

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN: 2319-7242

Volume 4 Issue 11 Nov 2015, Page No. 14973-14979

Francis Thamburaj
1, IJECS Volume 04 Issue 11 November, 2015 Page No.14973-14979 Page 14973

Cognitive Perspective Of Attribute Hiding Factor Complexity

Metric
Francis Thamburaj

1
, A. Aloysius

2

1
Computer Science Department, Bharathidasan University, St. Joseph‟s College

Tiruchchirappalli, Tamil Nadu 620002, India

francisthamburaj@gmail.com
2
Computer Science Department, Bharathidasan University, St. Joseph‟s College

Tiruchchirappalli, Tamil Nadu 620002, India

aloysius1972@gmail.com

Abstract: Information hiding is one of the key features and a powerful mechanism in Object-Oriented programming. It is critical to build

large complex software that can be maintained economically and extended with ease. As information hiding improves the software

productivity and promotes the software quality, it is essential to measure it. Further, the data or attribute value safety plays the vital role in

the reliability of the software, which is the key factor determining the success of software. Data safety can be achieved by hiding the

attribute. Hence, it is necessary and vital to measure the attribute hiding factor more accurately. This article introduces a new complexity

metric called Cognitive Weighted Attribute Hiding Factor. It is defined and mathematically formulated to yield better results than the

original Attribute Hiding Factor complexity metric. It is statistically proved by comparative study. Further, the new complexity metric is

tested for empirical validity and applicability with a case study. The results show that the new complexity metric index due to the

combination of encapsulation and attribute scoping is better, broader and truer to reality.

Keywords: Attribute Hiding Factor, Information Hiding, Encapsulation Metric, Cognitive Software Complexity Metrics, Object-Oriented

Software Metrics, Software Engineering.

1. Introduction

All the software metrics are mainly aimed at quality software

production in terms of higher reliability at lower cost. The

reliability is closely connected with the information or data or

attribute value safety. Here, the term „data safety‟ refers to

safeguarding the data from accidental change or unintentional

modification of the attribute values, or illegal access of the

attribute values. This is very crucial to the overall success of

the software even at the expense of higher cost of the software

production. In order to achieve this safety, data members are

encapsulated in the object-oriented paradigm. The usual

encapsulation adopted is the „class‟ enclosure in which both the

data members and the operations on data members are placed.

This encapsulation mechanism, forming the core concept in

software engineering and fundamental design principle, making

it the most important semantic characteristic of object-oriented

programming, is the root cause of the popularity of object-

oriented programs [1]. It gives raise to many valuable features

like clear program structure, easier comprehension by hiding

unnecessary internal complexities, higher reusability with

inheritance mechanism, contextual processing via static or

compile time polymorphism and dynamic or run-time

polymorphism techniques, multi-granular testability due to

class unity, greater extensibility, cheaper maintainability, finer

modifiability without much side-effects, and so on.

But, the encapsulation can‟t ensure the complete safety of

the data, even though it revolves around hiding the

implementation details of a specific component, because

encapsulation means only grouping of properties and that

hiding is an orthogonal concept [2]. The process of

encapsulation ensures only that the design decisions that are

likely to change are localized [3]. So, encapsulation and

information hiding are not the same. The instance variables

and instance methods may be encapsulated but may still be

totally or partially visible to other classes and packages [4].

By declaring the class as well as the variable as „public‟, the

variable can be accessed by any class like global variable and

the global variables are evils because they create tight coupling

which leads to lower modifiability, difficult testability, lesser

extensibility etc. [5]. Therefore, the data hiding is actually

implemented by the combination of class encapsulation and

scoping of the member attributes and methods within the class.

On the one hand, the class encapsulation binds the instance

variables and the instance methods that manipulate the values

of instance variables as a single unit in order to hide internal

complexity. The objects are created out of this class blue-print.

So, the user of an object can view the object as a black box that

provides services such as accessing or modifying the data etc.

