
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume – 4 Issue - 12 December, 2015 Page No. 15274-15280

Hina Rani
1
,IJECS Volume 04 Issue 12 December 2015,Page No.15274-15280 Page 15274

Http Streaming Based Ajax Player

Hina Rani
1
, Khushboo Bansal

2

1
Dept. of Computer Science engineering, Desh Bhagat University , Mandi Gobindgarh ,India

hinu30.mittal@gmail.com
2
Dept. of computer science engineering, Desh Bhagat University, Mandi Gobindgarh, India

 bansal_khushboo@gmail.com

Abstract: In the previous couple of years streaming of video on the web has encountered quick development

and will keep on expanding in significance as broadband innovations and authoring tools keep on making

strides. As the internet turns into an inexorably famous alternative to traditional communications media,

internet streaming will turn into a critical segment of numerous content providers’ communications strategy.

In this paper we proposed a solution to HTTP live streaming, which assesses the weights of media segments

to choose the transmitting needs taking into account the present playing time and alter the proper

transmission path.

Keywords: Streaming, HTTP, Video, Adaption, Ajax, Dynamic

I. INTRODUCTION

The internet broadband revolution is likely to

significantly change the way that we interact with

computers and the internet as a whole. Internet

streaming is expected to play an increasingly

important role in an on-line world with high

bandwidth connections. However even when end-

users have high-bandwidth connections to the

Internet, the problem of distributing the content to

them will be a limiting factor for any content

provider that wants to reach that audience.

Video traffic is becoming the dominant share of

Internet traffic today [5]. This growth in video is

accompanied, and in large part driven, by a key

technology trend: the shift from customized

connection-oriented video transport protocols (e.g.,

RTMP [9]) to HTTP-based adaptive streaming

protocols (e.g., [10-13]).

With an HTTP-based adaptive streaming

protocol, a video player can dynamically (at the

granularity of seconds) adjust the video bit rate

based on the available network bandwidth. As video

traffic is expected to dominate Internet traffic [5],

the design of robust adaptive HTTP streaming

algorithms is important not only for the performance

of video applications, but also the performance of

the Internet as a whole. Drawing an analogy to the

early days of the Internet, a robust TCP was critical

to prevent “congestion collapse” [15]; we are

potentially at a similar juncture today with respect to

HTTP streaming protocols. Building on this high-

level analogy, it is evident that the design of a robust

adaptive video algorithm must look beyond a single

player view to account for the interactions across

multiple adaptive streaming players [16] that

compete at bottleneck links. In this respect, there are

three (potentially conflicting) goals that a robust

adaptive video algorithm must strive to achieve:

• Fairness: Multiple competing players sharing a

bottleneck link should be able to converge to an

equitable allocation of the network resources.

• Efficiency: A group of players must choose the

highest feasible set of bitrates to maximize the user

experience.

• Stability: A player should avoid needless bitrate

switches as this can adversely affect the user

experience. Recent measurements show that two

widely used commercial solutions fail to achieve one

or more of these properties when two players

compete at a bottleneck link [17]. We extend these

experiments (Section 2) and confirm that the

problems manifest across many state-of-art HTTP

adaptive streaming protocols: Smooth Streaming

[12], Netflix [18], Adobe OSMF [7], and Akamai

HD [8]. Furthermore, these problems worsen as the

number of competing players increases.

II. DESIGN PRINCIPLES

HTTP-based progressive download does have

significant market adoption. Therefore, HTTP-based

streaming should be as closely aligned to HTTP-

http://www.ijecs.in/

DOI: 10.18535/Ijecs/v4i12.32

Hina Rani
1
,IJECS Volume 04 Issue 12 December 2015,Page No.15274-15280 Page 15275

based progressive download as possible, but take

into account the above-mentioned deficiencies.

Figure 2 shows a possible media distribution

architecture for HTTP-based streaming. The media

preparation process typically generates segments

that contain different encoded versions of one or

several of the media components of the media

content. The segments are then hosted on one or

several media origin servers typically, along with the

media presentation description (MPD). The media

origin server is preferably an HTTP server such that

any communication with the server is HTTP-based

(indicated by a bold line in the picture). Based on

this MPD metadata information that describes the

relation of the segments and how they form a media

presentation, clients request the segments using

HTTP GET or partial GET methods. The client fully

controls the streaming session, i.e., it manages the

on-time request and smooth play out of the sequence

of segments, potentially adjusting bitrates or other

attributes, for example to react to changes of the

device state or the user preferences. Massively

scalable media distribution requires the availability

of server farms to handle the connections to all

individual clients. HTTP-based Content Distribution

Networks (CDNs) have successfully been used to

serve Web pages, offloading origin servers and

reducing download latency. Such systems generally

consist of a distributed set of caching Web proxies

and a set of request redirectors. Given the scale,

coverage, and reliability of HTTP based CDN

systems, it is appealing to use them as base to launch

streaming services that build on this existing

infrastructure. This can reduce capital and

operational expenses, and reduces or eliminates

decisions about resource provisioning on the nodes.

