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Abstract 
 

Nanoscale technology promises dramatic increases in device density, but reliability is decreased as a side-effect. With bit-error rates 

projected to be as high as 10%, designing a usable nanoscale memory system poses a significant challenge. Storing defect information 

corresponding to every bit in the nanoscale device using a reliable storage bit is prohibitively costly. Using a Bloom filter to store a defect 

map provides better compression at the cost of a small false positive rate (us-able memory mapped as defective). Using a list-based technique 

for storing defect maps performs well for cor-related errors, but poorly for randomly distributed de-fects. In this paper, we propose an 

algorithm for parti-tioning correlated defects from random ones. The mo-tivation is to store the correlated defects using rectan-gular ranges 

in a ternary content-addressable memory (TCAM) and random defects using a Bloom filter. We believe that a combination of Bloom filter 

and small size TCAM is more effective for storing defect map at high error rate. We show the results for different correlated distributions. 

 

1  Introduction 

 
The microelectronic industry is facing dif cult chal-lenges related 

to extending integrated circuit technology beyond the scaling limit 

of CMOS[9]. Nanometer tech-nology will have smaller, faster 

transistors, but greater sensitivity to defects such as copper voids, 

lattice dislo-cations, parasitic leakage etc[4]. Moreover, increases 

in cross-coupling capacitance and mutual inductance will have a 

severe effect on the yield of memory devices.  
There have been two approaches in building nanoscale 

devices, namely self-assembly and lithogra-phy. In self-

assembly, nanostructure materials such as carbon nanotubes 

(CNT) are assembled in defined locations with reproducible 

properties. Lithography refers to top-down building 

methodology where masks are used to fabricate devices. As 

device size continues to decrease and manufacturing costs 

continue to increase, the self-assembly is predicted to become 

more popu-lar. Nanoscale devices, however, are expected to 

have high defect rates. These defects can be roughly divided 

into two classes: (i) permanent defects caused by inherent 

physical uncertainties in the manufacturing process, and (ii) 

transient faults due to lower noise tolerance or charge injection 

at reduced voltage and current levels. While the exact 

manufacturing defect rate is not yet known, defect rates as high 

as 10% have been reported[14]. This is more than eight orders 

of magnitude worse than the the rate found in current CMOS 

technology.  
A number of defect-tolerant design methods have been proposed 

[16, 21, 7, 24] to deal with high error rates. These methods either 

use redundancy such as N-fold Modular Redundancy (NMR) [8] 

which is a simple form of Error Correcting Codes (ECC) [12], or 

reconfiguration in post manufacturing process to map out the 

defective regions. Error correction provides better reliability, but at 

very high error rates the probability of a component being 

defective also increases. Therefore, a defect map is required to 

ensure correctness.  
For a nanoscale memory system, the overhead of keeping a 

reconfiguration bit for every non-reliable memory bit negates the 

density advantage offered by nanoscale memory devices as the 

overhead becomes 100%. Moreover, the reconfiguration bit has to 

be reli-able (large) making the effective overhead much greater 

than 100%. Therefore, a more compact way of storing the 

reconfiguration data is needed. Wang et al. [24] pro-posed the use 

of a Bloom filter [2] for storing the defect map and evaluated their 

scheme for uniformly-random defects. For correlated defects, 

however, keeping a list of free regions may be more efficient.  
In this paper, we focus on designing reliable memory systems 

using efficient defect maps. We focus on two mechanisms: a 

ternary content-addressable-memory (TCAM) for mapping regions 

of correlated errors and a Bloom filter for mapping uniformly 

random errors. We demonstrate that a combination of these two 
mechanisms is a promising approach for addressing a wide range 

of defect scenarios in nanoscale technolo-gies. We use the defect 

map on the level of a block of bits which reduces the overhead to a 

large extent. Error correcting codes (ECC) are used to provide 

reliability at the block level by reducing block defect rate.  
The rest of the paper is organized as follows: In sec-tion 2, 

we give a description of the related research work. In Section 3, 

we give an overview of our system model and assumptions. 

Our methodology and results are given in Sections 4 and 5 

respectively. Finally, we conclude with a perspective of our 

future work. 

