
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN: 2319-7242

Volume 5 Issue 11 Nov. 2016, Page No. 18793-18794

Pavithra.K, Volume 05 Issue 11 Nov., 2016 Page No.18793-18794 Page 18793

 Data Deduplication in Parallel Mining of Frequent Item sets using

MapReduce
Pavithra.K

1

1Assistant Professor, Department of Computer Science,

KG College of Arts and Science, Coimbatore-641035, Tamilnadu, India

kpavithramsc@gmail.com

Abstract: A Parallel Frequent Item sets mining algorithm called FiDoop using MapReduce programming model. FiDoop includes the

frequent items ultrametric tree(FIU-tree), in that three MapReduce jobs are applied to complete the mining task. The scalability problem

has been addressed bythe implementation of a handful of FP-growth-like parallelFIM algorithms. InFiDoop, the mappers independently

and concurrently decompose item sets; the reducers perform combination operationsby constructing small ultrametric trees as well as

miningthese trees in parallel. Data Deduplication is one of important data compression method for erasing duplicate copies of repeating

data and reduce the amount of storage space and save bandwidth.The technique is used to improve storage space utilization and can also be

applied to reduce the number of bytes. The first MapReduce job discovers all frequent items, the second MapReduce job scans the database

to generate k-item sets by removing infrequent items, and the third MapReduce job complicated one to constructs k-FIU-tree and mines all

frequent k-item sets.

 In this paper, we applying Deduplication technique in third MapReduce job to avoid the replication of data in frequent item sets and

improve the performance. It produces highly related mining results with less time and increase the storage capacity. Hadoop supports nine

different tools, while Mahout is based on core algorithm and classifications. Having sequence algorithm to produce the output in better way.

We aim to implement recommendation algorithm using Mahout, a machine learning device, on Hadoop platform to provide a scalable

system for processing large data sets efficiently. This can be performed on such platforms for quicker performance.

Keywords: FiDoop, Parallel Mining, Frequent Item sets, Mahout.

1. Introduction

FREQUENT itemsets mining (FIM) is a core difficulty in

association rule mining (ARM), sequence mining, and the

similar to. Speeding up the procedure of FIM is critical and

crucial,because FIM expenditure accounts for a

significantsection of mining instance due to its high

computation and input/output (I/O) intensity.Frequent itemsets

mining algorithms can be divided into two categories namely,

Apriori and FP-growth schemes.Apriori is a standard algorithm

with the generate-and-test process that generates a huge number

of aspirant itemsets; Apriori has to frequently scan anwhole

database.Earlier developed parallel FIM algorithms were built

leading the Apriori algorithm. Unfortunately, in Apriori-like

parallel FIM algorithms, every processor have to check a

database several times and to exchange an unnecessary number

of candidate itemsets with other processors.Data deduplication

is a focused data compression technique for eliminating

photocopy copies of repeating data in storage. It brings a lot of

benefits, security and privacy concerns happen as users,

sensitive data are subject to both insider and outsider attacks.

Fixed encryption, while providing data privacy, is incompatible

with data deduplication. Particularly, traditional encryption

requires different users to encrypt their facts with their

individual keys. To avoid unauthorized access, a secure proof

of ownership procedure is also essential to provide the

evidence that the user indeed owns the same file when a

duplicate is establish. Hadoop has two sub-divisions namely

HDFS (Hadoop Distributed File Syetem) withMapReduce

programming model. Hadoopperfectly breaks the data into

large chunks and distributes it to its product hardware cluster

nodes for additional processing using MapReduce

programming model for distributed computing thus able to

handle large datasets.

MapReduce was initially developed by Google for

counting the no. of times a word occurs in particular document.

It works well for applications where data is stored at distributed

file system which allows local computing on each data node.

2. Association Rules

ARM provides a considered resource used for decision

support by extracting the most significant regular patterns that

concurrently happen in a large transaction database. A usual

ARM application is market basket analysis. The final object of

ARM is to notice all policy that satisfies a user-specified

minimum sustain and minimum confidence. The ARM method

can be decomposed into two phases: 1) identifying all regular

item sets whose support is better than the minimum support and

2) forming qualified implication system among the frequent

itemsets. The first stage is more demanding and difficult than

the second one. As such, most previous studies are mainly

focused on the topic of discovering frequent itemsets.