This principle is indicated in Figure 2 by the

intermediate HTTP servers/caches/proxies.

Scalability, reliability, and proximity to the user’s

location and high-availability are provided by

general purpose servers. The reasons that lead to the

choice of HTTP as the delivery protocol for

streaming services are summarized below:

1. HTTP streaming is spreading widely as a

form of delivery of Internet video.

2. There is a clear trend towards using HTTP as

the main protocol for multimedia delivery

over the Open Internet.

3. HTTP-based delivery enables easy and

effortless streaming services by avoiding

NAT and firewall traversal issues.

4. HTTP-based delivery provides reliability and

deployment simplicity due as HTTP and the

underlying TCP/IP protocol are widely

implemented and deployed.

5. HTTP-based delivery provides the ability to

use standard HTTP servers and standard

HTTP caches (or cheap servers in general) to

deliver the content, so that it can be delivered

from a CDN or any other standard server

farm.

6. HTTP-based delivery provides the ability to

move control of “streaming session” entirely

to the client. The client basically only opens

one or several or many TCP connections to

one or several standard HTTP servers or

caches.

7. HTTP-based delivery provides the ability to

the client to automatically choose initial

content rate to match initial available

bandwidth without requiring the negotiation

with the streaming server.

8. HTTP-based delivery provides a simple

means to seamlessly change content rate on-

the-fly in reaction to changes in available

bandwidth, within a given content or service,

without requiring negotiation with the

streaming server.

9. HTTP-based streaming has the potential to

accelerate fixed mobile convergence of video

streaming services as HTTP based CDN can

be used as a common delivery platform

III. QUALITY OF EXPERIENCE IN HTTP VIDEO

STREAMING

HTTP video streaming (video on demand streaming)

is a combination of download and concurrent

DOI: 10.18535/Ijecs/v4i12.32

Hina Rani
1
,IJECS Volume 04 Issue 12 December 2015,Page No.15274-15280 Page 15276

playback. It transmits the video data to the client via

HTTP where it is stored in an application buffer.

After a sufficient amount of data has been

downloaded (i.e., the video file download needs not

to be complete yet), the client can start to play out

the video from the buffer. As the video is transmitted

over TCP, the client receives an undisturbed copy of

the video file. However, there are a number of real

world scenarios in which the properties (most

importantly instantaneous throughput and latency) of

a communication link serving a certain multimedia

service are fluctuating. Such changes can typically

appear when communicating through a best effort

network (e.g., Internet) where the networking

infrastructure is not under control of an operator

from end to end, and thus its performance cannot be

guaranteed. Another example is reception of

multimedia content through a mobile channel, where

the channel conditions are changing over time, due

to fading, interferences, and noise. These network

issues (e.g., packet loss, insufficient bandwidth,

delay, and jitter) will decrease the throughput and

introduce delays at the application layer. As a

consequence, the playout buffer fills more slowly or

even depletes. If the buffer is empty, the playback of

the video has to be interrupted until enough data for

playback continuation has been received. These

interruptions are referred to as stalling or

rebuffering. In telecommunication networks, the

Quality of Service (QoS) is expressed objectively by

network parameters like packet loss, delay, or jitter.

However, a good QoS does not guarantee that all

customers experience the service to be good. Thus,

Quality of Experience (QoE) – a concept of

subjectively perceived quality – was introduced [6].

It takes into account how customers perceive the

overall value of a service, and thus, relies on

subjective criteria. For HTTP video streaming, [4, 7]

showed in their results that initial delay and stalling

are the key influence factors of QoE. However,

changing the transmitted video quality as employed

by HTTP adaptive streaming introduces a new

perceptual dimension.

IV. LITERATURE REVIEW

In [2], author presented a principled understanding

of bit rate adaptation and analyze several

commercial players through the lens of an abstract

player model. Through this framework, they identify

the root causes of several undesirable interactions

that arise as a consequence of overlaying the video

bit rate adaptation over HTTP. Building on these

insights, they develop a suite of techniques that can

systematically guide the tradeoffs between stability,

fairness and efficiency and thus lead to a general

framework for robust video adaptation. We pick one

concrete instance from this design space and show

that it significantly outperforms today’s commercial

players on all three key metrics across a range of

experimental scenarios.