On the other hand, the scoping mechanism controls the

visibility of attributes and methods from other classes within

the package or outside the package. The scoping mechanism

varies from one language to another. This article focuses only

on Java language, although it can be extended and applied to

other languages with their own binding as Abreu et al has done

for C++ and Eiffel [6] [7]. In Java language, there are four

different scopes that can be used with the attributes, methods,

and classes. They are implemented using three key words

„private‟, „protected‟, and „public‟. The default scope is the

package private scope and it does not have any special

keyword. It makes the instance attributes, instance methods,

and classes visible to all the other classes in the package in

which the class is defined. The visibility of the „private‟ scope

is within the class encapsulation only. The „protected‟ scope

cuts across the boundaries of different packages and broadens

the visibility to all the classes in the hierarchical inheritance

mailto:francisthamburaj@gmail.com
mailto:aloysius1972@gmail.com

DOI: 10.18535/Ijecs/v4i11.18

Francis Thamburaj
1, IJECS Volume 04 Issue 11 November, 2015 Page No.14973-14979 Page 14974

tree spread over multiple packages. Thus, information hiding is

basically concealing the data and the connected interfaces that

help to access or modify data or do any other manipulation of

the data.

There are many benefits of information hiding. First and

foremost, the data is safe-guarded, as opposed to the structured

way of programming, by the encapsulation. Any modification

or even access of the data is possible only through the related

methods. Secondly, the encapsulation yields easy

comprehension and helps to cope with complexity by bringing

a better perspective on how to use the services of the class [8].

Thirdly, as it hides the implementation details of the software

unit from its clients, the subsequent changes can be done with

ease [9]. Instance variables and methods can be added, deleted,

or changed, but as long as the services provided by the object

remain the same, code that uses the object can continue to use

it without being rewritten. Fourthly, the encapsulated classes

and packages can be written without the detailed knowledge of

other classes and packages. This helps to write different classes

simultaneously, leading to faster production of the software

system [10]. Fifthly, it allows encapsulated modules to be

reassembled and replaced without reassembling the entire

software system. So, the testing of different classes can be done

in parallel, speeding up the software production [10]. Sixthly, it

increases the software product flexibility, which means the

possibility of drastically changing or improving one class or

module without changing the other. This paves way for

excellent modifiability without side-effects. Seventhly, it

decreases the complexity and increases the reliability due to

information hiding [11]

The plethora of benefits shows the importance of

information hiding and highlights the necessity of measuring

the information hiding factor of the software system and

especially data hiding, in order to maximize the reliability and

minimize the production cost of the software. This article

defines a new object-oriented software complexity metric

called Cognitive Weighted Attribute Hiding Factor (CWAHF).

The following section 2 gives a short survey of literature

indicating the need for new metric for data hiding. The section

3 proposes and defines the new complexity metric CWAHF.

The section 4 depicts the calibration of the cognitive weights.

The section 5 deals with the validation of new complexity

metric through the comparative study of CWAHF and AHF.

The section 6 does the experimentation and case study of the

proposed complexity metric. The section 7 presents the

conclusion and the possible future works.

2. Survey of Literature

Information hiding was first described by Parnas in his

seminal article [10]. The software metrics that measure the

amount of visibility of attributes and methods is called

information hiding factor complexity metrics. Only a very few

object-oriented complexity metrics are proposed based on

information hiding principle. Among these complexity metrics,

Abreu‟s Attribute Hiding Factor (AHF) and Method Hiding

Factor (MHF) are frequently referenced. These metrics are part

of the object-oriented metric suite called Metrics for Object

Oriented Design (MOOD) proposed by Fernando Britto Abreu

and Rogério Carapuça in 1994 [8]. The AHF is the ratio of all

the hidden attributes to the total number of attributes defined in

all the classes. The MHF is defined as the division of the

addition of all the invisible methods defined in all classes with

all the methods under consideration [8]. Also, Abreu et al

proposed the Attribute Hiding Effective Factor (AHEF), and

Operation Hiding Effective Factor (OHEF) in the second set of

MOOD metrics called MOOD2. The AHEF is defined as the

quotient between the cumulative number of the specification

classes that do access the specification attributes and the

cumulative number of the specification classes that can access

the specification attributes [12]. Similarly, the OHEF is defined

as the quotient between the cumulative number of the

specification classes that do access the specification operations

and the cumulative number of the specification classes that can

access the specification operations [12].

