
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume – 4 Issue - 12 December, 2015 Page No. 15328-15333

Md. Masud Parvez, IJECS Volume 04 Issue 12 December 2015,Page No.15328-15333 Page 15328

Efficient Storage of Defect Maps for Nanoscale Memory
Md. Masud Parvez,

Researcher, Bangladesh University of Engineering and Technology, (BUET).

Email: masud.magura@gmail.com

Abstract

Nanoscale technology promises dramatic increases in device density, but reliability is decreased as a side-effect. With bit-error rates

projected to be as high as 10%, designing a usable nanoscale memory system poses a significant challenge. Storing defect information

corresponding to every bit in the nanoscale device using a reliable storage bit is prohibitively costly. Using a Bloom filter to store a defect

map provides better compression at the cost of a small false positive rate (us-able memory mapped as defective). Using a list-based technique

for storing defect maps performs well for cor-related errors, but poorly for randomly distributed de-fects. In this paper, we propose an

algorithm for parti-tioning correlated defects from random ones. The mo-tivation is to store the correlated defects using rectan-gular ranges

in a ternary content-addressable memory (TCAM) and random defects using a Bloom filter. We believe that a combination of Bloom filter

and small size TCAM is more effective for storing defect map at high error rate. We show the results for different correlated distributions.

1 Introduction

The microelectronic industry is facing dif cult chal-lenges related

to extending integrated circuit technology beyond the scaling limit

of CMOS[9]. Nanometer tech-nology will have smaller, faster

transistors, but greater sensitivity to defects such as copper voids,

lattice dislo-cations, parasitic leakage etc[4]. Moreover, increases

in cross-coupling capacitance and mutual inductance will have a

severe effect on the yield of memory devices.
There have been two approaches in building nanoscale

devices, namely self-assembly and lithogra-phy. In self-

assembly, nanostructure materials such as carbon nanotubes

(CNT) are assembled in defined locations with reproducible

properties. Lithography refers to top-down building

methodology where masks are used to fabricate devices. As

device size continues to decrease and manufacturing costs

continue to increase, the self-assembly is predicted to become

more popu-lar. Nanoscale devices, however, are expected to

have high defect rates. These defects can be roughly divided

into two classes: (i) permanent defects caused by inherent

physical uncertainties in the manufacturing process, and (ii)

transient faults due to lower noise tolerance or charge injection

at reduced voltage and current levels. While the exact

manufacturing defect rate is not yet known, defect rates as high

as 10% have been reported[14]. This is more than eight orders

of magnitude worse than the the rate found in current CMOS

technology.
A number of defect-tolerant design methods have been proposed

[16, 21, 7, 24] to deal with high error rates. These methods either

use redundancy such as N-fold Modular Redundancy (NMR) [8]

which is a simple form of Error Correcting Codes (ECC) [12], or

reconfiguration in post manufacturing process to map out the

defective regions. Error correction provides better reliability, but at

very high error rates the probability of a component being

defective also increases. Therefore, a defect map is required to

ensure correctness.
For a nanoscale memory system, the overhead of keeping a

reconfiguration bit for every non-reliable memory bit negates the

density advantage offered by nanoscale memory devices as the

overhead becomes 100%. Moreover, the reconfiguration bit has to

be reli-able (large) making the effective overhead much greater

than 100%. Therefore, a more compact way of storing the

reconfiguration data is needed. Wang et al. [24] pro-posed the use

of a Bloom filter [2] for storing the defect map and evaluated their

scheme for uniformly-random defects. For correlated defects,

however, keeping a list of free regions may be more efficient.
In this paper, we focus on designing reliable memory systems

using efficient defect maps. We focus on two mechanisms: a

ternary content-addressable-memory (TCAM) for mapping regions

of correlated errors and a Bloom filter for mapping uniformly

random errors. We demonstrate that a combination of these two
mechanisms is a promising approach for addressing a wide range

of defect scenarios in nanoscale technolo-gies. We use the defect

map on the level of a block of bits which reduces the overhead to a

large extent. Error correcting codes (ECC) are used to provide

reliability at the block level by reducing block defect rate.
The rest of the paper is organized as follows: In sec-tion 2,

we give a description of the related research work. In Section 3,

we give an overview of our system model and assumptions.

