
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN: 2319-7242

Volume 5 Issue 11 Nov. 2016, Page No. 18790-18792

Khadija Jabeen
1
 Volume 05 Issue 11 Nov., 2016 Page No.18790-18792 Page 18790

Scalability Study of Hadoop MapReduce and Hive in Big Data Analytics
Khadija Jabeen

1
, Dr TSS Balaji

2

1
B.tech, Dept. of Computer Science and Engineering, Brindavan Institute of Technology and Science, Affiliated to JNTUA,

Peddatekur, Kurnool-518218, India

khadijajabeen68@gmail.com
2
Principal, Brindavan Institute of Technology and Science, Affiliated to JNTUA, Peddatekur, Kurnool-518218, India

tssbalaji@gmail.com

Abstract: Hadoop is a data management solution for the analysis of Big Data. In Hadoop, Hive is used to store the metadata. This study

compares the scalability of Hadoop MapReduce and Hive for small and medium datasets besides showing how the metadata can be created,

loaded, accessed and stored using Hive – a data warehousing solution built on top of Hadoop. To make the comparison of scalabilities

Hadoop MapReduce and Hive, a word count program was investigated using two data management solutions- Hadoop MapReduce and

Hive. This comparison demonstrates that the Hadoop MapReduce programming model is very low level and it will make the developers write

custom programs which are hard to maintain and reuse, where as Hive uses an SQL-like query language called HiveQL to store large

amounts of data consuming less time and also plugs in the Map Reduce scripts into queries.

Keywords: Hadoop, Hadoop Map Reduce, Hive, metadata, HiveQL, HDFS.

1. Introduction

The major search engines and ecommerce companies started

wrestling with ever-growing quantities of data from the early

days of the Internet‟s mainstream breakout. In the recent past,

social networking sites experienced the same problem. Today,

many organizations realize that the data they gather is a

valuable resource for understanding their customers, the

performance of their business in the marketplace, and the

effectiveness of their infrastructure. [1]

The Hadoop ecosystem emerged as a cost-effective way of

working with such large datasets. It imposes a particular

programming model, called MapReduce, for breaking up

computation tasks into units that can be distributed around a

cluster of commodity, server class hardware, thereby providing

cost-effective, horizontal scalability [3]. Underneath this

computation model is a distributed file system called the

Hadoop Distributed File System (HDFS). Although the file

system is “pluggable,” there are now several commercial and

open source alternatives.

However, a challenge remains; how do you move an existing

data infrastructure to Hadoop, when that infrastructure is based

on traditional relational databases and the Structured Query

Language (SQL)? This is where Hive comes in. Hive provides

an SQL dialect, called Hive Query Language (abbreviated

HiveQL or just HQL) for querying data stored in a Hadoop

cluster.

Hive is best suited for data warehouse applications, where a

large data set is maintained and mined for insights, reports, etc.

Because most data warehouse applications are implemented

using SQL-based relational databases, Hive lowers the barrier

for moving these applications to Hadoop. Hive makes it easier

for developers to port SQL-based applications to Hadoop,

compared with other Hadoop languages and tools. [1]

2. Hive

While the MapReduce framework provides scalability and low-

level flexibility to run complex jobs on large data sets, it may

take several hours or even days to implement a single

MapReduce job. Recognizing this, Facebook developed Hive

based on familiar concepts of tables, columns and partitions,

providing a high-level query tool for accessing data from their

existing Hadoop warehouses [4]. The result is a data warehouse

layer built on top of Hadoop that allows for querying and

managing structured data using a built on top of Hadoop that

allows for querying and managing structured data using a

familiar SQL-like query language, HiveQL, and optional

custom MapReduce scripts that may be plugged into queries.

Hive converts HiveQL transformations to a series of

MapReduce jobs and HDFS operations.

 Figure 1: Hive Architecture

The Hive data model is organized into tables, partitions and

buckets. The tables are similar to RDBMS tables and each

corresponds to an HDFS directory. Each table can be divided

into partitions that correspond to sub-directories within an

HDFS table directory and each partition can be further divided

into buckets which are stored as files within the HDFS

directories .It is important to note that Hive was designed for

mailto:khadijajabeen68@gmail.com

DOI: 10.18535/ijecs/v5i11.11

Khadija Jabeen
1
 Volume 05 Issue 11 Nov., 2016 Page No.18790-18792 Page 18791

scalability, extensibility, and batch job handling, not for low

latency performance or real-time queries. Hive query response

times for even the smallest jobs can be of the order of several

minutes and for larger jobs.

Because Hadoop HDFS has its own way of storing records that

is in flat files in key value pair, there had to be an interface

above it which would allow users to query Hadoop by using a

language similar to SQL, this job is done by the interface

HIVE. “Hive is a data warehouse system for Hadoop that

facilitates easy data summarization, ad-hoc queries, and the

analysis of large datasets stored in Hadoop compatible file

systems. [2]

3. MapReduce

MapReduce is a programming model on top of HDFS for

processing and generating large data sets which was developed

as an abstraction of the map and reduces primitives present in

many functional languages. The abstraction of parallelization,

fault tolerance, data distribution and load balancing allows

users to parallelize large computations easily. The map and

reduce model works well for Big Data analysis because it is

inherently parallel and can easily handle data sets spanning

across multiple machines. Each MapReduce program runs in

two main phases: the map phase followed by the reduce phase.

