
www.ijecs.in
International Journal Of Engineering And Computer Science ISSN: 2319-7242
Volume 4 Issue 12 Dec 2015, Page No. 15397-15402

Mr. Murali Krishna Senapaty
a, IJECS Volume 04 Issue 12 Dec 2015 Page No.15397-15402 Page 15397

Implementing Radix Sort With Linked Buckets Using Lsd & Msd

And Their Comparitive Analysis And Discussion On Applications

Mr. Murali Krishna Senapaty
a

, Mrs. Padmaja Patel
b
, Mr. Ranjeet Panigrahi

c

a ,

b, c

Dept. of CSE, Gandhi Institute of Engineering & Technology, Gunupur, Rayagada, 765022 (India)

a
muralisenapaty@gmail.com

b
amar.padmaja@gmail.com

c
ranjeetpanigrahi@gmail.com

Abstract: Here I have presented about implementing radix sort with linked buckets concept to reduce the

memory usage for Large Data Set. In this research paper I have discussed about the various ways to

implement radix sort, problems with the radix sort, brief study of previous works of radix sort & elaborating

the use of radix sort for large data set. I try to analyse the memory usage problems of radix sort through this

algorithm. Here I have taken the help of C language to execute and analyse the algorithm.

Introduction:

Radix sort is a method that is commonly used to

sorts data with integer keys. But it is not limited to

integers; the radix sort can be useful for sorting

text, binary and floating values also. The Radix

sort can be mainly categorised in two ways i.e:

either by processing digits of each number starting

from the least significant digit(LSD) or by

processing the most significant digit (MSD).

Here we are focussing more on LSD radix sort

where the process the integer representations

starting from the least digit and move towards the

most significant digit.

But the MSD radix sort is suitable for sorting

elements in lexicographical order. The elements

can be strings and fixed length integers.[4][7]

When radix sort is used for sorting integer values,

it sorts n keys based on their individual digits

(within 0 to 9). So, the worst case time complexity

of Radix sort can be measured as O(s.n) for n keys

and the integers of word size s.[1]

Discussion on the application areas:

In many application areas the need of efficient

sorting routines are required. And basis of their

own efficiency it terms of time complexity,

amount of memory usage during sorting they are

used in different application areas. In the database

systems there is an extensive use of sorting

operations.[4]

The digital computer keeps all of the data in

electronic binary numbers, so for that it processes

the digits of integer representations by grouping of

binary representations.

Therefore it is important to view the efficient

sorting routines any programming platform. Also

with the evolution of latest computer architectures

there is a huge need to explore efficient sorting

techniques on them.

2. Related Works:

Generally Radix sort is suitable on computers

having a large memory space, parallel processors

but this method is quite fast and stable method

when there is a huge amount of dataset is to be

sorted as its time complexity purely does not

depend on the number of key values N. Radix sort

is classified by Knuth as “sorting by distribution”.

When the key values of data set have equal length

then the sorting is much faster compare to unequal

length keys. The unequal length keys increases the

no. of passes which increases time complexity. [4]

Radix sort is used by vector multiprocessors on

large set of data for executing faster than a highly

optimised library sorting. So on a dual processor

the performance of radix sort is better than all

other comparison based sorting. [5][6]. An

optimization on the parallel radix sort algorithm

http://www.ijecs.in/
mailto:muralisenapaty@gmail.com
mailto:amar.padmaja@gmail.com
https://en.wikipedia.org/wiki/Word_size

DOI: 10.18535/Ijecs/v4i12.51

Mr. Murali Krishna Senapaty
a, IJECS Volume 04 Issue 12 Dec 2015 Page No.15397-15402 Page 15398

reduces the time complexity and maintains

balanced loads on all the processors.[13]

3. Discussion of Applications :

The LSD radix sort is not suitable for sorting the

strings as it is starting with list significant digit.