Our methodology and results are given in Sections 4 and 5

respectively. Finally, we conclude with a perspective of our

future work.

2 Related Work

http://www.ijecs.in/

Md. Masud Parvez, IJECS Volume 04 Issue 12 December 2015,Page No.15328-15333 Page 15329

In this section, we rst describe the work done in the

application of error-correction codes for developing re-liable

memory. Then, we provide an overview of the research in

recon guration-based approaches. We de-scribe techniques to

store defect maps and argue for us-ing our technique.
Error-correcting schemes have been widely used for both

memory architectures and communication begin-ning with Von

Neumann's seminal work on repetition codes [15]. State-of-the-art

CMOS and disk technolo-gies, however, have very small error

rates which are in order of one in a billion and rigorous error

correc-tion is not always necessary. Jeffery et al.[10] pro-posed a

3-level error correcting memory architecture for nanoscale

memory using single- or double-error cor-recting codes, 4
th

 level

RAID and sparing of RAID arrays. For high error rates, however,

stronger and multiple error correcting codes such as BCH codes

are required as investigated by Sun et al. for nanoscale de-vices

[21]. Ou et al. [17] proposes hardware design for the decoding and

encoding routines of Hamming codes, where the memory

reliability is increased at the cost of only 5ns delay in the memory

access time. Hamming codes, however, are capable of correcting a

single error in the block of physical bits used in the encoding, and

they become less productive for high error rates. e.g. even by using

BCH(250,32,45) code which provides 99.9956% correctness at

10% bit error rate in memory, 1 Byte in every 711 Bytes is

expected to be defective. If we use only error correcting codes, we

will require very strong and complex error correction codes

resulting in large overhead in area and latency, and, therefore, we

lose all the benefit of using nanoscale memory.
Therefore, in addition to active error correction through

encoding, we need use defect maps to store the locations of the

faulty bits in memory devices [23]. For reconfigurable

architectures, tile-based memory units have been proposed where

components store the de-fect map in a distributed fashion[8, 5,

25].The draw-back of using defect maps in the bit-level is that

the storage overhead is usually very high. Tahoori [22]

proposes a defect unaware design flow which identify- es

universal defect free subsets within the partially defective

chips, which reduces the size of the required defect map. Wang

et al. [24] proposes the use of Bloom filters for storing defect

maps for nanoscale devices. Hashing for every bit, however, is

expensive computation-ally and may significantly increase the

memory access times. The authors in [21] propose the use of

employing CMOS memory for storing metadata to identify

good parts of the memory using two schemes: (i) a two level

hierarchy of CMOS and nano-device memory; (ii) a

bootstrapping technique to store the reliable block in-formation

in some good part of the non-reliable memory and storing this

index in the reliable CMOS. The amount of memory to store

the ranges increases with the sparseness of faulty memory bits.

It can be shown that when the error rate is close to 10%, the

number of entries in the list is very large.

Error correcting codes reduce the defect rate of memory with

the added cost of computation and redundancy. Strong error

correcting codes (e.g. BCH(250,32,45)) are computationally

expensive. The encoding and de-coding delay is very high. We,

therefore propose using less complex codes such as

concatenation of Hamming and TMR which produces 90%

correct blocks in presence of 10% bit error rate. In this paper,

we propose a combination of Bloom filter and TCAM based

defect map where correlated defects are captured by the TCAM

entries and random defects are stored in Bloom filter.

3 Defect Model

Proposals to scale memory into the nanoscale regime have

involved both non-silicon and silicon technologies. In non-

silicon approaches, various techniques have been proposed

among which most popular ones are carbon nanotubes(CNT),

molecular switches, Spin Logic Devices, DNA etc. The key

challenges with CNT based-devices are to:

1. Grow nanotubes (NTs) and nanowires (NWs) with

predefined electronic properties through control of

diameter, structure, and composition,

2. Position these structures in predefined locations and

orientations, which may require sub-nanometer

registration, and

3. Form contacts and interfaces with desired elec-tronic

properties and adhesion.