 

2  Related Work 
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In this section, we rst describe the work done in the 

application of error-correction codes for developing re-liable 

memory. Then, we provide an overview of the research in 

recon guration-based approaches. We de-scribe techniques to 

store defect maps and argue for us-ing our technique.  
Error-correcting schemes have been widely used for both 

memory architectures and communication begin-ning with Von 

Neumann's seminal work on repetition codes [15]. State-of-the-art 

CMOS and disk technolo-gies, however, have very small error 

rates which are in order of one in a billion and rigorous error 

correc-tion is not always necessary. Jeffery et al.[10] pro-posed a 

3-level error correcting memory architecture for nanoscale 

memory using single- or double-error cor-recting codes, 4
th

 level 

RAID and sparing of RAID arrays. For high error rates, however, 

stronger and multiple error correcting codes such as BCH codes 

are required as investigated by Sun et al. for nanoscale de-vices 

[21]. Ou et al. [17] proposes hardware design for the decoding and 

encoding routines of Hamming codes, where the memory 

reliability is increased at the cost of only 5ns delay in the memory 

access time. Hamming codes, however, are capable of correcting a 

single error in the block of physical bits used in the encoding, and 

they become less productive for high error rates. e.g. even by using 

BCH(250,32,45) code which provides 99.9956% correctness at 

10% bit error rate in memory, 1 Byte in every 711 Bytes is 

expected to be defective. If we use only error correcting codes, we 

will require very strong and complex error correction codes 

resulting in large overhead in area and latency, and, therefore, we 

lose all the benefit of using nanoscale memory.  
Therefore, in addition to active error correction through 

encoding, we need use defect maps to store the locations of the 

faulty bits in memory devices [23]. For reconfigurable 

architectures, tile-based memory units have been proposed where 

components store the de-fect map in a distributed fashion[8, 5, 

25].The draw-back of using defect maps in the bit-level is that 

the storage overhead is usually very high. Tahoori [22] 

proposes a defect unaware design flow which identify- es 

universal defect free subsets within the partially defective 

chips, which reduces the size of the required defect map. Wang 

et al. [24] proposes the use of Bloom filters for storing defect 

maps for nanoscale devices. Hashing for every bit, however, is 

expensive computation-ally and may significantly increase the 

memory access times. The authors in [21] propose the use of 

employing CMOS memory for storing metadata to identify 

good parts of the memory using two schemes: (i) a two level 

hierarchy of CMOS and nano-device memory; (ii) a 

bootstrapping technique to store the reliable block in-formation 

in some good part of the non-reliable memory and storing this 

index in the reliable CMOS. The amount of memory to store 

the ranges increases with the sparseness of faulty memory bits. 

It can be shown that when the error rate is close to 10%, the 

number of entries in the list is very large. 
 

Error correcting codes reduce the defect rate of memory with 

the added cost of computation and redundancy. Strong error 

correcting codes (e.g. BCH(250,32,45)) are computationally 

expensive. The encoding and de-coding delay is very high. We, 

therefore propose using less complex codes such as 

concatenation of Hamming and TMR which produces 90% 

correct blocks in presence of 10% bit error rate. In this paper, 

we propose a combination of Bloom filter and TCAM based 

defect map where correlated defects are captured by the TCAM 

entries and random defects are stored in Bloom filter. 

 

3  Defect Model 

 
Proposals to scale memory into the nanoscale regime have 

involved both non-silicon and silicon technologies. In non-

silicon approaches, various techniques have been proposed 

among which most popular ones are carbon nanotubes(CNT), 

molecular switches, Spin Logic Devices, DNA etc. The key 

challenges with CNT based-devices are to: 
 

1. Grow nanotubes (NTs) and nanowires (NWs) with 

predefined electronic properties through control of 

diameter, structure, and composition,  

 
2. Position these structures in predefined locations and 

orientations, which may require sub-nanometer 

registration, and  

3. Form contacts and interfaces with desired elec-tronic 

properties and adhesion.  
 
Recent development in CNT technique achieves 90% growth 

coverage.  
Molecular electronic devices are built on the idea of tailoring 

electronic properties of individual molecules to perform logic 

operations and on the assembly of a large number of these 

functional building blocks into molecular circuits. Two-

terminal devices such as resistive switches as well as three-

terminal de-vices such as gated, transistor-like molecules are 

envi-sioned.  
Silicon based approaches focus primarily on hybrid technology 

e.g. CMOL. The basic idea of CMOL cir-cuits is to combine the 

advantages of CMOS technology (including its flexibility and high 

fabrication yield) with the extremely high potential density of 

molecular-scale two-terminal nanodevices. Relatively large critical 

dimensions of CMOS components and the bottom-up approach to 

nanodevice fabrication may keep CMOL fabrication costs at 

affordable level. The error rate in CMOL devices have been found 

to be around 15%  
CMOS scaling and manufacturing defects are some-what better 

understood than non-silicon approaches. Due to its small size, 

nanoscale device are highly prone to process disturbance which 

results in manufacturing defects. Some of the disturbances are 

local which lead to randomly distributed small defects. Global 

defects include layer misintegration and line width variation. We 

model defects as a combination of uniformly random and 

correlated defects. Uniformly random defects are derived from the 

model of Maly[13]. However, faults in VLSI circuits tend to occur 

in a clustered fashion as same defect spans over multiple elements 

in the circuit[3]. Stapper [20] observed the size of defects dis-

tribution and found that the frequency of defects follow bell-
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shaped curve. Kim et al. [11] proposed using Poisson distribution 

to model the yield of CMOS devices in presence of defect. In this 

work, we use Gaussian distribution as our correlated model.  
Preliminary evidence suggests that a combination of correlated 

and uncorrelated errors is also likely to apply to non-silicon 

technologies. As experimental evidence develops, we will re ne 

our model, but we believe that a combination of uniformly random 

and correlated defects will apply to a wide range of technologies. 
 