The MSD radix sort is useful as it splits the strings

into groups according to their 1
st
 character and

then arrange the groups in ascending order. Then

by applying the algorithm recursively on each

group by ignoring the 1
st
 character of each string

the group can be sub divided into sub groups. Due

to it the searching for strings as per dictionary

order can also be faster.[8]

The Drawback of radix sort is if it implemented in

string and if pure English words are sorted then

also minimum 26 buckets are needed(each sublist

or bucket represents a character). If the string

contains alphanumeric words then the no. of

sublists needed even more.[9][13]

4. LSD(Least Significant Digit) Radix Sort:

The LSD Radix sort Execution steps while

implementing on integers:

 Find the count of number of digits in the

largest key in the list

 Now repeatedly execute for each digit of

keys from LSD to towards MSD

o Now read significant digit of each

key and put the key into the

respective bucket [digit]

o Recollect the keys in same order

and make a list

 The list will be sorted and stable.

Here the number of buckets is according to the

digits starting from 0 to 9. The size of bucket can

be:

 1. Fixed length 2. Variable length.

In fixed length buckets the need of memory is

large. The memory usage will be as:

 The size of fixed length bucket has to be

according to the number of keys in the list.

If the number of key elements are N, then

a bucket size will be N and total size

required for all buckets for integer sorting

is 10*N.

In focus on effective memory utilization the

buckets cane be of variable length. It is possible in

two ways:

1. The bucket can be allocated dynamically

and instantly according to the number of

times that each digit occurs in the keys of

array while retrieving digits in the order

from LSD to MSD. The buckets can

implement with array concept.

2. The buckets can be created with the help

of an array of pointer size 10 where each

pointer represents a specific digit bucket

linked list. Now while retrieving a digit

from a key, the key can be stored by

creating a node and linked to the

respective digit bucket.

Drawback: When a small lists of keys present for

sorting, then implementing LSD Radix sort proves

inefficient in terms of time complexity.[3]

4.1 : LSD Radix Sort with Fixed Length

Bucket:

It is a standard way for radix sort where the

buckets generally a two dimensional array where

the row index identifies the bucket number and

each bucket allows to store keys into them as per

the digit. [5] So, here the memory of bucket size is

fixed which are not properly used. So when a

large list of key values present it needs each

bucket of large size.

Algorithm:

Step 1: allocate 10 no. of buckets having size as

per no. of keys K to sort

Step 2: L = largest element of the keys

Step 3: N=total no. of digits in the L

[Pass represents position from LSD(least

significant digit) to MSD(Most significant digit)]

Step 4: for Pass =1 to N

Step 4.1: initialise all the buckets

Step 4.2: for i=1 to K

 get the digit from ith key from position Pass and

then Put the ith key into the bucket[digit]

 [end of for-4.2]

Step 4.3: recollect the keys in orderly from

buckets (0 to 9) and store into Array.

[end of for – 4]

Step 5: stop

4.2: Radix Sort with Bucket allocated dynamic

array:

DOI: 10.18535/Ijecs/v4i12.51

Mr. Murali Krishna Senapaty
a, IJECS Volume 04 Issue 12 Dec 2015 Page No.15397-15402 Page 15399

In this method at first each digit is obtained

from LSD towards MSD. Then by finding the

number of occurrences of each digit the

respective bucket size can be allocated. Then

according to the digit obtained the keys are

stored into the buckets.

Consider a list of keys:

180, 045, 075, 080, 002, 044, 802, 066

In the first pass the least significant digit of

each key, produces an array of bucket sizes as

follows:

Digit Key

elements

to store

No. of

keys to

store in

respective

bucket

Dynamic

Array

Created

0 180, 080 2 Created

Bucket0[2]

1 no key

values

0 No bucket

is created

2 002, 802 2 Created

Bucket2[2]

3 no key

values

0 No bucket

is created

4 044 1 Created

Bucket3[1]

5 045, 075 2 Created

Bucket5[2]

6 066 1 Created

Bucket6[1]

7 no key

values

0 No bucket

is created

8 no key

values

0 No bucket

is created

9 no key

values

0 No bucket

is created

Then the after storing based on digit obtained

the keys are recollected back to the array.

Then during 2nd pass the digit previous to

LSD is obtained and the same process is

followed to allocate memory for buckets.

