
www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 4 Issue 12 December, 2015 Page No. 15252-15257

Ashish Namdeo, IJECS Volume 04 Issue 12 December 2015, Page No.15252-15257 Page 15252

Analysis of a Semi-Markov Model for Software Reliability

Ashish Namdeo
1
 ,V.K. Pathak

2
 & Anil Tiwari

3

Comp-Tech Degree College, Sorid Nagar, Dhamtari(Chhattisgarh), India

B.C.S. Govt. P.G. College, Dhamtari PIN 493773, (Chhattisgarh), India

Disha College, Ramnagar Kota, Raipur, (Chhattisgarh), India

Abstract: In this paper analysis of a semi-markov model is done with reference to famous Jelinski-Moranda

model which is probably the first model in software reliability. Fault removal resulting from the execution of

program depends on the occurrence of the associated failure. Occurrence of failure depends both on the

length of time for which the software has been executing and on the execution environment or operating

condition. When different functions are executed, different faults are encountered and failures that are

exhibited tend to be different.

Key Words: Semi-Markov Process, Decreasing Failure Intensity, Geometric De-Eutrophication

Markov Process Modelling :

Markov processes which are a general

class of stochastic processes have been widely

used and studied in Reliability Analyses. Many

reliability models also belong to this category. A

Markov Process is characterized by its state space

together with the transition probabilities between

these states.

A Stochastic Process {X(t), t≥ 0} is said to

be a Markov Process if its future development

depends only on the present state of the process

but not on the past i.e.

P[X(t) ≥ x(t)│X(t1) ≥ x1, …………, X(tn)

≥ xn]= P[X(t) ≥ x(t)│X(tn) ≥ xn]

for all t1 < t2 <…….tn < t.

The above property is generally called the

Markov Property which has the following

explanation: Given the present state of the

process, its future behavior is independent of the

past history of the process. This is the most

important characteristic of a Markov Process. If

the state space is discrete, a Markov Process is

also called the Markov Chain. Let pij be the

transition probability of the process between state

i and j, i.e. pij(t+s)=P[X(t+s) = j│X(s) = i], s , t >

0.

In general, pij may depend on t as well as

on s. If all pij, i, j > 0 are independent of t, the

Markov Chain is called time homogeneous.

The most famous result of homogeneous

continuous time Markov Chain is that it satisfies

the so called Kolmogorov equation, i.e. pij(t+s)=∑

pik(s) pkj(t), s , t > 0.

The theory of Markov Processes is well

developed. The initial condition of the process

http://www.ijecs.in/

DOI: 10.18535/Ijecs/v4i12.29

Ashish Namdeo, IJECS Volume 04 Issue 12 December 2015, Page No.15252-15257 Page 15253

together with the transition probabilities

completely determines the stochastic behavior of

the Markov Process. Knowing the transition

probabilities, the probability that the process is in

a certain state can be can be obtained by solving

Kolmogorov equations and other reliability

measures can also be calculated. However, in

order to get a mathematically tractable reliability

model, some further assumptions usually have to

be made.

The Jelinski-Moranda(JM) Model :

 The best known software reliability model

originally developed by Jelinski and Moranda in

1972 is also a Markov Process Model. It is one of

the earliest models and has strongly influenced

many later models which are in fact modifications

of this simple model.

Model Assumptions and Some Properties:

 The underlying assumptions of the JM

model are :

1. The number of initial faults is an unknown

but fixed constant.

2. A detected fault is removed immediately

and no new fault in introduced.

3. The time between failures is independent

and exponentially distributed random

quantities.

4. All remaining faults contribute the same

amount to the failure intensity.

Denote by N0 the number of faults in the

software before the test begins. By the assumption

(3) and (4), the initial failure intensity is then

equal to N0φ, where φ is the constant of

proportionality denoting the failure intensity

contributed by each fault. It follows from the

assumption (2) that, after a new fault is detected

and removed, the number of the remaining faults

is decreased by one. Hence after the k
th

 failure,

there are (N0-k) faults left and the failure intensity

is decreased by (N0-k)φ. Denote by Ti, i=

1,2,……N0, the time between (i-1)
th

 and the i
th

failure, Ti is thus the i
th

 failure free time interval.

By the assumptions, Ti’s are then exponentially

distributed random variables with parameter

 λ(i) = φ[N0-(i-1)], i= 1,2,……….. , N0 and

the distribution of Ti is given by:

P(Ti < ti) = φ(N0-i+1) exp {-φ(N0-i+1)ti}, i = 1,

2, ………N0.

The main property of the JM-model is that the

failure intensity is constant between the detection

of two consecutive failures. This is quite

reasonable if the software is unchanged and the

testing is random and homogenous.

Decreasing Failure Intensity (DFI) models:

A serious critique of the JM- models that

not all software faults are of same size. Some

faults are more easily detected than the others. By

incorporating this fact, some generalizations and

modifications of JM-model are presented by Xie

in 1987. The general formulation together with

some special cases thereof is presented here.

A General DFI Formulation:

DOI: 10.18535/Ijecs/v4i12.29

Ashish Namdeo, IJECS Volume 04 Issue 12 December 2015, Page No.15252-15257 Page 15254

 The JM-model can be modified by using

other jump function λ (i). Here, λ (i) is defined as

the rate of occurrence of next failure after the

removal of the (i-1)
th

 fault. We define a failure

intensity function λ (i) is DFI if λ (i) is a

decreasing function of i. A DFI model is thus a

Markov counting process model with decreasing

failure intensity function. The general

assumptions of the DFI Markov model are same

as those for the JM-model. The failure counting

process is assumed to be a Markov counting

process. We also assume that all detected faults

are immediately removed and no new faults are

introduced during the testing. It should be noted

here that these assumptions have lower order

effects on software reliability and failure data can

be usually modified in practice by counting the

number of detected faults instead the number of

failures, if a fault has caused more than one

failures. Also, we assume that the test data are

taken randomly from the input space of the

software. Under the Markov assumptions, the

times between failures are exponentially

distributed with parameter λ (i).

