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Abstract:                   

A proper mathematical model structure is required to understand the dynamics of the spread of infectious diseases. In this paper I 

have discussed about a general SIR epidemic model which represents the direct transmission of infectious disease. Local and 

global stabilities of both the disease free and the endemic equilibrium are derived by using the evaluated reproduction number 0R .   
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1.0 Introduction  

 

Any infectious diseases mainly caused by pathogenic 

microorganisms, such as viruses, bacteria, fungi and 

parasites. The diseases can spread directly or indirectly from 

one person to another or from animals to humans. These 

diseases are one of the main causes of worldwide death. In 

spite of all the advancement in medicines, infectious disease 

outbreaks still pose a significant threat to the public health 

and economy [1-6]. The spread rates of different infectious 

diseases are rising due to changes in human behavior, 

inappropriate use of antibiotic drugs, increased trade and 

travel, larger and denser cities and the emergence of new 

and resurgent pathogens. 

Mathematical modeling is a valuable tool to understand the 

dynamics of infectious diseases and to support the 

development of control strategies. A lot of Mathematical 

models for different infectious diseases were proposed by 

several researchers and scientists. Shulgin et al.[5] 

considered a simple Susceptible-Infected-Recovered (SIR) 

epidemic model with pulse vaccina-tion. In their work they 

presented that if certain conditions regarding the magnitude 

of vaccination proportion together with period of pulses are 

satisfied then the pulse vaccination leads to epidemic 

eradication. Kribs-Zaleta and Velasco-Henandez [3] 

considered a simple two dimensional SIS model with 

vaccination showing backward bifurcation. In this paper I 

have discussed the stability analysis of a general 

Susceptible-Infected-Recovered (SIR) 

epidemic model of infectious disease. I have presented both 

disease-free equilibrium and the endemic equilibrium of the 

proposed model. The local dynamics of a general SIR is 

determined by the basic reproduction number 0R  which 

depends on the parameter values. For 10 R the disease-

free equilibrium is locally asymptotically stable while for 

10 R  the endemic equilibrium exists. By using the theory 

of Lyapunov function, I have presented  the global 

asymptotic stability. 

  

2.0 Mathematical Formulation 
In this section, I formulate an epidemic model for the spread 

of a general infectious disease. I 

split the total population N(t), into three distinct subclasses 

which are susceptible S(t), infectious 

I(t) and recovered R(t). Now the model can be represented 

by the following system of differentials 

equations. 
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Here   is the recruitment and natural death rate,   is the 

effective contact rate between susceptible 

and infected individuals and    is the recovery rate of 

infected individuals.By considering the total population 

density, we have  
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The feasible region for the above system is 
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Thus   is positively invariant. 

 

3.0 Threshold Analysis 

 
Here we will discuss about the stability analysis. 

Here the disease free equilibrium point is  0,10 E . To 

find the endemic equilibrium point 
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1 , ISE   we making the right hand side of the 

system (3) equal to zero and thus we have  
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In mathematical epidemiology an important concept is 

related to the basic reproduction number 0R . As it serves as 

a threshold parameter that governs the spread of infectious 

diseases in a population.This is defined as the second 

expected number produced from just one individual in a 

susceptible population. For any infectious disease, one of 

the most important concerns is its ability to invade a 

population [2]. This can be expressed by a threshold 

parameter 0R . If 10 R , then each 

infected individual in its entire period of infectivity, will 

produce less than one infected individual on average. In 

DFE case the system is locally asymptotically stable, which 

shows that the disease will be wiped out of the population.  

If 10 R , then the each infected individual in its entire 

infective period having contact with susceptible individuals 

will produce more than one infected individual, which will 

then lead to the disease invading the susceptible population, 

and the DFE is unstable [6]. 

The linearization by Routh Hurwitz criteria around the 

endemic equilibrium point 1E in [3] is 

locally asymptotically stable for 10 R  . 

To show that the proposed system is globally asymptotically 

stable, we use the Lyapunov 

function theory for both the disease free and the endemic 

equilibrium. First we present the global 

stability of the disease-free equilibrium. 

 

Theorem 3.1. If 10 R , then the disease-free equilibrium 

0E  of the system is globally asymptotically stable on  . 

 

Proof.  To establish the global stability of the disease free 

equilibrium 0E , we construct the following Lyapunov 

function :: RV   
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Calculating the time derivative of V along the solution of 

the proposed system, we obtain 
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Hence by LaSalle’s invariance principle [4] the diseases-free 

equilibrium point 0E  is globally asymptotically stable 

on  . 

 

Theorem 3.2. The endemic equilibrium  **

1 , ISE   of 

the system is globally asymptotically stable on  . 

 

Proof.  For the global stability of the endemic equilibrium 

1E , we construct the Lyapunov function RL : , 
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Where 1W and 2W  are positive constant to be chosen latter. 

By taking the derivative of the above 

function, we have 

      


 







 SIIW

S
ISSW

dt

dL *

2

*

1
 

Considering the equilibrium point, we have 
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Hence by LaSalle’s invariance principle [4] the endemic 

equilibrium point 1E  is globally asymp- 

totically stable on .  

 

 
Figure 1. The plot shows the population of susceptible, 

infected and recovered individuals. 
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4.0 Numerical Simulation and Conclusion 

 
In this section I have used an iterative method to find the 

numerical simulation. For numerical simulation I have  

consider the parameter value μ = 0.1,  = 0.0098 and   = 

0.5. By using Runge-Kutta order 4 scheme, I have solved 

the proposed model (1).The plot in Figure1, shows the 

population of susceptible, infected and recovered 

individuals. 

The main objective of this paper is to give the idea that the 

transmission of infection can be easily studied by epidemic 

models. Analysis of the model showed that there are two 

equilibria one is disease-free equilibria 

and the other one is endemic equilibria. The local dynamics 

of the model are determined by the basic reproduction 

number 0R  which depends on the parameter values. It can 

be also observe from the analysis that for 10 R the 

disease-free equilibrium is locally asymptotically stable 

while for 10 R  the endemic equilibrium exists. 
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