The Abreu‟s information hiding metrics are not sufficient,

because they are method and attribute level that are only finely

granular and they are incomplete. So, Cao et al proposes

information hiding metrics of the class and the system which

are coarsely granular and medium granular [13]. Chen et al

proposed Operating Complexity Metric (OXM), Operating

Argument Complexity Metric (OACM), and Attribute

Complexity Metric (ACM). These metrics are very subjective

in nature [14]. Bansiya et al proposes Data Access Metric

(DAM), which is the ratio of the number of private and

protected attributes to the total number of attributes declared in

the class. The range of DAM metric is from 0 to 1 and a high

value is desired [15]. Saini et al proposed Encapsulation Factor

(EF) based on the privacy and unity of attributes [16]. Tempero

et al studied empirically 100 open-source Java applications to

determine to what degree non-private fields are declared, and

to what extent they are used. [17]. Agrawal et al proposes

„Vulnerability Confinement Capacity‟ metric to assess and

improve encapsulation for minimizing vulnerability of an

object oriented design [18]. Singh et al studied the

effectiveness of encapsulation metric to refactor code and

identify error prone classes [19]. Zoller et al developed two

software metrics for Java, Inappropriate Generosity with

Accessibility of Types (IGAT) and Inappropriate Generosity

with Accessibility of Methods (IGAM) to measure the amount

of types and methods with an unnecessarily generous access

modifier [9]. Yadav et al proposed Encapsulated Class

Complexity Metric to measure the complexity of class design

[20]. Srinivasan and Devi have defined, among other metrics in

their suite, the Attributes-Per-Class Factor (APCF) as the ratio

of the number of private and protected attributes to all the

attributes defined in the class. The metric is used to measure

the amount of object properties, potential impact on children,

the time and effort needs for the construction of a class [21].

Snyder examined the relationship between encapsulation and

inheritance, since the inheritance mechanism severely

compromises the benefits of encapsulation [22]. For example,

permitting access to instance variables defined by the ancestor

classes takes away the freedom of the designer to change the

name, remove, or reinterpret an instance variable without the

risk of adversely affecting descendant classes that depend on

that instance variable. In Java, the scope of inheriting class

limits the visibility of the attributes [23]. Chhillar et al, based

on the class hierarchy, defines a suite of Member Access

DOI: 10.18535/Ijecs/v4i11.18

Francis Thamburaj
1, IJECS Volume 04 Issue 11 November, 2015 Page No.14973-14979 Page 14975

Control Metrics such as Member Function Access Control

Metrics, Data Member Access Control Metrics, and Member

Access Control Factor Metrics, in order to estimate the time,

cost, and effort for object-oriented software development [24].

None of the above list of metrics and studies is concerned

with the cognitive aspect of the encapsulation and scopes. The

only information hiding complexity metric based on cognitive

aspect is the Cognitive Weighted Method Hiding Factor

complexity metric proposed by the author earlier [25].

Therefore, there is a need to propose a new Cognitive

Weighted Attribute Hiding Factor complexity metric to

complement the previously proposed complexity metric for

instance methods.

3. Cognitive Weighted Attribute Hiding Factor

The cognitive weighted attribute hiding factor complexity

metric is based on the Abreu‟s attribute hiding factor. The AHF

complexity metric is well defined based on the author‟s seven

criteria for robust object-oriented metric, such as formal metric

definition, system size independence, dimensionless of metric,

early obtainability, down scalable, easy computability, and

language independence [8]. It is also empirically validated both

by the author and others [6] [7]. The AHF is formally defined

as,

 (1)

where,

Ad(Ci) = Av(Ci) + Ah(Ci)

 Ad(Ci) = Total number of defined attributes in class Ci

 Av(Ci) = Number of visible attributes in class Ci

Ah(Ci) = Number of hidden attributes in class Ci

 TC = Total number of Classes in the whole system

The complexity value of AHF ranges from 0% to 100%. If

the value of AHF is 100%, it means all attributes are

private, which is the ideal and desirable situation. When AHF

value is 0% it indicates that all attributes are public, which is

against the very spirit of the object-oriented paradigm. For

better software quality and reliability, the complexity value

should be kept high, preferably above 70% [26]. Very low

values for AHF should trigger the designers‟ attention.

The AHF complexity metric captures only the architectural

complexity of the software and does not bother about the

cognitive complexity. But, Wang observed that the traditional

measurements cannot actually reflect the real complexity of

software systems in a software design, representation,

cognition, comprehension and maintenance. Instead the

cognitive complexity metrics is an ideal measure of software

functional complexities and sizes, as it represents the real

semantic complexity by integrating both the operational and

architectural complexities [27]. The cognitive complexity is

defined as the mental burden on the user who deals with the

code as developer, tester, maintainer etc. It is measured in

terms of cognitive weights. Cognitive weights are defined as

the extent of difficulty or relative time and effort required for

comprehending given software, and measure the complexity of

logical structure of software [28].