Algorithm:

Step1: L = largest element of the keys in the array

list

Step 3: N=total no. of digits in the L

[Pass represents position of digit from LSD(least

significant digit) to MSD(Most significant digit)]

Step 4: for Pass =1 to N

Step 4.1: Find the sizes of each bucket based on

the count of number of occurrences of each digit

(0 to 9)

Step 4.2: initialise all the buckets from 0 to 9

according to the respective bucket sizes

Step 4.3: for i=1 to K

get the digit from ith key from position Pass and

then Put the ith key into the bucket[digit]

 [end of for-4.2]

Step 4.3: recollect the keys in orderly from

buckets (0 to 9) and store into Array.

[end of for – 4]

Step 5: stop

4.3: Radix Sort with Buckets using Linked

List:

Algorithm:

Main procedure:

Step 1: Create an array of pointer of node type

Step 2: Create array A[n], I, max, c

Step 3: Store a smallest number in max and set

c=0

Step 4: Find the largest key in the Array A[n] and

store in max

Step 5: c= Count of number of digits in max

Step 6: call LinkedBucketSort(A[n], c)

Step 7: Display the sorted list of keys from array

A[n]

Step 8: stop

Procedure LinkedBucketSort(A[n], N)

Step 1: Set unit position N1=0

Step 2: Repeated execute for each N1 less than N

 Step 2.1: Set the Bucket pointers to NULL

 Step 2.2: for (i=1 to nth index of Array)

 Step 2.2.1: digit=Extract digit from

A[i] as per N1

 Step 2.2.2: Create a new node and

store the Key A[i]

 Step 2.2.3: if bucket pointer

P[digit] is NULL then store node address

 Otherwise Insert the node

at the end of Linked list P[digit]

 [end of for-2.2]

 Step 2.3: Recollect the node and store their

Key into Array A

 [End of loop – 2]

Step 3:stop

‘C’ Program Implementation:

//Implementation using C Program for LSD radix

sort using linked buckets

#include<stdio.h>

#include<conio.h>

DOI: 10.18535/Ijecs/v4i12.51

Mr. Murali Krishna Senapaty
a, IJECS Volume 04 Issue 12 Dec 2015 Page No.15397-15402 Page 15400

#include<math.h>

#include<alloc.h>

struct node{ int info; struct node *link;};

struct node *p[10]; //an array of node pointers

void linkedbucketsort(int [],int); //function for

sorting

void main()

{

int a[10], i,max= -32767,c=0;

printf("\nenter 10 numbers");

for(i=0;i<=9;i++) { scanf("%d",&a[i]);

if(a[i]>max) max=a[i]; }

for(;max>0;max=max/10){c++;}

//max is containing the largest number

//variable c is used to contain count of digits in

max

linkedbucketsort(a,c);

printf("\nafter sorting:");

for(i=0;i<=9;i++) printf(" %d",a[i]);

getch();

}

void linkedbucketsort(int a[10],int n)

{

 int digit,i,j,n1;

 struct node *fresh,*ptr;

 n1=0; //n1 initially containing unit

position i.e: 0

 while(n1<n)

 {

 for(i=0;i<=9;i++)p[i]=NULL; //initializing

the bucket pointers to NULL

 for(i=0;i<=9;i++)

 {

 digit=int((a[i]/pow(10,n1)))%(10);

 //to extract the digit as per the position n1

 fresh=(struct node

*)malloc(sizeof(struct node));

 fresh->info=a[i];

 fresh->link=NULL;

 //Linking the node at the end of

respective Linked bucket P[digit]

 if(p[digit]==NULL)

 p[digit]=fresh;

 else

 {

 for(ptr=p[digit];ptr-

>link!=NULL; ptr=ptr->link);

 ptr->link=fresh;

 }

 }

 j=0;

 //recollecting the keys from linked buckets

into array in order.

 for(i=0;i<=9;i++)

 {

 for(ptr=p[i];ptr!=NULL; ptr=ptr-

>link)

 { a[j]=ptr->info; j++; }

 }

 n1++;

 }

}

5. MSD Radix Sort:

The MSD (most-significant-digit) Radix Sort

checks the digits in the keys in a left-to-right

order, working with the most significant digit first

and moves towards LSD. Here the key values are

divided into P ordered partitions with the help of

buckets using MSD of key values. Then each

partition is recursively sorted successively. [3][13]

The MSD radix sort works as follows in recursive

approach as:

1. Read the MSD of each key from the list.

2. Store the keys into the buckets according

to the digit obtained. Store all the elements

with the same digit into one bucket.