Merwe et al [19] and Cherkasova and Gupta[20]

also present characterizations of streaming video

traffic and show that various parts of a clip have

different probabilities of being viewed. Thus they

conclude that content segmentation and caching of

selective segments is more cost effective and offers

better performance than caching of whole media

files. While our system deals with Video On

Demand content in ways similar to those described

by these studies, the focus of this paper is live

streams that obviously do not lend themselves to

caching.

Junchen Jiang et.al [21], the growth of Internet video

and the role that video quality plays in user

engagement (and thus revenues) has sparked a

renewed interest in redesigning various aspects of

the content delivery ecosystem ranging from video

players, CDNs, multi-CDN optimizations, and

global control planes. In this paper an initial attempt

to bridge this gap. We find, perhaps surprisingly,

that a small number of potential problem causes can

account for a large number of problem sessions.

Furthermore, these problem causes are amenable to

simple solutions, either via using offline traces to

identify the sources of these problems or by reacting

only to long-lasting outages. We believe that these

observations bodes well for the Internet video

ecosystem going forward as many of the

aforementioned efforts to improve video quality

could be simplified to achieve the same benefits.

Leonidas Kontothanassis et.al [22], in this paper we

have discussed the design decisions we have made

while building a content delivery network for live

streaming. We have described how to achieve high

degrees of scalability, quality, and reliability by

focusing on modular design and eliminating single

points of failure. We have evaluated multiple

techniques for delivering data to edge servers before

deciding on a combination of retransmits and

multiple paths as our approach of choice.

DOI: 10.18535/Ijecs/v4i12.32

Hina Rani
1
,IJECS Volume 04 Issue 12 December 2015,Page No.15274-15280 Page 15277

Furthermore we have shown that delivery of stream

data at rates higher than the encoded rate for the first

few seconds of a session, can significantly improve

an end user’s quality. Finally we have introduced a

mechanism for eliminating single points of failure at

the entry points of our system. The described system

currently serves millions of streams per day to end

users across the world, and has scaled to 80,000+

concurrent users and 16 gigabits per second of

traffic. Despite the success of the developed system

a number of issues remain as interesting technical

questions. We would like to determine whether the

reflector hierarchy itself can be bypassed altogether

for unpopular streams and how the system would

have to be modified to handle the transition of a

stream from the unpopular to the popular category

and viceversa. It would also be interesting to have

edge regions choose their parent set reflectors in a

completely dynamic fashion and not have to rely on

bucketing techniques for load balancing. The

multipath transmission system can potentially

benefit from modifications that would allow it to

pick the best path amongst its choices, rather than

the number of paths necessary to provide good

quality. Finally the fault tolerant system can be

further tuned to ensure fault recovery transitions go

completely unnoticeable by end users. Those

questions notwithstanding, the existing system offers

tremendous benefits over both centralized and naive

distributed CDN implementations, and we believe it

is a good compromise between engineering and

operations cost, and customer benefit.

Thomas Stockhammer et.al [10], in this paper, we

provide some insight and background into the

Dynamic Adaptive Streaming over HTTP (DASH)

specifications as available from 3GPP and in draft

version also from MPEG. Specifically, the 3GPP

version provides a normative description of a Media

Presentation, the formats of a Segment, and the

delivery protocol. In addition, it adds an informative

description on how a DASH Client may use the

provided information to establish a streaming service

for the user. The solution supports different service

types (e.g., On-Demand, Live, Time-Shift Viewing),

different features (e.g., adaptive bitrate switching,

multiple language support, ad insertion, trick modes,

DRM) and different deployment options. Design

principles and some forward-looking considerations

are provided.

V. PROPOSED METHODOLOGY

Step1: Read video file.

Step2: define frame rate, clip size, stream length.

Step 3: extract all property of video file.

Step 4: Convert video file into Frames.

Step 5: Convert Frame into Bitmap.

Step 6: Convert bitmap into XML.

Step 7: Write XML file into hard disk.

Step 8: Make Ajax Video player.

Step 9: XML file play in Ajax video player.

Step10: Process done.

VI. EXPERIMENT RESULT

1) Run Wintest

2) Click on first browse button to select avi file

PAPER.

DOI: 10.18535/Ijecs/v4i12.32

Hina Rani
1
,IJECS Volume 04 Issue 12 December 2015,Page No.15274-15280 Page 15278

3) Click on second browse button to select the

location to save xml file

4) Shows the selected folder

5) Then click on go button to get xml file

6) Process completed now

7) This process is same for all avi files

8) Run the website in Mozilla Firefox.