Recent development in CNT technique achieves 90% growth

coverage.
Molecular electronic devices are built on the idea of tailoring

electronic properties of individual molecules to perform logic

operations and on the assembly of a large number of these

functional building blocks into molecular circuits. Two-

terminal devices such as resistive switches as well as three-

terminal de-vices such as gated, transistor-like molecules are

envi-sioned.
Silicon based approaches focus primarily on hybrid technology

e.g. CMOL. The basic idea of CMOL cir-cuits is to combine the

advantages of CMOS technology (including its flexibility and high

fabrication yield) with the extremely high potential density of

molecular-scale two-terminal nanodevices. Relatively large critical

dimensions of CMOS components and the bottom-up approach to

nanodevice fabrication may keep CMOL fabrication costs at

affordable level. The error rate in CMOL devices have been found

to be around 15%
CMOS scaling and manufacturing defects are some-what better

understood than non-silicon approaches. Due to its small size,

nanoscale device are highly prone to process disturbance which

results in manufacturing defects. Some of the disturbances are

local which lead to randomly distributed small defects. Global

defects include layer misintegration and line width variation. We

model defects as a combination of uniformly random and

correlated defects. Uniformly random defects are derived from the

model of Maly[13]. However, faults in VLSI circuits tend to occur

in a clustered fashion as same defect spans over multiple elements

in the circuit[3]. Stapper [20] observed the size of defects dis-

tribution and found that the frequency of defects follow bell-

Md. Masud Parvez, IJECS Volume 04 Issue 12 December 2015,Page No.15328-15333 Page 15330

shaped curve. Kim et al. [11] proposed using Poisson distribution

to model the yield of CMOS devices in presence of defect. In this

work, we use Gaussian distribution as our correlated model.
Preliminary evidence suggests that a combination of correlated

and uncorrelated errors is also likely to apply to non-silicon

technologies. As experimental evidence develops, we will re ne

our model, but we believe that a combination of uniformly random

and correlated defects will apply to a wide range of technologies.

4 Methodology
D ranges in the form of rectangle. When the error rate is not

very high, a Bloom-filter-based method performs better than

bit-vector based techniques. 2-D ranges generally perform

better than 1-D ranges, as the correlation is spatial in nature.

Figure 1: An example distribution of defects containing
clustered and random defects

Figure 2: Storing defect map using 2-D ranges in TCAM. The

red boxes indicate the regions.

We compare three schemes in this paper. In the first scheme, the

defect map is stored in a TCAM. A Bloom filter is used in the

second scheme and a combination of TCAM and Bloom filter is

used in the third scheme. In the following subsections we explain

each technique.

4.1 Scheme 1: TCAM Only

A TCAM provides the capability of fast searching in a

parallel fashion, including range searching [19].

Defect maps can be stored using different techniques e.g. bit-

map, Bloom filter, list of ranges (linear) or 2- n rectangular

regions covering all defects

1: Create k - mean clusters with n means
2: Insert points in R-Tree starting with points closest to

means

3: Obtain set of n rectangles R using Algorithm 2

Amount of usable memory. In Figure 1, we show a sample

distribution of defects having clustered and random defects.

The algorithm 1 obtains n rectangles covering all the defective

region. An R-Tree [6] data structure is modified to contain two

children per parent node. The property of R-Tree that new data

is added to that branch of the tree which needs minimal

increase in rectangle size makes it suitable for obtaining the

ranges from the defect map. The problem of finding the

optimal cover of rectangles can be mapped to 0=1 Knapsack

problem which is NP- Complete in nature. This algorithm is

an approximate greedy solution which targets to cover all the

points with a minimal false positive rate such as shown in

Figure 2.

Algorithm 2 Choose n rectangular regions covering all defects

1. while number of rectangles n≤ do
2. Replace the branch with its children, which re-duces the

false positive rate at maximum

3. end while

4.2 Scheme 2: Bloom filter Only

A Bloom filter [2] is a hash-based data structure that offers a

compact way to store a set of items to support membership

queries. A Bloom filter works as follows: A set of n elements S =

{s1; s2; : : : ; sn } g is mapped to the Bloom filter vector B of m

bits by a set of k inde-pendent hash functions, {H1; H2; : : : ; Hk}

g. Each item in the set S is hashed k times, with each hash

yielding a bit location in the Bloom filter string that is set to 1. To

check if element x belongs to the set, we can hash it k times and

check if all of the corresponding bits in the Bloom filter are set to

1, otherwise x is not in the set.
The space efficiency of Bloom filters comes with some