Therefore, the new CWAHF is put forward to include the

cognitive complexity. It augments the cognitive complexity

based on the different types of visibility of the attributes. The

visibility can range from fully invisible, partially visible, and

fully visible. In Java language this range of visibility is

implemented using different attribute scopes such as „private‟,

„protected‟, „public‟, and the default as mentioned in the

introduction section. Based on these four types of attribute

visibility, the new CWAHF can be mathematically defined as

(2)

where,

Ap(Ci) = Number of private attributes in class Ci

Ad(Ci) = Number of default attributes in class Ci

At(Ci) = Number of protected attributes in class Ci

Au(Ci) = Number of public attributes in class Ci

CWpa = Cognitive Weight of private attribute

CWda = Cognitive Weight of default attribute

CWta = Cognitive Weight of protected attribute

CWua = Cognitive Weight of public attribute

TC = Total number of Classes in the whole system

 In the Eq. (2), the denominator represents the cognitive

complexity of all the attributes including non-public or hidden

and public or visible attributes. The cognitive weight of public

or fully visible attributes CWua is assumed to be 1. According

to Abreu, the denominator represents the maximum number

of possible distinct usage of the attribute hiding factor and

the purpose of the denominator is to act as normalizer for the

complexity metric AHF [6]. So, it will be more apt and

meaningful to multiply the public or visible attributes by the

cognitive weight value of 1 and sum up with the invisible or

hidden complexity metric value in the denominator of the

complexity metric CWAHF in order to act as normalizer

as far as the cognitive complexity metric is concerned.

This makes the range of complexity metric values of CWAHF

to align with that of Abreu‟s range of complexity metric values

due to different types of attribute invisibilities. In other words,

the range of complexity metric values will be from 0% to

100%. Further, the normalized complexity metric CWAHF

becomes dimensionless satisfying one of the seven criteria for

robust object-oriented metric proposed by Abreu et al [8].

The numerator of the Eq. (2) represents the summation of the

number of non-public or hidden attributes in each class of the

whole software system. Here, the attributes belonging to each

type of non-public scope is multiplied by the corresponding

cognitive weights CWpa, CWda, CWta, of private, default and

protected attributes respectively. Note that this complexity

metric value also appears as one of the terms in the

denominator of the Eq. (2). The cognitive weights CWpa, CWda,

CWta are calibrated in the following section.

4. Calibration of Cognitive Weights

The cognitive weights for different types of visibility of

attributes are calibrated in this section. A comprehension test

DOI: 10.18535/Ijecs/v4i11.18

Francis Thamburaj
1, IJECS Volume 04 Issue 11 November, 2015 Page No.14973-14979 Page 14976

was conducted in order to find the cognitive weight factor for

private attribute CWpa, default attribute CWda, and protected

attribute CWta. Three different group of students were selected

to undergo the test to find out the time taken to understand the

complexity of different types of visibility of the attributes in the

given program. These groups of students had sufficient

exposure to Java programming and especially, in understanding

various types of scope usages and attribute hiding techniques.

Around 40 students, who have scored 65% and above marks in

Semester examination, were selected in each group. One

undergraduate group and two postgraduate groups are called

for the comprehension test and supplied with 9 different

programs namely, P1 to P9, three for each type of attribute

hiding with multiple choice answers. The time taken by each

student to understand the program and to choose the best

answer was recorded after the completion of each program.

This process is repeated for each group of students. To be

accurate, these program comprehension tests were conducted

online and the comprehension timings were registered

automatically by the computer in seconds.

For each group of students, the average time taken to

comprehend each individual program from P1 to P9 was

calculated, so as to get 27 different Comprehension Mean

Times (CMT). Since 3 different groups of students have done

the comprehension test for the same program, their values are

averaged to obtain the 9 different values. These values are

tabulated in Table 1, under the column CMT. The tested

programs are grouped into private attribute scope testing

programs, default attribute scope testing programs, and

protected attribute scope testing programs. The corresponding

CMT values are also grouped into three categories, namely,

Private Attribute (PA) values, Default Attribute (DA) values,

and proTected Attribute (TA) values. Then the average of each

of these categories is calculated and displayed in the last but

one column of Table 1 as the Average Comprehension Mean

Time (ACMT) in seconds. The rounded ACMT values in the

last column of the Table 1 represents the Cognitive Weight

(CW) for different type of invisibility of the attributes.