9) After playing Video

DOI: 10.18535/Ijecs/v4i12.32

Hina Rani
1
,IJECS Volume 04 Issue 12 December 2015,Page No.15274-15280 Page 15279

10) Click on setting button to change the avi name

and xml name.

CONCLUSION

Streaming of video on the internet has experienced

rapid growth and will continue to increase in

importance as broadband technologies and authoring

tools continue to improve. In this paper, we

proposed an approach for streaming media file for

which convert avi file into Xml. We created Ajax

video player for Xml file, because the speed of Xml

file is far better from any player. Experiment results

showed that proposed approach work well over

previous method.

REFERENCES

[1] Leonidas Kontothanassis, Ramesh Sitaraman,

Joel Wein, Duke Hong, Robert Kleinberg, Brian

Mancuso David Shaw, and Daniel Stodolsky “A

Transport Layer for Live Streaming in a Content

Delivery Network” Proceedings Of The IEEE.

[2] Junchen Jiang, Vyas Sekar and Hui Zhang

“Improving Fairness, Efficiency, and Stability in

HTTP-based Adaptive Video Streaming with

FESTIVE” CoNEXT’12, December 10-13,

2012, Nice, France. Copyright 2012

[3] Adobe http dynamic streaming.

www.adobe.com/products/hds-dynamic-

streaming.html.

[4] Cisco forecast http://goo.gl/hHzW4.

[5] Real-time messaging protocol.

www.adobe.com/devnet/rtmp.html.

[6] Smooth streaming experience.

http://www.iis.net/media/experiencesmoothstrea

ming

[7] Adobe osmf player. http://www.osmf.org.

[8] Akamai hd adaptive streaming.

http://wwwns.akamai.com/hdnetwork/demo/ind

ex.html

[9] H. Parmar, M. Thornburgh (eds.) Adobe’s

Real Time Messaging Protocol, Adobe,

December 21, 2012.

[10] T Stockhammer, “Dynamic adaptive

streaming over HTTP--: standards and design

principles”, Proceedings of the second annual

ACM conference on Multimedia systems, pp

133-144, 2011.

[11] J Jiang, V Sekar, H Zhang, “Improving

fairness, efficiency, and stability in http-based

adaptive video streaming with festive”, 8th

international conference on Emerging

networking experiments and technologies, pp.

97-108, 2012 .

http://wwwimages.adobe.com/content/dam/Adobe/en/devnet/rtmp/pdf/rtmp_specification_1.0.pdf
http://wwwimages.adobe.com/content/dam/Adobe/en/devnet/rtmp/pdf/rtmp_specification_1.0.pdf

DOI: 10.18535/Ijecs/v4i12.32

Hina Rani
1
,IJECS Volume 04 Issue 12 December 2015,Page No.15274-15280 Page 15280

[12] Smooth streaming experience,

http://www.iis.net/media/experiencesmoothstrea

ming.

[13] I. Sodagar. The MPEG-DASH Standard for

Multimedia Streaming Over the Internet. IEEE

Multimedia, 2011.

[14] R. Pantos. Http live streaming. 2011.

[15] V. Jacobson. Congestion avoidance and

control. In ACM SIGCOMM Computer

Communication Review, volume 18, pages 314–

329. ACM, 1988.

[16] J. Esteban, S. Benno, A. Beck, Y. Guo, V. Hilt,

and I. Rimac. Interactions between HTTP

Adaptive Streaming and TCP. In Proc.

NOSSDAV, 2012.

[17] R. Houdaille and S. Gouache. Shaping http

adaptive streams for a better user experience. In

Proc. MMSys, 2012.

[18] Mail service costs Netflix 20 times more than

streaming. http://goo.gl/msuYK.

[19] J. van der Merwe, S. Sen, and C. Kalmanek,

“Streaming video traffic: Characterization and

network impact,” in Workshop on Web Content

Caching and Distribution (WCW), Boulder, CO,

August 2002.

[20] L. Cherkasova and M. Gupta, “Characterizing

locality, evolution, and life span of accesses in

enterprise media server workload,” in

NOSSDAV’02, Miami Beach, FL, May 2002.

[21] Junchen Jiang, Vyas Sekar, Ion Stoica, Hui

Zhang, “Shedding light on the structure of

internet video quality problems in the wild”,

Proceedings of the ninth ACM conference on

Emerging networking experiments and

technologies, pp. 357-368, 2013.

[22] Leonidas Kontothanassis, Chris Joerg,

Michael J. Swain, Brian Eberman, Robert A .

Iannucci, “Design, Implementation, and

Analysis of a Multimedia Indexing and Delivery

Server”, Cambridge Research Laboratory, 1999.