3. Then recursively sort each bucket, based

on the next digit to the right side onwards.

4. Finally join the buckets together to get

sorted list.

The Recursive approach makes execution is

slower so there is another modified approach to

implement MSD in more simple way:

Advantage: When a huge amount of dataset is

present then this radix sort can be useful.

5.1: MSD(Most Significant Digit) Radix Sort

with insertion sorting concept:

The performance of radix sorting method is very

poor when there is a small number of key values

https://en.wikipedia.org/wiki/Bucket_(computing)

DOI: 10.18535/Ijecs/v4i12.51

Mr. Murali Krishna Senapaty
a, IJECS Volume 04 Issue 12 Dec 2015 Page No.15397-15402 Page 15401

exist for sorting. Again if the number of digits in

each key is more that means the key elements are

big numbers then it increases the number of passes

which in turn increases time complexity

unnecessarily. [15] So in this instance after one

phase of radix sort an insertion sort can be applied

on key pointers. It in turn gives an attractive

reduction of time complexity.[3][10]

Steps to execute Modified MSD(Most Significant

Digit) Radix Sort:

1. Read the MSD of each key from the list.

2. Store the keys into the buckets according

to the digit obtained.

a. When multiple key elements

obtained digit is same then store

them using insertion sort

procedure.

3. Finally join the buckets together to get

sorted list.

If we go for MSD radix sort then its time

complexity can be measured as O(N*K) , where N

is the number of Passes and K is the time taken for

each pass. But if we implement single pass MSD

radix sort followed by insertion sort in each

buckets then the time complexity can be O(K+L)

where K is the time taken for 1
st
 pass and L is the

time measured for insertion sort operations in

buckets.

Here as insertion sort executes after radix sort, so

it needs a minimum number of changes to make

the sorted order of keys. So it increases the

efficiency of the algorithm.

5.2: MSD Radix Sort with insertion sorting

concept having Buckets using Linked List:

[2][11]Again if we go for variable length buckets

using linked list concepts then it increase the

efficiency in terms of time and space complexity.

Following elaborates using MSD Radix using

linked buckets:

Algorithm:

Step 1: Create an array of pointer of node type for

buckets and initialize to NULL

Step 3: repeatedly Obtain the MSD(most

significant digit) from each Key

Step 3.1: Create a node and store Key into it

Step 3.2: if Bucket[digit] is NULL then insert the

key node into it Otherwise Insert the Key node in

the respective position to maintain sorted order of

keys in bucket.

 [end of loop]

Step 3: recollect the keys in orderly from buckets

(0 to 9) and store into Array.

Step 4: stop

Efficiency Comparison on various radix sorting

algorithms:

Type of

radix sort

Efficiency in terms of time

and space utilization

LSD Radix

sort with

fixed size

array buckets

 The time complexity is N
2

 the amount of memory

space needed for buckets is

more.

 Useful for sorting of

integers, characters

LSD Radix

sort with

dynamic

arrays

buckets

 The time complexity is N
2

 the amount of memory

space needed for each

bucket <=total no. Of

digits.

 Useful for sorting of

integers, characters

LSD radix

sort with

linked

buckets

 The time complexity is N
2

but the amount of memory

space needed for each

bucket is less.

 Space complexity will be

affected by each node for

storing address.

 Useful for sorting of

integers, characters

MSD Radix

Sort in

recursive

method

 The Recursive process

affects the time complexity.

 Highly useful for sorting

the Strings in a large data

set

Modified

Single Pass

MSD Radix

Sort with

Insertion

Sort

 The amount of time

required to sort is lesser

than O(N
2
)

 Highly useful for a sorting

small amount of key values.