The design aim of FiDoop is to construct a mechanism that

enables repeated parallelization, load balancing, and data

sharing for parallel mining of frequent itemsets on huge

clusters. To assist the appearance of FiDoop. Aiming to

recover data storage efficiency and to prevent structure

provisional pattern bases, FiDoop incorporates the idea of FIU-

tree rather than traditional FP trees.

3. MapReduce Framework

A MapReduce program is collected of a Map()procedure

(method) that executes filtering and sorting (such as sorting

students by first name into queues, one queue for each name)

and a Reduce() method that performs a summary operation

(such as counting the number of students in each queue,

https://en.wikipedia.org/wiki/Map_%28parallel_pattern%29
https://en.wikipedia.org/wiki/Map_%28parallel_pattern%29

DOI: 10.18535/ijecs/v5i11.12

Pavithra.K, Volume 05 Issue 11 Nov., 2016 Page No.18793-18794 Page 18794

yielding name frequencies). The "MapReduce System" (also

named "infrastructure" or "framework") arranges the treating

by marshalling the distributed servers, running the various jobs

in parallel, handling all communications and data transfers

among the various parts of the system, and providing for

redundancy and fault tolerance.The model is motivated by the

map and reduce functions usually used in functional

programming, while their purpose in the MapReduce

framework is not the similar as in their unique forms. The key

helps to the MapReduce framework are not the real map and

reduce purposes, but the scalability and fault-tolerance realized

for a change of requests by optimizing the execution engine

once.As such, a single-threaded implementation of MapReduce

will usually not be earlier than a traditional (non-MapReduce)

application; any gains are typically only seen with multi-

threadedapplications. The usage of this typical beneficial only

while the improved distributed shuffle process (which reduces

network communication cost) and fault tolerance structures of

the MapReduce framework arise into tragedy. Raising the

statement cost is vital to a good MapReduce algorithm.

The three MapReduce jobs of our proposed FiDoop are

described in detail.

The first MapReduce job discovers all frequent items or fre-

quent one-itemsets (see Algorithm 2). In this phase, the input of

Map tasks is a database, and the output of Reduce tasks is all

frequent one-itemsets. The second MapReduce job scans the

database to generate k-itemsets by removing infrequent items in

each transaction The last MapReduce job—the most

complicated one of the three—constructs k-FIU-tree and mines

all frequent k-itemsets.

4. Effective four steps to Data Deduplication

Around adozen major vendors for Deduplication applications,

Irrespective of retailer implementation Data Deduplication can

be considered into four major steps:

1. Identifying the unit of comparison

2. Creating smaller unique identifier of these units to be

compared.

3. Match for duplicates

4. Saving unique data blocks

Implementation of each of these stagesdiffers from vendor to

vendor. But, the main objective of any implementation is to:

Achieve maximum Deduplication ratio (Size of Real Data /

Size of Data once Deduplication:1)Maximize Data

Deduplication quantity (Megabytes of Data Deduplicated per

sec)Minimize system resource utilization.

5. Mahout

Apache Mahout is Java carved library for machine

learning algorithms that are scalable and can be applied on the

top of Hadoop using MapReduce framework for studying Big

Data.Its an open source machine learning library from the

Apache Software Substance. It implements many data mining

algorithms similar Recommendengines (), clustering(),

classification() and is accessible to very big data sets (up to

terabytes and petabytes) that are in the Big Data realm.These

methods are also used in outlier discovery (also called anomaly

detection), which means classifying events or explanations that

do not conform to an estimated outcome, to support in

classifying fraud in online transactions, etc.The Clustering

algorithms applied in Apache Mahout are K-Means, Fuzzy K-

Means, Streaming K-Means and Spectral Clustering. Clustering

a cluster of objects includes three things:

An algorithm, which is the technique used to collection things

composed.Anidea of both similarity and dissimilarity — which

item goes to an existing stack and which must start a new

one.Aendingsituation, which capacity be the point past which

objects can’t be arranged any more, or while the stacks are

previously quite different.