Table 1: Calibration of Cognitive Weights

Category Program

CMT

(Secs)

ACMT

(Secs)

CW

(Rounded)

Private

Attribute

(PA)

P1 205.23

3

205.07

1

2

P2 211.56

7

P3 198.41

2

Default

Attribute

(DA)

P4 339.83

3

323.02

9

3

P5 324.43

3

P6 304.82

2

Protecte

d

Attribute

(TA)

P7 437.83

3

427.31

7

4

P8 418.80

0

P9 425.31

7

The Table 1 is graphically represented in Figure 1. The

comprehension mean time for three different attribute scopes

are grouped under the heading private attribute, default

attribute, protected attribute denoted by PA, DA, TA. In the bar

chart, the CMT for each program is posted over the

corresponding bar. The first three programs test the

comprehensibility of private attributes and their average CMT

is 205.0707 which is rounded to yield 2 as the cognitive weight

for PA. The programs 4, 5, and 6 test the comprehensibility of

the default attributes and their average CMT is 323.0294 which

is rounded to yield 3 as the cognitive weight for DA. The last

three programs test the comprehensibility of protected

attributes and their average CMT is 427.3167 which is rounded

to yield 4 as the cognitive weight for TA. All the three rounded

cognitive values are given under the column Cognitive Weights

(CE) in Table 1.

Figure 1: Categorized Cognitive Weights

 Thus the calibration of difficulty in understanding the

different types or shades of invisibility of attributes in the

program has brought out distinct index as the cognitive weight

value. The calibration is done by measuring the time and effort

needed to comprehend the program as per Wang‟s

methodology [27]. The ratio of these cognitive weights

correspond to our natural intuitive understanding of difficulties

and hence more meaningful and truthful [29].

5. Validation of CWAHF Complexity Metric

The proposed and formally defined complexity metric

CWAHF is validated by the comparative study, as it is done in

earlier cases of newly proposed complexity metrics [25] [30].

The comparative study is performed against the complexity

metric AHF which is part of the most widely accepted and

empirically verified MOOD metric suite.

In order to do the comparative study, a comprehension test

was conducted to a group of students who are doing their

master‟s degree. There were forty students in the group who

participated in the test. The students were given five different

programs, P1 to P5, in Java for the comprehension test. The

time taken to complete the test in seconds was captured in the

online style, in order to maintain the accuracy. The average

time taken to comprehend each program by all students is

calculated and placed in Table 2 under the column head CMT.

The complexity values of AHF and CWAHF are calculated

DOI: 10.18535/Ijecs/v4i11.18

Francis Thamburaj
1, IJECS Volume 04 Issue 11 November, 2015 Page No.14973-14979 Page 14977

manually for each of the five programs as demonstrated in the

case study section of this article. Their values are also tabulated

in Table 2 under the column AHF and CWAHF.

Table 2: Complexity Metric Values and CMT Values

Program

AHF CWAHF CMT

P1 0.923 0.973 345.47

P2 0.88 0.9565 325.68

P3 0.8 0.9167 357.92

P4 0.83 0.9333 295.91

P5 0.75 0.875 199.89

Pearson Correlation test, based on the Table 2 values, was

conducted between the AHF and CMT. The correlation value

r(AHF, CMT) is 0.6804. Again the Pearson Correlation with

CWAHF and CMT was calculated and the value r(CWAHF,

CMT) is 0.7642. Both the correlations were found to be

positive, implying that both AHF and CWAHF correlates well

with CMT values captured in the empirical test conducted. This

shows that the CMT values are truthful and meaningful. The

bigger correlation value for CWAHF than the AHF concludes

that CWAHF is a better indicator of complexity of the classes

with various scopes of attributes. This fact is further clarified

clearly in the correlation chart given in Figure 2.

Figure 2: Correlation of AHF and CWAHF with CMT

In Figure 2, the CWAHF values are closer to the actual

comprehension mean time taken by the students to understand

the complexity of different attribute scopes in the given

programs than the values of AHF. Thus the proposed CWAHF

complexity metric, as it includes the cognitive complexity, is

proved to be more robust and more realistic complexity

metric than AHF complexity metric which considers only

the architectural complexity.

6. Experimentation and Case Study

The newly proposed, defined, and validated complexity

metric CWAHF given by Eq. (2) is evaluated here for

applicability of the metric with the following case study

program.

1: /***** Case Study Program 1 *****/

2: class C1{

3: private int i1 = 10;

4: public double d1 = 44;

5: protected float f1 = 3.3f;

6: public void getInput() {

7: ….

