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Abstract— Clustering on uncertain data, one of the essential tasks in mining uncertain data, posts significant challenges on 

both modeling similarity between uncertain objects and developing efficient computational methods. The previous 

methods extend traditional partitioning clustering methods like k-means and density-based clustering methods like 

DBSCAN to uncertain data, thus rely on geometric distances between objects. Such methods cannot handle uncertain 

objects that are geometrically indistinguishable, such as products with the same mean but very different variances in 

customer ratings. Surprisingly, probability distributions, which are essential characteristics of uncertain objects, have not 

been considered in measuring similarity between uncertain objects. In this project, we systematically model uncertain 

objects in both continuous and discrete domains, where an uncertain object is modeled as a continuous and discrete 

random variable, respectively. We use the well-known Kullback-Leibler divergence to measure similarity between 

uncertain objects in both the continuous and discrete cases, and integrate it into partitioning and density-based clustering 

methods to cluster uncertain objects. 
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I. INTRODUCTION 

 The previous studies on clustering uncertain data are largely 

various extensions of the traditional clustering algorithms 

designed for certain data. As an object in a certain data set is a 

single point, the distribution regarding the object itself is not 

considered in traditional clustering algorithms. Thus, the 

studies that extended traditional algorithms to cluster uncertain 

data are limited to using geometric distance-based similarity 

measures, and cannot capture the difference between uncertain 

objects with different distributions. Specifically, three principal 

categories exist in literature, namely partitioning clustering 

approaches, density-based clustering approaches, and possible 

world approaches. The first two are along the line of the 

categorization of clustering methods for certain data, the 

possible world approaches are specific for uncertain data 

following the popular possible world semantics for uncertain 

data. As these approaches only explore the geometric 

properties of data objects and focus on instances of uncertain 

objects, they do not consider the similarity between uncertain 

objects in terms of distributions. 

II. LITRATURE SURVEY 

      Our mental representations of the world are formed by 

processing large numbers of sensory inputs including, for 

example, the pixel intensities of images, the power spectra of 

sounds, and the joint angles of articulated bodies. While 

complex stimuli of this form can be represented by points in a 

high-dimensional vector space, they typically have a much 

more compact description. Coherent structure in the world 

leads to strong correlations between inputs (such as between 

neighboring pixels in images), generating observations that lie 

on or close to a smooth low-dimensional manifold. To compare 

and classify such observations in effect, to reason about the 

world depends crucially on modeling the nonlinear geometry of 

these low-dimensional manifolds. 

Scientists interested in exploratory analysis or visualization of 

multivariate data (1) face a similar problem in dimensionality 

reduction. The problem involves mapping high-dimensional 

inputs into a low dimensional “description” space with as many 

coordinates as observed modes of variability. Previous 

approaches to this problem, based on multidimensional scaling 

(MDS), have computed embeddings that attempt to preserve 

pairwise distances or generalized disparities between data 

points; these distances are measured along straight lines or, in 

more sophisticated usages of MDS such as Isomap, along 

shortest paths confined to the manifold of observed inputs. 

Here, we take a different approach, called locally linear 

embedding (LLE) that eliminates the need to estimate pair wise 

distances between widely separated data points. 

Unlike previous methods, LLE recovers global nonlinear 

structure from locally linear fits. The LLE algorithm, is based 

on simple geometric intuitions. Suppose the data consist of N 

real-valued vectors XWi, each of dimensionality D, sampled 

from some underlying manifold. Provided there is sufficient 

data (such that the manifold is well-sampled), we expect each 

data point and its neighbors to lie on or close to a locally linear 
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patch of the manifold. We characterize the local geometry of 

these patches by linear coefficients that reconstruct each data 

point from its neighbors. 

The purpose of any clustering technique is to evolve a K 

partition matrix of a data set X in RN, representing its 

partitioning into a number, say K, of clusters (C1; C2; . . . ; 

CK). The partition matrix may be represented as U the 

membership of pattern xj to clusters Ck. Clustering techniques 

broadly fall into two classes, partitional and hierarchical. K-

Means and single linkage are widely used techniques used in 

the domains of partitional and hierarchical clustering, 

respectively. 