percentage of false-positives since x may hash to bits in the Bloom

filter that have been set by a different element. Therefore, Bloom

filters are good data structures when membership queries are

needed from a stored list of items, memory is important, and the

effect of some false-positives can be mitigated. The false-positive

rate is a function of the length of the Bloom
filter string as it relates to the number of the hashed keys (n), the

number of hash functions (k), and the hash functions' ability to

evenly populate the Bloom lter.
Compared to keeping a bit-vector for storing the de-fect

map, Bloom lter performs better for low and mod-erate error

rate. If the block error rate is r, number of blocks is N , the

memory overheard for keeping 1 bit per b bit block is N/B

blocks. The memory over-head for Bloom filter is frN bits i.e.

frN=b blocks where f = m/n for bloom filter. For false positive

rate of 5:6%, f = m/n = 6. Therefore, the overhead of Bloom

Md. Masud Parvez, IJECS Volume 04 Issue 12 December 2015,Page No.15328-15333 Page 15331

filter is less when the Block error rate is ≤1/6 i.e. 17%. The

sparser the Bloom filter string, the better the false-positive rate.

In the pa-per submitted to iccad07[1], we described a

modification in hashing technique which performs close to the

theoretical limit using reduced computational resource. At m/n

= 20 the false-positive rate drops to approximately 0:18%
0:06% percent and still take less than 6:5% of the total

Memory. Perhaps most importantly, using this simple hash

function, we can implement a fast Bloom filter suitable for

memory architectures.

Figure 3: Storing defect map using Bloom filter. Blue boxes are
false positives.

In Figure 3, we show the effect of using Bloom filter for

storing the defect map. The light-shaded boxes indicate the

blocks which are marked as defective though they are

functional. The false positive rate increases when the

correlation in defect decreases as shown in result section, but it

performs equally to a small TCAM. Therefore, we propose to

use the combination of TCAM and Bloom filter as described in

the following subsection.

4.3 Scheme 3: TCAM and Bloom filter

In this scheme we identify the correlated defects from

random defects by pruning the R-Tree obtained in algorithm 1.

We choose one node from the list of nodes obtained as result of

algorithm 1 to re-move from the list of node and replace with

one of its children. This node is chosen greedily such that
Decrease in false positive / decrease in number of point’s f rom the set
is minimum described in Algorithm 3. The scheme is illustrated

by Figure 4 where the red boxes indicate TCAM regions and

other defects are covered by Bloom filter. We show the

performance in section 5.

Figure 4: Storing defect map in a combination of Bloom filter

and 2-D ranges. Clusters are stored in 2-D ranges and Bloom

filter stores sparse points.

 2000

 Defects

 1800

 1600

 1400

R
o

w
 1200

1000

800

 600

 400

 200

 0

0 500 1000 1500 2000 2500

 Column

 (a) Bit level distribution

 2500
Defects

 2000

R
o

w
 1500

1000

 500

 0

 0 1 2 3 4 5 6 7

 Column

(b) Zoomed in (c) Block level distribution

view of a cluster

Figure 5: Distribution of Defects as a combination of
correlated and random defects

correlated defects, a smaller TCAM could be used, but for random

errors its performance degrades quickly. If the ranges are stored in

a backing store, then the TCAM could serve the purpose of a cache

and such an organi-zation will be the subject of future work. The

simulation of the Bloom filter was computationally intensive, so

our prelimary study focuses on a 2M-Byte memory. The Bloom

filter was chosen to be 5 times the number of defects, i.e. m/n = 5.

Effectively, the size of the Bloom filter is 1:56% of the whole

memory. As mentioned in Section 3, we used a combination of

random and clustered error model. The clustered defects were

correlated by Gaussian distribution. We tested the per-formance of

the schemes we proposed for different pro-portion of clustered and

random errors as well as with different degree of correlation.

Figure 6 shows the re-sults with varying proportion of correlated

and random defects. We can observe that the combined scheme of-

fers high accuracy when there is significant spatial cor-relation in

defects.

Md. Masud Parvez, IJECS Volume 04 Issue 12 December 2015,Page No.15328-15333 Page 15332

 100

 90

 80

(%
)

70

R
a
te

60

P
o

s
it
iv

e

50

40

F
a

ls
e

30

 20

10

 128 Entry TCAM

 Bloom filter

 Combination

 100 80 60 40 20 0

Correlated Defects (%)

Figure 6: Comparison of false positive rate of three schemes

with random defects. False positive rate of TCAM-based

approach increases very fast with ran-domness as the number

of entries is small.

