the proposed 

GP formulation is valid for the ranges of training set as given in Table 3. Parameters of the GP models are 

presented in Table 4. Using an iterative process the parameters of the established relations were adjusted in 

order to minimize the error between targeted output and selected program outputs. The same model (the 

selected evolved program) can be stored and potentially be used to predict other output values for a new applied 

input data set (i.e. β = 36
o
).  

Table 3 – Variables used in model construction  

Code Input 

variable 

Range 

 

Code Output 

variable 

Range 

(Al-7020) 

x1 Overload 

angle (β) 

0
o
 – 90

o
 

(with a 

diff. of 18
o
) 

 Crack 

growth 

rate 

(da/dN) 

6.37×10
-5

 – 

2.58×10
-3

 

x2 Maximum 

stress 

intensity 

factor (Kmax) 

13.35 –

37.22 

   

x3 Stress 

intensity 

factor range 

(∆K) 

12.46 – 

33.97 

   

 

Table 4 – Parameters of GP model for the alloy  

P1 Population size 1000 

P2 Number of generations Between 100 to 7000 

P3 Function set „-‟, „*‟, „power‟ 

P4 Probability of reproduction 0.1 

P5 Probability of crossover 0.9 

P6 Maximum depth of initial random organisms 4 

P7 Maximum permissible depth organisms after crossover 10 

 

6. RESULT AND DISCUSSION 

In the present study, genetic programming was applied on the training data sets for modeling post 

overload fatigue crack growth rates as described in the previous section. The data containing in the training file 

were used for learning by applying the fitness function. Subsequently, the new inputs of the test data set (i.e. β = 
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36
o
) were fed to the trained GP model to predict the corresponding predicted outputs. The overall performances 

of both sets were evaluated by the correlation coefficient (R) and mean squared error (MSE) given by:   
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Where,   erimentaldN
da

exp and  predicteddN
da are the experimental and predicted crack growth rates, 

  erimentaldN
da

exp


and   predicteddN
da 

are their corresponding mean values and „n‟ is the number of observations.  

The GP estimates are compared to the experimental data for training and testing sets. The statistical 

performance of the GP model has been presented in Table 5.  

Table 5 – Statistical results of GP for training and testing  

Set MSE Corr. Coff. (R) 

Train 2.4637 0.9856 

Test 3.1587 0.9789 

 

The training results proved that the proposed GP models have efficiently learned well the nonlinear 

relationship between the input and output variables with high correlation (R = 0.9856) and relatively low error 

(MSE = 2.4637) values. Comparing the GP predictions with the experimental data for the test stage (Fig. 9) 

demonstrates a high generalization capacity of the proposed model (R = 0.9789) and relatively low error (MSE 

= 3.1587) values. All these findings show a successful performance of the GP model for estimating fatigue 

crack growth rates in training and testing stages. The testing results (da/dN vs. ∆K) have been illustrated in Fig. 

10 for HSLA steel. The numbers of cycles (i.e. post overload fatigue lives) were calculated from predicted and 

experimental results in the excel sheet (Fig. 11) as per the following equation: 

i

ii

i N

dN
da

aa
N 


 



1

1           (11) 

From the a – N plot it is observed that the post overload fatigue life (at β = 36
o
) of HSLA steel from GP model 

is 127300 cycles with an error of – 0.787% in comparison to its experimental value which is 128310 cycles. 
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Fig. 9 – Modeling ability of genetic programming for the test set 

 

 

 

 

 

 

 

 

 

 

Fig.10 – Comparison of predicted (GP) and experimental da/dN – ∆K curves 
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Fig. 11 – Comparison of predicted (GP) and experimental a – N curves 

 

7. CONCLUSION 

This work proved the ability of novel computational tools to model and predicts the post overload 

fatigue crack propagation life HSLA steel under interspersed mixed-mode overload conditions. Experimental 

results are used to build and validate the model. The proposed GP formulations show very good agreement with 

the experimental findings with quite satisfactory performance of accuracies (R = 0.9789 and MSE = 3.1587).  
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