6. Conclusion:

DOI: 10.18535/Ijecs/v4i12.51

Mr. Murali Krishna Senapaty
a, IJECS Volume 04 Issue 12 Dec 2015 Page No.15397-15402 Page 15402

In the paper we have discussed on LSD Radix sort

using fixed length buckets, dynamically allocated

buckets and linked buckets. Also we have

compared the performance of MSD radix sort in

different application areas. We have observed that

MSD recursive radix sort is best suitable for string

sorting in a large data set, where as the Single

Pass MSD radix sort is best suited for a small set

of key values. Even we have observed the

effective use of memory in terms of buckets in

algorithms of LSD Radix sort using dynamic

allocated buckets.

Further we observed that Radix sort is used much

with parallel processors, Vector Processors and

Database. So when we sort a large set of data and

go for search operations the radix sort is having

attractive performance.

References:

1. https://en.wikipedia.org/wiki/Radix_sort

2. Prof.Ramesh chandra pandey, Study and

comparison of various sorting algorithms,

thapar university, Patiala.

3. The Computer Journal, Vol 30, No.1,

1990, 000, By I.J.DAVIS, Dept of

Computing and Physics, Wilfrid Laurier

University, Waterloo, Ontario, Canada

N2L 3X7

4. Avinash Shukla, Anil Kishore Saxena /

International Journal of Engineering

Research and Applications (IJERA) ISSN:

2248-9622 www.ijera.com Vol. 2, Issue 5,

September- October 2012, pp.555-560,

„Review of Radix Sort & Proposed

Modified Radix Sort for Heterogeneous

Data Set in Distributed Computing

Environment‟

5. Marco Zagha and Guy E. Blelloch, Radix

Sort For Vector Multiprocessors,

Computer Science,Carnegie Mellon

University,Pittsburgh, PA 15213-3890

6. Ahmed M. Aliyu, Dr. P. B. Zirra,

Computer Science Department, Adamawa

State University, Mubi, Nigeria,

Evaluation of Power Consumption of

Modified Bubble, Quick and Radix Sort,

Algorithm on the Dual Processor, Ahmed

M. Aliyu et al, / (IJCSIT) International

Journal of Computer Science and

Information Technologies, Vol. 5 (1) ,

2014, 956-960

7. A. Avinash Shukla1, B. Anil Kishore

Saxena 2, Modified Pure Radix Sort for

Large Heterogeneous Data Set Modified

Pure Radix Sort for Large Heterogeneous

Data Set, IOSR Journal of Computer

Engineering (IOSRJCE), ISSN: 2278-0661

Volume 3, Issue 1 (July-Aug. 2012), PP

20-23, www.iosrjournals.org

8. Arne Andersson, lund university and

Stefan nilson, Helsinki university of

technology, Implementing Radix Sort, The

ACM Journal of Experimental

Algorithmics. Volume 3, Article 7, 1998.

9. Rohit Joshi, Govind Singh Panwar, Preeti

Pathak, Dept. of CSE, GEHU,

Dehradun,India, Analysis of Non-

Comparison Based Sorting Algorithms: A

Review, International Journal of Emerging

Research in Management &Technology

ISSN: 2278-9359 (Volume-2, Issue-12)

10. https://www.cs.princeton.edu/~rs/AlgsDS0

7/18RadixSort.pdf

11. http://codersmaze.com/sorting/bucket-sort/

12. R.Sedgewick, the analysis of Quicksort

programs, Acta Informatica 7, 327-355

(1977)

13. Ame, A.A. & Stefan, N.S.Implementing

Radix Sort, A.C.M. Journal of

Experimental Algorithms, 1998.

https://en.wikipedia.org/wiki/Radix_sort
https://www.cs.princeton.edu/~rs/AlgsDS07/18RadixSort.pdf
https://www.cs.princeton.edu/~rs/AlgsDS07/18RadixSort.pdf
http://codersmaze.com/sorting/bucket-sort/