The two fundamental questions that need to be addressed in 

any typical clustering system are: How many clusters are 

actually present in the data and how real or good is the 

clustering itself. That is, whatever the clustering method may 

be, one has to determine the number of clusters and also the 

goodness or validity of the clusters formed. The measure of 

validity of the clusters should be such that it will be able to 

impose an ordering of the clusters in terms of its goodness. 

Milligan and Cooper have provided a comparison of several 

validity indices for data sets containing distinct non 

overlapping clusters while using only hierarchical clustering 

algorithms. Meil_a and Heckerman provide a comparison of 

some clustering methods and initialization strategies. Some 

more clustering algorithms may be found. In this paper, we aim 

to evaluate the performance of four validity indices, namely, 

the Davies-Bouldin index, Dunn’s index, Calinski- Harabasz 

index, and a recently developed index I, in conjunction with 

three clustering algorithms viz. the well-known K-means and 

single linkage algorithms, as well as a recently developed 

simulated annealing (SA) based clustering scheme. The number 

of clusters is varied from Kmin to Kmax for K-means and the 

simulated annealing-based clustering algorithms, while, for 

single linkage algorithm (which incorporates automatic 

variation of number of clusters), the partitions in this range are 

considered.  

 

III. PROPOSED SYSTEM 

     In this project, we consider uncertain objects as random 
variables with certain distributions. We consider both the 
discrete case and the continuous case. In the discrete case, 
the domain has a finite number of values, for example, the 
rating of a camera can only take a value. In the continuous 
case, the domain is a continuous range of values, for 
example, the temperatures recorded in a weather station 
are continuous real numbers. Directly computing KL 
divergence between probability distributions can be very 
costly or even infeasible if the distributions are complex. 
Although KL divergence is meaningful, a significant 
challenge of clustering using KL divergence is how to 
evaluate KL divergence efficiently on many uncertain 
objects. To the best of our knowledge, this project is the 
first to study clustering uncertain data objects using KL 
divergence in a general setting. We make several 
contributions. We develop a general framework of 
clustering uncertain objects considering the distribution as 
the first class citizen in both discrete and continuous cases. 
Uncertain objects can have any discrete or continuous 
distribution. We show that distribution differences cannot 
be captured by the previous methods based on geometric 

distances. We use KL divergence to measure the similarity 
between distributions, and demonstrate the effectiveness of 
KL divergence in both partitioning and density-based 
clustering methods. 
 

IV.  MODULES 

 

     There are the five modules Uncertain probability 
distribution,KL divergence similarity, partitioning 
clustering method,K-Medoids Mathod,Randomized K-
Medoids  method. 
 
1 )Uncertain Probability Distributions:  

 We consider an uncertain object as a random variable 
following a probability distribution in a domain ID. We 
consider both the discrete and continuous cases. If the 
domain is discrete with a finite or infinite number of values, 
the object is a discrete random variable and its probability 
distribution is described by a probability mass function 
(PMF). Otherwise, if the domain is continuous with a 
continuous range of values, the object is a continuous 
random variable and its probability distribution is 
described by a probability density function (PDF). For 
example, the domain of the ratings of cameras is a discrete 
set and the domain of temperature is continuous real 
numbers. In many case, the accurate probability 
distributions of uncertain objects are not known 
beforehand in practice. Instead, the probability distribution 
of an uncertain object is often derived from our 
observations of the corresponding random variable. 
Therefore, we associate each object with a sample of 
observations, and assume that the sample is finite and the 
observations are independent and identically distributed 
(IID). By overloading the notation, for an uncertain object P, 
we  still use P to denote the corresponding random variable, 
the probability mass/density function, and the sample. For 
discrete domains, the probability mass function of an 
uncertain object can be directly estimated by normalizing 
the number of observations against the size of the sample. 
 