 100

R
a
te

 (
%

)

F
a

ls
e
 P

o
s
it
iv

e

10

 128 Entry TCAM

1 Bloom filter

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Correlation Constant (rho)

Figure 7: Comparison of false positive rate of TCAM and

Bloom filter based schemes with correlation con-stant of

defect distribution. False positive rate of TCAM-based

approach increases very fast with ran-domness as the number

of entries are small.

Figure 7 illustrates that the TCAM-based approach is

effective only at high correlation. As we can ob-serve from

Figure 6, however, the 128-entry TCAM is comparable in

performance to Bloom filter whose size is 1.56% of the

memory to achieve 10% false positive. The usefulness of the

TCAM decreases with decreasing correlation in defect

distribution as illustrated in Fig-ure 8.

6 Conclusion

In this paper, we propose to use a combination of a Bloom

filter and a small TCAM to store the defect map of a nanoscale

memory in a compact way. Error-correcting codes employed at

the block level reduce the effect of random defects to great extent,

leaving a com-

Figure 8: Defects covered by TCAM and Bloom filter shown

with variation in randomness of defects. Con-tribution of

TCAM is low when randomness of defect is high. Bloom filter

performs better in that stage

 30

in
 r

e
c
ta

n
g

le
(%

)

25

20

to
ta

l
p

o
in

ts

15

10

o
f

F
ra

c
ti
o

n

5

 0

 0 10 20 30 40 50 60 70 80 90 100

Point population in rectangle (%)

Figure 9: Distribution of points in rectangles. More populated
the rectangle, better is its utilization

bination of clustered and random defects. We proposed a greedy

algorithm to partition the points in TCAM and Bloom filter. We

obtained the population in the rectan-gular regions as shown in

Figure 9. Our current algo-rithm generates large rectangles with

low population as it tries to use all the rectangles. Hence, the

result can be more enhanced if all the rectangles are not used. We

will focus on this area in our future work.
As TCAM cells are significantly more complex than RAM

cells, the number of TCAM cells cannot be very large. Selective-

precharge-based techniques can be used to reduce the power

requirement of TCAM[18], but to compete with the Bloom filter

map, the TCAM area must be small. We have shown that a small

TCAM can effi- ciently store the defect map when the defects are

clustered. Using larger number of regions, the accuracy of 1
st

approach can be improved. Future work will ex-amine a

hierarchical scheme in which ranges are stored in a backing store

and cached in a small TCAM

7 Future Work

We observe that Bloom filter which we designed per-forms

better for correlated data. Universal hash functions are used in

Bloom filter which ensures uniform performance for all kinds

of data distribution. In ideal case, we want to have the Bloom

filter performing better for random defects than correlated

Md. Masud Parvez, IJECS Volume 04 Issue 12 December 2015,Page No.15328-15333 Page 15333

defects. Moreover, we observe that we need large size Bloom

filter map when the memory size is large. We plan to cache

the Bloom filter results in order to improve performance. To

enhance the performance of the 1
st

 approach, we need to have

larger list where TCAM can serve as cache for storing the

regions. Due to locality of memory references small TCAM

might be able to perform satisfactorily.

References
[1] S. Biswas, T. S. Metodi, G. Wang, F. T. Chong, and R.

Kastner. Combining static and dynamic defect-tolerance

techniques for nanoscale mem-ory systems. Submitted to

ICCAD 2007, Avail-able at http://cs.ucsb.edu/

susmit/papers/iccad-nano07.pdf.

[2] B. H. Bloom. Space/time trade-offs in hash cod-ing with

allowable errors. Communications of the ACM,

13(7):422–426, 1970.

[3] D. Blough and A. Pelc. A clustered failure model for the

memory array recon guration problem.

IEEE Transactions on Computers, 42(5):518–528, 1993.
[4] L. Chen, S. Dey, P. Sanchez, K. Sekar, and Y. Chen.