8: }

9: public void putOutput() {

10: ….

11: }

12: }

13: class C2 extends C1 {

14: private int i2 = 20;

15: protected float f2 = 7.7f;

16: public String str1 = "Francis";

17: double d2=3.0;

18: double d3=2.0;

19: public void getInput() {

20: ….

21: }

22: void processData() {

23: ….

24: }

25: public void putOutput() {

26: ….

27: }

28: }

29: public class C3 extends C1{

30: protected short s1=2;

31: short s2=3;

32: protected int i3=30;

33: public void calcAndDisplay() {

34: ….

35: }

36: public void getNewValues() {

37: ….

38: }

39: }

The program has three classes, namely, C1, C2, and C3. It is

a multi-level hierarchical inheritance tree. The root class C1

has one private variable „int i1‟, one public double variable

„d1‟, and one protected float variable „f1‟. The class C2 has

one private variable „int i2‟, one protected float variable „f2‟,

one public string variable „str1‟, and two default double

variables „d2‟, „d3‟. The class C3 has one protected short

variable „s1‟, one default short variable „s2‟ and one protected

variable „int i3‟. The Unified Modeling Language (UML)

diagram of the program is given in Figure 3. It gives a clear

picture of all the attributes with their scopes in different classes

of the system including the available methods in each class of

the software system.

In calculating the AHF complexity metric value, Abreu

considers all non-public methods as hidden methods [6].

Further, this complexity metric value considers only the

structural aspect of the program. Applying the Abreu‟s

complexity metric AHF as given in Eq. (1)

AHF = (2+4+3) / (3+5+3)

 = 9 / 11 = 0.8181 or 82%

Similarly, applying to the proposed complexity metric

CWAHF, the complexity value can be calculated. This

complexity metric includes both the structural complexity as

DOI: 10.18535/Ijecs/v4i11.18

Francis Thamburaj
1, IJECS Volume 04 Issue 11 November, 2015 Page No.14973-14979 Page 14978

well as the cognitive complexity of the program. Hence, in the

calculation of CWAHF, according to the type of scope, each

attribute is multiplied by the corresponding visibility type

based attribute hiding cognitive weight in both the numerator

and the denominator. The public scope attributes, which can

occur only in the denominator, are multiplied by the unit

attribute hiding cognitive weight.

CWAHF = ((2+4) + (2+4+6) + (8+3)) / (29 + (2*1))

 = (6+12+11) / (29+2)

 = 29 / 31 = 0.9355 or 94%

Figure 3: UML Diagram

Thus the case study proves the applicability of the newly

proposed and defined CWAHF. Here the complexity value of

CWAHF is greater than the complexity value of AHF, because

CWAHF is based on the combined complexity of both

structural and cognitive aspects of the program. Though the

complexity has increased, the range of complexity value is

fixed as that of AHF. That is, from 0% to 100%. This is due to

effect of normalization of the quotient by multiplication of the

denominator by the cognitive weight value of 1. This is in line

with the spirit of the formulation of AHF by Abreu [6]. Hence,

the complexity value of CWAHF becomes larger than the

complexity value of AHF, but always within the range of 0% to

100%. The higher complexity metric values are preferred,

especially above 60%. Very low values are calls for redesign of

the software system.

7. Conclusion

In this article a new complexity metric called Cognitive

Weighted Attribute Hiding Factor has been proposed and

mathematically defined for measuring the class level

complexity. The attribute hiding factor given by Abreu

measures only the structural complexity. The cognitive

weighted attribute hiding factor captures not only the structural

complexity, but also the cognitive complexity that arises due to

time and effort needed to comprehend the software. The

cognitive weights are calibrated using series of comprehension

tests and found that the cognitive load for different attribute

scopes used to hide the visibility of the attribute in other classes

differ in the increasing order from private, default, and

protected attribute scopes. The proposed CWAHF complexity

metric is more comprehensive in nature and more true to

reality. This is proved empirically by conducting a set of

comprehension tests. Further, the applicability of the

complexity metric is verified by case study. It is again

confirmed by performing the correlation analysis that

concluded saying that CWAHF is a better indicator of class

complexity, due to the encapsulation and attribute scopes, than

the AHF.

 Regarding the future works, the empirical studies can be

done with the software industry groups. The new metric can

also be empirically experimented with large number of open

source software programs. For this purpose, a software tool can

be developed for automatically calculating the CWAHF values

to compare it with other related attribute hiding complexity

metrics. Also, the CWAHF can be applied and studied for the

other object-oriented languages like C++, ADA etc.