4  Methodology 
D ranges in the form of rectangle. When the error rate is not 

very high, a Bloom-filter-based method performs better than 

bit-vector based techniques. 2-D ranges generally perform 

better than 1-D ranges, as the correlation is spatial in nature. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: An example distribution of defects containing 
clustered and random defects 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Storing defect map using 2-D ranges in TCAM. The 

red boxes indicate the regions. 

 
We compare three schemes in this paper. In the first scheme, the 

defect map is stored in a TCAM. A Bloom filter is used in the 

second scheme and a combination of TCAM and Bloom filter is 

used in the third scheme. In the following subsections we explain 

each technique. 
 
4.1 Scheme 1: TCAM Only  
 

A TCAM provides the capability of fast searching in a 

parallel fashion, including range searching [19]. 

Defect maps can be stored using different techniques e.g. bit-

map, Bloom filter, list of ranges (linear) or 2- n rectangular 

regions covering all defects 
 

1: Create k -   mean clusters with n means   
2: Insert points in R-Tree starting with points closest to 

means  

3: Obtain set of n rectangles R using Algorithm 2  
 
Amount of usable memory. In Figure 1, we show a sample 

distribution of defects having clustered and random defects. 

The algorithm 1 obtains n rectangles covering all the defective 

region. An R-Tree [6] data structure is modified to contain two 

children per parent node. The property of R-Tree that new data 

is added to that branch of the tree which needs minimal 

increase in rectangle size makes it suitable for obtaining the 

ranges from the defect map. The problem of finding the 

optimal cover of rectangles can be mapped to 0=1 Knapsack 

problem which is NP- Complete in nature. This algorithm is 

an approximate greedy solution which targets to cover all the 

points with a minimal false positive rate such as shown in 

Figure 2. 
 
Algorithm 2 Choose n rectangular regions covering all defects 

 

1.     while number of rectangles   n≤ do   
2. Replace the branch with its children, which re-duces the 

false positive rate at maximum  

3.     end while  
 
4.2 Scheme 2: Bloom filter Only  
 

A Bloom filter [2] is a hash-based data structure that offers a 

compact way to store a set of items to support membership 

queries. A Bloom filter works as follows: A set of n elements S = 

{s1; s2; : : : ; sn } g is mapped to the Bloom filter vector B of m 

bits by a set of k inde-pendent hash functions, {H1; H2; : : : ; Hk}  

g. Each item in the set S is hashed k times, with each hash 

yielding a bit location in the Bloom filter string that is set to 1. To 

check if element x belongs to the set, we can hash it k times and 

check if all of the corresponding bits in the Bloom filter are set to 

1, otherwise x is not in the set.  
The space efficiency of Bloom filters comes with some 

percentage of false-positives since x may hash to bits in the Bloom 

filter that have been set by a different element. Therefore, Bloom 

filters are good data structures when membership queries are 

needed from a stored list of items, memory is important, and the 

effect of some false-positives can be mitigated. The false-positive 

rate is a function of the length of the Bloom 
filter string as it relates to the number of the hashed keys (n), the 

number of hash functions (k), and the hash functions' ability to 

evenly populate the Bloom lter. 
Compared to keeping a bit-vector for storing the de-fect 

map, Bloom lter performs better for low and mod-erate error 

rate. If the block error rate is r, number of blocks is N , the 

memory overheard for keeping 1 bit per b bit block is N/B 

blocks. The memory over-head for Bloom filter is frN bits i.e. 

frN=b blocks where f = m/n for bloom filter. For false positive 

rate of 5:6%, f = m/n = 6. Therefore, the overhead of Bloom 
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filter is less when the Block error rate is ≤1/6 i.e. 17%. The 

sparser the Bloom filter string, the better the false-positive rate. 

In the pa-per submitted to iccad07[1], we described a 

modification in hashing technique which performs close to the 

theoretical limit using reduced computational resource. At m/n 

= 20 the false-positive rate drops to approximately 0:18% 
0:06% percent and still take less than 6:5% of the total 

Memory. Perhaps most importantly, using this simple hash 

function, we can implement a fast Bloom filter suitable for 

memory architectures. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Storing defect map using Bloom filter. Blue boxes are 
false positives. 

 
In Figure 3, we show the effect of using Bloom filter for 

storing the defect map. The light-shaded boxes indicate the 

blocks which are marked as defective though they are 

functional. The false positive rate increases when the 

correlation in defect decreases as shown in result section, but it 

performs equally to a small TCAM. Therefore, we propose to 

use the combination of TCAM and Bloom filter as described in 

the following subsection. 
 