Map Phase. The input to the map phase is the raw data. A map

function should prepare the data for input to the reducer by

mapping the key to the value for each “line” of input. The key-

value pairs output by the map function are sorted and grouped

by key before being sent to the reduce phase.

Reduce Phase. The input to the reduce phase is the output from

the map phase, where the value is an iterable list of the values

with matching keys. The reduce function should iterate through

the list and perform some operation on the data before

outputting the final result. [1,2]

Figure 2: Representation of Map and Reduce functions

Map Function

map(input_record){

...

emit(k1,v1)

...

emit(k2,v2)

...

} (1)

Reduce Function

reduce(key,values){

while(values.has_next){

aggregate=merge(values.next)

}

collect(key,aggregate)

} (1)

4. Hive vs. Regular MapReduce

The size of data sets being collected and analyzed in the

industry for business intelligence is growing rapidly, making

traditional warehousing solutions prohibitively expensive.

Hadoop is a popular open-source map-reduce implementation

which is being used as an alternative to store and process

extremely large data sets on commodity hardware. However,

the map-reduce programming model is very low level and

requires developers to write custom programs which are hard to

maintain and reuse. Whereas Hive is an open-source data

warehousing solution built on top of Hadoop. Hive supports

queries expressed in a SQL-like declarative language -

HiveQL, which are compiled into map-reduce jobs executed on

Hadoop. In addition, HiveQL supports custom map-reduce

scripts to be plugged into queries.

Hive-Metastore, contains schemas and statistics, which are

useful in data exploration and query optimization. In Facebook,

the Hive warehouse contains several thousand tables with over

700 terabytes of data and is being used extensively for both

reporting and ad-hoc analyses by more than 100 users.

5. Comparison of Hive and MapReduce

Hadoop MapReduce is a framework for processing large data

sets in parallel across a Hadoop cluster. Data analysis uses a

two-step map and reduce process. The top level unit of work in

MapReduce is a job. A job usually has a map and a reduce

phase.

The Hive data model is organized into tables, partitions and

buckets. The tables are similar to RDBMS tables and each

corresponds to an HDFS directory. Each table can be divided

into partitions that correspond to sub-directories within an

HDFS table directory and each partition can be further divided

into buckets which are stored as files within the HDFS

directories. It is important to note that Hive was designed for

scalability, extensibility, and batch job handling, not for low

latency performance or real-time queries.

5.1 Wordcount using Hive

In hive first we need to create a table for that and load data in

the form of text file into that table. Hive will perform

MapReduce job internally and it will display the data as

follows:

hadoop 2

world 2

Hive performs the MapReduce job internally and it has taken

“35.456 seconds” of time to give the above output. The output

is the count of words in the given input text file.

5.2 Wordcount using MapReduce

Consider wordcount as an example that will compare the

performance issues of both mapreduce and hive jobs. The word

count operation takes place in two stages a mapper phase and a

reducer phase. In mapper phase first the test is tokenized into

words then we form a key value pair with these words where

the key being the word itself and value „1‟. For example

consider the sentence:

“hadoop world”>file1

“hadoop world”>file2

DOI: 10.18535/ijecs/v5i11.11

Khadija Jabeen
1
 Volume 05 Issue 11 Nov., 2016 Page No.18790-18792 Page 18792

In map phase the sentence would be split as words and form the

initial key value pair as

<hadoop,1>

<world,1>

<hadoop,1>

<world,1>

In the reduce phase the keys are grouped together and the

values for similar keys are added. So here there are two pair of

similar keys „hadoop‟ and „world‟ the values for these keys

would be added so the output key value pairs would be

<hadoop,2>

<world,2>

MapReduce takes 1minute and 10.26 seconds to give the

output as count of words that are given in the input.

Finally, MapReduce has taken 1 min and 10 seconds to give the

output which is more than the time taken by hive i.e; “35.456”

seconds. This shows that Hive has surpassed the MapReduce

performance.

6. Conclusion

It can be observed from the word-count program performance

comparison between Hive and MapReduce that, Hive

performance remained constant and better for all sizes of data,

matching and surpassing MapReduce performance specially, in

case of larger data sets and can be concluded that the

scalability of Hive is very high.

References
[1] Edward Capriolo, Dean Wampler, and Jason Ruthergl,

“Programming Hive”, Tata Mc GrawHill, 1992.

[2] Tom White, “Hadoop the Definitive Guide”, 3rd Edition,

O‟Reilly Media, 2012.

[3] Apache Software Foundation, "Hadoop Releases,"

apache.org, Dec. 10, 2011. [Online]. Available:

http://en.wikipedia.org/wiki/Apache_Hadoop. [Accessed:

Dec. 06, 2014].

[4] Apache Software Foundation, "Apache Hive”, Hadoop

Releases, apache.org, Dec. 10, 2011. [Online]. Available:

http://en.wikipedia.org/wiki/Apache_Hive.[Accessed:

Mar. 09, 2016].

[5] Dean, Jeffrey, Ghemawat, Sanjay. “MapReduce:

Simplified Data Processing on Large Clusters”, OSDI,

2004.

http://en.wikipedia.org/wiki/Apache_Hadoop
http://en.wikipedia.org/wiki/Apache_Hive.%5bAccessed