References

[1] Voigt, Janina, Warwick Irwin, and Neville Churcher,

“Class encapsulation and object encapsulation: An

empirical study,” Computer Science and Software

Engineering, University of Canterbury, 2010.

[2] P. Rogers, "Encapsulation is not information hiding,” Java

World, http://www.javaworld/javaworld/jw-05-2001/jw-

0518-encapsulation.html, pp. 1-3, 2001.

[3] Booch, G., Maksimchuk, R., Engle, M., Young, B.,

Conallen, J., Houston, K., “Object oriented design with

applications,” Addison Wesley Professional, 2007.

[4] Tahvildari, Ladan, and Ashutosh Singh,

“Categorization of object-oriented software metrics,”

Proceedings of the IEEE Canadian Conference on

Electrical and Computer Engineering, Halifax, Nova

Scotia, pp. 235–239, May 2000.

[5] Bain Scott L., “Encapsulation as a first principle of

object-oriented design,” http://www.netobjectives.com/

resources/articles/, first-principle-object-oriented-design,

pp. 1-15, April 2004.

[6] F. B. Abreu, M. Goulao, and R. Estevers, “Toward the

design quality evaluation of object-oriented software

systems,” Proceedings of the 5th International

Conference on Software Quality, Austin, Texas, USA, pp.

44-57, 1995.

[7] Abreu, Fernando Brito, Rita Esteves, and Miguel Goulão,

“The design of Eiffel programs: Quantitative evaluation

using the mood metrics,” In Proceedings of TOOLS‟96.

California, July, 1996.

[8] F. B. Abreu, and R. Carapuça., “Object-oriented software

engineering: Measuring and controlling the development

process,” Proceedings of the 4th international conference

on software quality. vol. 186, pp. 1-8, 1994.

[9] Zoller Christian, and Axel Schmolitzky, “Measuring

inappropriate generosity with access modifiers in Java

systems,” Software Measurement and the 2012 Seventh

International Conference on Software Process and

DOI: 10.18535/Ijecs/v4i11.18

Francis Thamburaj
1, IJECS Volume 04 Issue 11 November, 2015 Page No.14973-14979 Page 14979

Product Measurement (IWSM-MENSURA), 2012 Joint

Conference of the 22nd International Workshop on.

IEEE, 2012.

[10] D. Parnas, “On the Criteria to be Used in Decomposing

Systems into Modules”, Communications of the ACM,

Vol. 15, No. 12, 1972, pp. 1053–1058, Dec. 1972.

[11] Gupta Nidhi, and Rahul Kumar, “Reliability Measurement

of Object Oriented Design: Complexity Perspective,”

International Advanced Research Journal in Science,

Engineering and Technology, vol. 2, no. 4, pp. 33-44,

April 2015.

[12] Abreu, Fernando Brito, “Using OCL to formalize object

oriented metrics definitions,” In Tutorial in 5th

International ECOOP Workshop on Quantitative

Approaches in Object-Oriented Software Engineering

(QAOOSE 2001). 2001.

[13] Cao, Yong, and Qingxin Zhu, “Improved metrics for

encapsulation based on information hiding,” Young

Computer Scientists, 2008. ICYCS 2008. The 9th

International Conference for. IEEE, 2008.

[14] Chen, J. Y., and J. F. Lu, “A new metric for object-

oriented design,” Information and Software Technology,

vol. 35, no. 4, pp. 232-240, April 1993.

[15] J. Bansiya, and C. G. Davis, “A hierarchical model for

object-oriented design quality assessment,” IEEE

Transactions on Software Engineering,” vol. 28, no. 1, pp.

4-17, 2002.

[16] Saini Sunint and Mehak Aggarwal, “Enhancing mood

metrics using encapsulation,” In ICAI, in Proceedings of

the 8th WSEAS International Conference on Automation

and Information, Vancouver, Canada, June 19-21, vol. 7,

pp. 252-257, 2007.

[17] Tempero, Ewan, “How fields are used in Java: An

empirical study,” In Australian Software Engineering

Conference, IEEE, ASWEC'09, pp. 91-100, 2009.

[18] Agrawal, A., and R. A. Khan, “Assessing and Improving

Encapsulation for Minimizing Vulnerability of an Object

Oriented Design,” Computational Intelligence and

Information Technology. Springer Berlin Heidelberg, pp.