4.3 Scheme 3: TCAM and Bloom filter  
 

In this scheme we identify the correlated defects from 

random defects by pruning the R-Tree obtained in algorithm 1. 

We choose one node from the list of nodes obtained as result of 

algorithm 1 to re-move from the list of node and replace with 

one of its children. This node is chosen greedily such that  
Decrease in false positive / decrease in number of point’s f rom the set  
is minimum described in Algorithm 3. The scheme is illustrated 

by Figure 4 where the red boxes indicate TCAM regions and 

other defects are covered by Bloom filter. We show the 

performance in section 5. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Storing defect map in a combination of Bloom filter 

and 2-D ranges. Clusters are stored in 2-D ranges and Bloom 

filter stores sparse points. 
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Figure 5: Distribution of Defects as a combination of 
correlated and random defects 
 
correlated defects, a smaller TCAM could be used, but for random 

errors its performance degrades quickly. If the ranges are stored in 

a backing store, then the TCAM could serve the purpose of a cache 

and such an organi-zation will be the subject of future work. The 

simulation of the Bloom filter was computationally intensive, so 

our prelimary study focuses on a 2M-Byte memory. The Bloom 

filter was chosen to be 5 times the number of defects, i.e. m/n = 5. 

Effectively, the size of the Bloom filter is 1:56% of the whole 

memory. As mentioned in Section 3, we used a combination of 

random and clustered error model. The clustered defects were 

correlated by Gaussian distribution. We tested the per-formance of 

the schemes we proposed for different pro-portion of clustered and 

random errors as well as with different degree of correlation. 

Figure 6 shows the re-sults with varying proportion of correlated 

and random defects. We can observe that the combined scheme of-

fers high accuracy when there is significant spatial cor-relation in 

defects. 
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Figure 6: Comparison of false positive rate of three schemes 

with random defects. False positive rate of TCAM-based 

approach increases very fast with ran-domness as the number 

of entries is small. 
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Figure 7: Comparison of false positive rate of TCAM and 

Bloom filter based schemes with correlation con-stant of 

defect distribution. False positive rate of TCAM-based 

approach increases very fast with ran-domness as the number 

of entries are small. 
 

Figure 7 illustrates that the TCAM-based approach is 

effective only at high correlation. As we can ob-serve from 

Figure 6, however, the 128-entry TCAM is comparable in 

performance to Bloom filter whose size is 1.56% of the 

memory to achieve 10% false positive. The usefulness of the 

TCAM decreases with decreasing correlation in defect 

distribution as illustrated in Fig-ure 8. 
 
6  Conclusion 

 
In this paper, we propose to use a combination of a Bloom 

filter and a small TCAM to store the defect map of a nanoscale 

memory in a compact way. Error-correcting codes employed at 

the block level reduce the effect of random defects to great extent, 

leaving a com- 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Defects covered by TCAM and Bloom filter shown 

with variation in randomness of defects. Con-tribution of 

TCAM is low when randomness of defect is high. Bloom filter 

performs better in that stage 
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Figure 9: Distribution of points in rectangles. More populated 
the rectangle, better is its utilization 
 
bination of clustered and random defects. We proposed a greedy 

algorithm to partition the points in TCAM and Bloom filter. We 

obtained the population in the rectan-gular regions as shown in 

Figure 9. Our current algo-rithm generates large rectangles with 

low population as it tries to use all the rectangles. Hence, the 

result can be more enhanced if all the rectangles are not used. We 

will focus on this area in our future work.  
As TCAM cells are significantly more complex than RAM 

cells, the number of TCAM cells cannot be very large. Selective-

precharge-based techniques can be used to reduce the power 

requirement of TCAM[18], but to compete with the Bloom filter 

map, the TCAM area must be small. We have shown that a small 

TCAM can effi- ciently store the defect map when the defects are 

clustered. Using larger number of regions, the accuracy of 1
st
 

approach can be improved. Future work will ex-amine a 

hierarchical scheme in which ranges are stored in a backing store 

and cached in a small TCAM 

7  Future Work 

 
We observe that Bloom filter which we designed per-forms 

better for correlated data. Universal hash functions are used in 

Bloom filter which ensures uniform performance for all kinds 

of data distribution. In ideal case, we want to have the Bloom 

filter performing better for random defects than correlated 
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defects. Moreover, we observe that we need large size Bloom 

filter map when the memory size is large. We plan to cache 

the Bloom filter results in order to improve performance. To 

enhance the performance of the 1
st

 approach, we need to have 

larger list where TCAM can serve as cache for storing the 

regions. Due to locality of memory references small TCAM 

might be able to perform satisfactorily. 
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