2 )Using KL Divergence Similairty :  

      It is natural to quantify the similarity between two uncertain 

objects by KL divergence. Given two uncertain objects P and Q 

and their corresponding probability distributions, evaluates the 

relative uncertainty of Q given the distribution of P, which is 

the expected likelihood ratio of the two distributions and tells 

how similar they are. The KL divergence is always nonnegative, 

and satisfies Gibbs’ inequality. Therefore, the smaller the KL 

divergence, the more similar the two uncertain objects. In the 

discrete case, it is straightforward to calculate the KL 

divergence between two uncertain objects P and Q from their 

probability mass functions. 

 
3). Partitioning Clustering Methods 

k-means and k-medoids are two classical partitioning 
methods. The difference is that the k-means method 
represents each cluster by the mean of all objects in this 
cluster, while the k-medoids method uses an actual object 
in a cluster as its representative. In the context of uncertain 
data where objects are probability distributions, it is 
inefficient to compute the mean of probability density 
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functions. k-medoids method avoids computing the means. 
For efficiency, we adopt the k-medoids method to 
demonstrate the performance of partitioning clustering 
methods using KL divergence to cluster uncertain objects. 
 

4) Uncertain K-Medoids Method 

The uncertain k-medoids method consists of two phases, the 

building phase and the swapping phase. In the building phase, 

the uncertain k-medoids method obtains an initial clustering by 

selecting k representatives one after another. The first 

representative C1 is the one which has the smallest sum of the 

KL divergence to all other objects The rest k representatives 

are selected iteratively. In the ith iteration, the algorithm selects 

the representative Ci which decreases the total KL divergence 

as much as possible. For each object P which has not been 

selected, we test whether it should be selected in the current 

round. For any other non selected object will be assigned to the 

new representative P if the divergence is smaller than the 

divergence between P and any previously selected 

representatives. Therefore, we calculate the contribution to 

decrease of the total KL divergence. We calculate the total 

decrease of the total KL divergence by selecting P as the sum 

over the contribution of all non selected object. Then, the 

object to be selected in the ith iteration is the one that can incur 

the largest decrease. 

 

5)Randomized K-Medoids Method 

The randomized k-medoids method, instead of finding the 

optimal non representative object for swapping, randomly 

selects a non representative object for swapping if the 

clustering quality can be improved. We follow the annealing 

technique to prevent the method from being stuck at a local 

optimal result. The randomized k-medoids method follows the 

building swapping framework. At the beginning, the building 

phase is simplified by selecting the initial k representatives at 

random. Non selected objects are assigned to the most similar 

representative according to KL divergence. Then, in the 

swapping phase, we iteratively replace representatives by non 

representative objects. In each iteration, instead of finding the 

optimal non representative object for swapping in the uncertain 

k-medoids method, a non representative object P is randomly 

selected to replace the representative C to which P is assigned. 

After all non representative objects are examined, the total 

decrease of the total KL divergence by swapping P and C is 

recorded. 

 

 
 
Chart -1: Comparison graph between different  

clustering algorithm 

 
 

V. CONCLUSIONS 

  In this project, we explore clustering uncertain data based 

on the similarity between their distributions. We advocate 

using the Kullback-Leibler divergence as the similarity 

measurement, and systematically define the KL divergence 

between objects in both the continuous and discrete cases. We 

integrated KL divergence into the partitioning and density-

based clustering methods to demonstrate the effectiveness of 

clustering using KL divergence. To tackle the computational 

challenge in the continuous case, we estimate KL divergence 

by kernel density estimation and employ the fast Gauss 

transform technique to further speed up the computation. The 

extensive experiments confirm that our methods are effective 

and efficient. The most important contribution of this project is 

to  introduce distribution difference as the similarity measure 

for uncertain data. Besides clustering, similarity is also of 

fundamental significance to many other applications, such as 

nearest neighbor search. In the future, we will study those 

problems on uncertain data based on distribution similarity. 
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