Embedded hardware and software self-testing

methodologies for processor cores. In Pro-
ceeding of the 37th Design Automation Confer-ence,

pages 625 – 630, June 2000.
[5] A. DeHon and K. K. Likharev. Hybrid

cmos/nanoelectronic digital circuits: devices, ar-

chitectures, and design automation. In ICCAD '05:

Proceedings of the 2005 IEEE/ACM Inter-national

conference on Computer-aided design, pages 375–382,

2005.

[6] A. Guttman. R-trees: a dynamic index structure for

spatial searching. pages 599–609, 1988.

[7] J. Han, J. Gao, Y. Qi, P. Jonker, and J. A. B. Fortes.

Toward hardware-redundant, fault-tolerant logic for

nanoelectronics. IEEE Des. Test, 22(4):328– 339, 2005.

[8] C. He, M. Jacome, and G. de Veciana. Scalable de-fect

mapping and con guration of memory-based nanofabrics.

In IEEE International High- Level

Design, Validation and Test Workshop (HLDVT), 2005.
[9] ITRS. International Technology Roadmap For

Semiconductors - 2006 Edition. Semiconductor Industry

Association, 2006.

[10] C. M. Jeffery, A. Basagalar, and R. J. O. Figueiredo.

Dynamic sparing and error correction techniques for

fault tolerance in nanoscale mem-ory structures. In 4th

IEEE Conference on Nan-otechnology, 2004.

[11] T. Kim and W. Kuo. Modeling manufacturing yield and

reliability. Semiconductor Manufactur-ing, IEEE

Transactions on, 12(4):485–492, 1999.

[12] S. Lin and D. J. Costello. Error Control Coding, Second

Edition. Prentice-Hall, Inc., Upper Saddle River, NJ,

USA, 2004.

[13] W. Maly. Realistic fault modeling for vlsi testing. In DAC

'87: Proceedings of the 24th ACM/IEEE conference on

Design automation, pages 173– 180, New York, NY, USA,

1987. ACM Press.

[14] M. Mishra and S. Goldstein. Defect tolerance at the end

of the roadmap. In ITC, pages 1201–1211, 2003.

[15] J. V. Neuman. Probabilistic logic and the synthe-sis of

reliable organisms from unreliable compo-nents.

Automata Series, Editors: C. Shannon and
J. McCarthy, Princeton Univ. Press, pages 43–98, 1956.

[16] G. Norman, D. Parker, M. Kwiatkowska, and

S. K. Shukla. Evaluating the reliability of defect-tolerant

architectures for nanotechnology with probabilistic

model checking. In VLSID '04: Pro-

ceedings of the 17th International Conference on VLSI

Design, page 907.
[17] E. Ou and W. Yang. Fast error-correcting circuits for

fault-tolerant memory. In MTDT, pages 8–12, 2004.

[18] V. Ravikumar, R. N. Mahapatra, and L. N. Bhuyan.

Easecam: An energy and storage ef - cient tcam-based

router architecture for ip lookup.
IEEE Transactions on Computers, 54(5):521–533, 2005.

[19] S. Sharma and R. Panigrahy. Sorting and search-ing

using ternary cams. HOTI, 00:101, 2002.

[20] C. H. Stapper. On yield, fault distributions, and

clustering of particles. IBM J. Res. Dev., 30(3):326–338,

1986.

[21] F. Sun and T. Zhang. Two fault tolerance de-sign

approaches for hybrid cmos/nanodevice dig-ital

memories. In IEEE International Workshop on Defect

and Fault Tolerant Nanoscale Architec-tures

(Nanoarch), 2006.

[22] M. B. Tahoori. A mapping algorithm for defect-tolerance

of recon gurable nano-architectures. In

ICCAD '05: Proceedings of the 2005 IEEE/ACM
International conference on Computer-aided de-sign,

pages 668–672.

[23] J. Vollrath, U. Lederer, and T. Hladschik. Com-pressed

bit fail maps for memory fail pattern clas-si cation. J.

Electron. Test., 17(3-4):291–297, 2001.

[24] G. Wang, W. Gong, and R. Kastner. Defect-tolerant

nanocomputing using bloom lters. In IC-CAD 2006,

November 2006.

[25] M. Ziegler and M. Stan. CMOS/nano co-design for

crossbar-based molecular electronic systems.

IEEE Transactions on Nanotechnology, 2:217– 230,

2003.