6. Conclusion

 To solve the scalability and load pairedtasks in the existing

parallel mining algorithms for frequent itemsets, we functional

the MapReduceencoding model to improve a parallel frequent

itemsets mining algorithm called FiDoop. FiDoopcombines the

frequent items ultrametric tree or FIU-tree rather than

conventional FP trees, thusachiev-ing compressed storing and

avoiding the need to build qualified pattern bases. We also

offeredsome new deduplication creationssupportivecertified

duplicate check in frequent item sets Time wanted to solve the

difficult has reduced. Mahout is able to handle big data but it

still want some algorithms. The reference for single user want

to be developed for better results. . New dividing platforms like

Apache Spark are attainment prominent in the field of Big Data

analysis. Approval algorithms can be completed on such stages

for quicker performance.

References

[1] http://www.tcs.com/SiteCollectionDocuments/White%2

0Papers/HiTech_Whitepaper_Effective_Data_Dedupli

cation_Implementation_05_2011.pdf#page=5&zoom=

auto,-107,644.

[2] http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=

6802424&url=http%3A%2F%2Fieeexplore.ieee.org%

2Fxpls%2Fabs_all.jsp%3Farnumber%3D6802424.

[3] https://www.irjet.net/archives/V2/i4/Irjet-v2i418.pdf.

[4] http://www.lemenizinfotech.com/2015/hadoop/FiDoop

%20Parallel%20Mining%20of%20Frequent%20Itemse

ts%20Using%20MapReduce.pdf.

[5] http://static.googleusercontent.com/media/research.goo

gle.com/en//archive/mapreduce-osdi04.pdf.

Author Profile
Pavithra.K, received the B.Sc Computer Science degree in Sri

Ramakrishna College of Arts and Science for Women and M.Sc

Computer Science degree in Dr. G.R.Damodaran College of Science,

in 2010 and 2012 respectively. Pursuing part time Ph.D Computer

Science in Dr.G.R.Damodaran College of Science. Now, Working as

a Assistant Professor in KG College of Arts and Science,

Saravanampatti, Coimbatore- 641035, Tamilnadu, India.

https://en.wikipedia.org/wiki/Marshalling_%28computer_science%29
https://en.wikipedia.org/wiki/Redundancy_%28engineering%29
https://en.wikipedia.org/wiki/Fault-tolerant_computer_system
https://en.wikipedia.org/wiki/Map_%28higher-order_function%29
https://en.wikipedia.org/wiki/Fold_%28higher-order_function%29
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Single-threaded
https://en.wikipedia.org/wiki/Multi-threaded
https://en.wikipedia.org/wiki/Multi-threaded
http://www.tcs.com/SiteCollectionDocuments/White%20Papers/HiTech_Whitepaper_Effective_Data_Deduplication_Implementation_05_2011.pdf#page=5&zoom=auto,-107,644
http://www.tcs.com/SiteCollectionDocuments/White%20Papers/HiTech_Whitepaper_Effective_Data_Deduplication_Implementation_05_2011.pdf#page=5&zoom=auto,-107,644
http://www.tcs.com/SiteCollectionDocuments/White%20Papers/HiTech_Whitepaper_Effective_Data_Deduplication_Implementation_05_2011.pdf#page=5&zoom=auto,-107,644
http://www.tcs.com/SiteCollectionDocuments/White%20Papers/HiTech_Whitepaper_Effective_Data_Deduplication_Implementation_05_2011.pdf#page=5&zoom=auto,-107,644
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6802424&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6802424
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6802424&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6802424
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6802424&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6802424
https://www.irjet.net/archives/V2/i4/Irjet-v2i418.pdf
http://www.lemenizinfotech.com/2015/hadoop/FiDoop%20Parallel%20Mining%20of%20Frequent%20Itemsets%20Using%20MapReduce.pdf
http://www.lemenizinfotech.com/2015/hadoop/FiDoop%20Parallel%20Mining%20of%20Frequent%20Itemsets%20Using%20MapReduce.pdf
http://www.lemenizinfotech.com/2015/hadoop/FiDoop%20Parallel%20Mining%20of%20Frequent%20Itemsets%20Using%20MapReduce.pdf
http://static.googleusercontent.com/media/research.google.com/en/archive/mapreduce-osdi04.pdf
http://static.googleusercontent.com/media/research.google.com/en/archive/mapreduce-osdi04.pdf