531-533, 2011.

[19] Singh, Satwinder, and K. S. Kahlon, “Effectiveness of

encapsulation and object-oriented metrics to refactor code

and identify error prone classes using bad smells,” ACM

SIGSOFT Software Engineering Notes vol. 36, no. 5, pp.

1-10, 2011.

[20] Yadav, A., and R. A. Khan., “Development of

Encapsulated Class Complexity Metric,” Procedia

Technology, vol. 4, pp. 754-760, 2012.

[21] K.P. Srinivasan, T. Devi, “A complete and comprehensive

metrics suite for object-oriented design quality

assessment,” International Journal of Software

Engineering and Its Applications, vol. 8, no. 2, pp. 173-

188, 2014.

[22] A. Snyder, “Encapsulation and inheritance in object-

oriented programming languages,” in Conference proc. on

Objectoriented programming systems, languages and

applications (OOPSLA ‟86), Portland, OR, USA, Sep.

29–Oct. 2, pp. 38–45, 1986.

[23] Ankita Mann, Sandeep Dalal and Neetu Dabas.,

“Measurement of design complexity of different types of

inheritance using cohesion metrics”, International Journal

of Computer Applications, vol. 77, no. 3, pp. 26-32,

September 2013.

[24] Chhillar et al., “An access control metric suite for class

hierarchy of object-oriented software systems”,

International Journal of Computer and Communication

Engineering, vol. 4, no. 1, January 2015.

[25] Thamburaj Francis and A. Aloysius, “Cognitive weighted

method hiding factor complexity metric,” International

Journal of Computer Science and Software Engineering

(IJCSSE), vol. 4, no. 10, October 2015.

[26] B. F. Abreu, “Design metrics for object oriented software

system,” ECOOP‟95, Quantitative Methods Workshop,

Portugal, 1995.

[27] Y. Wang, and J. Shao, “Measurement of the cognitive

functional complexity of software,” Proc. Second IEEE

Int. Conf. Cognitive Informatics (ICCI‟03), pp. 1-6, 2003.

[28] Aloysius A., “A Cognitive Complexity Metrics Suite for

Object Oriented Design,” PhD Thesis, Bharathidasan

University, Tiruchirappalli, India, 2012.

[29] N. E. Fenton and J. Bieman, “Software metrics: A

rigorous and practical approach,” 3rd edition. CRC Press,

ISBN: 9781439838228, pp. 54, November 2014.

[30] Thamburaj Francis, A. Aloysius, “Cognitive weighted

polymorphism factor: A new cognitive complexity

metric,” World Academy of Science, Engineering and

Technology, International Science Index, Computer and

Information Engineering, vol. 2, no. 11, 2015.

Author Profile

T. Francis Thamburaj is working as Assistant

Professor in Department of Computer Science,

St. Joseph‟s College, Trichy, Tamil Nadu, India.

He has obtained the Master of Computer

Applications degree in 1987 and Master of

Philosophy degree in 2001 from Bharathidasan University,

Trichy. He has 25 years of experience in teaching Computer

Science. He is the founder of Computer Science Department in

Loyola College, Chennai, in 1993, and Information Technology

Department in St. Joseph‟s College, Trichy, in 2006. His

research areas are Artificial Neural Networks and Software

Metrics. He has published many research articles in the

National / International conferences, and journals. Notably, he

has presented, in 2011, a research paper in the World Congress

in Computer Science, Computer Engineering, and Applied

Computing (WORLDCOMP‟11), Las Vegas, USA. A list of

his research articles can be found in Google Scholar website.

He is currently pursuing Doctor of Philosophy program and his

current area of research is the Cognitive Complexity of Object

Oriented Software Metrics.

A. Aloysius is working as Assistant Professor in
Department of Computer Science, St. Joseph‟s
College, Trichy, Tamil Nadu, India. He has got
the Master of Computer Science degree in 1996,
Master of Philosophy degree in 2004, and
Doctor of Philosophy in Computer Science
degree in 2013 from Bharathidasan University,

Trichy. He has 15 years of experience in teaching and research.
He has published many research articles in the National/
International conferences and journals. He has also presented 2
research articles in the International Conferences on
Computational Intelligence and Cognitive Informatics in
Indonesia. He has acted as a chair person for many national and
international conferences. His current research areas are
Cognitive Aspects in Software Design, Big Data, and Cloud
Computing.