 Since software failure is a reliability

growth process, by detecting and removing faults,

the reliability does also increase. The failure

intensity between the removals of two faults

should also be constant, provided that the testing

is random and homogeneous and the software is

not subject to any change. However, the shape of

the failure intensity as a function of removed

faults may take different forms, depending on the

inherent nature of the software. It can be observed

that the failure intensity λ (i) for the JM-model is

a linear function of the number of the remaining

faults. In fact, since at the beginning, the big faults

are likely to be detected, the decrease of the

failure intensity is probably larger at the beginning

than at the end of the testing phase. As a function

of the number of the remaining faults, the failure

intensity function is likely to be a convex

function. Note that if all the software faults are

removed, then the software will never fail. Hence,

if a model for finite number of faults will be used,

another general requirement on λ (i) is that λ

(N0+1) = 0 i.e. the failure intensity should be zero

when the last fault has been removed.

Under the general assumptions above, the

cumulative number of faults detected and

removed, {N (t), t>0}, is a Markov Counting

process with decreasing failure intensity λ (i). The

theory of continuous time Markov chain can be

applied. It can be shown that the collection of

probabilities {pi(t)=P[N(t) = i]; i = 0,1,2,…….,

N0, t≥0} satisfies the Kolmogorov differential

equations. The forward form of differential

equations are given as follows:

)()1()(0

'

0 tptp 

)()1()()2()(01

'

1 tptptp  

.

.

01

' ,)()()()1()(Nitpitpitp iii  

and)()()(10

'

00
tpNtp NN   .

DOI: 10.18535/Ijecs/v4i12.29

Ashish Namdeo, IJECS Volume 04 Issue 12 December 2015, Page No.15252-15257 Page 15255

Furthermore, the assumption N(0) = 0 yields the

following initial conditions:

P0(0) = 1 and pi(0) = 0 for i > 0.

The above Kolmogorov’s differential equations

can be easily solved and the solution is as follows:

tetp)1(

0)( ,)(
)1()2(

)1(
)(211 eetp 







,

………………., 0

0

)(,)(NieAtp j

i

j

i

ji 


and for i = N0 , we have

,
)1(

)(
)(0

1

0

)1(
0

0

0 j

N

j

N

jN e
j

N
Atp


 











Where the quantities ej, j = 0, 1,2,…….N0-1 , are

defined as ej = e
-λ(j+1)t

, j= 0, 1, 2,…..,N0-1.

The quantities
)(i

jA can be calculated recursively

through

ijA
ji

i
A i

j

i

j 


  ,
)1()1(

)()1()(




 and







1

0

)(
i

j

i

j

i

i AA .

Generally, for a DFI model with parameter λ (i) ,

we have a set of parameters to be determined by

using collected failure data.

Some Specific DFI Models:

Xie and Bergman in 1988 studied the

power type DFI Markov model in which they

assumed that the failure intensity λ (i) is a power-

type function of the number of remaining faults,

i.e.

λ (i) = φ[N0-(i-1)]
α
, I = 1, 2 ,……… N0.

Since λ (i) should decrease fast at the

beginning and the decrease become slower for

each i. Hence, it is reasonable to assume the λ (i)

is a convex function of i and α is likely to be

greater than one, since in this case, the decrease of

the failure intensity is larger at the beginning. The

exponential type Markov DFI model assumes that

the failure intensity is an exponential function of

the number of the remaining faults. It is

characterized by the failure intensity function

λ (i) = φ[e
-β(N

0
-i+1)

-1] , i = 1, 2 ,……… N0.

For the exponential type DFI model, the

decrease of the failure intensity at the beginning is

much faster than that at a later phase. The power

type DFI model is a direct generalization of the

JM-model which corresponds to the case α = 1.

The parameter α can be treated as a new

parameter and in this case, we have a three-

parametric model. It is possible to reduce it to a

two-parametric model by using a fixed value of α.

It is interesting to note that the

exponential-type DFI model is similar to that of

the Geometric De-Eutrophication model

suggested by Moranda in 1975. Usually, software

can never be completely fault-free and we may

assume that there are an infinite number of faults

in the software and the detection rate per fault φ is

infinitely small. These assumptions together with

the condition ab
N


10 , where a and b are

unknown constants, gives 1;)(1   iabi i .

DOI: 10.18535/Ijecs/v4i12.29

Ashish Namdeo, IJECS Volume 04 Issue 12 December 2015, Page No.15252-15257 Page 15256

This is just the failure intensity after

removing i faults for the Moranda Geometric De-

Eutrophication model. A similar model has been

studied by Currit et al in 1986 where the mean

time to next failure after m changes of the

software is estimated by MTTFm = MTTF0R
m

,

where MTTFm is the mean time to failure after m

changes. In the above model R and m are other

model parameters.

Validation of the Exponentiality :

The power-type and exponential-type DFI

model can be derived using aheuristic size-based

sampling argument. Usually, a large fault

corresponds to a larger failure probability and this

means that larger faults are likely to be detected

earlier than smaller faults are. The assumption that

all faults have the same size is the most critical

one for the JM-model.

Let M be the size of the input data, i.e. the

number of data which can be used as input to the

software. The quantity M is assumed to be large

but finite for the sake of simplicity. One reason

that M cannot be infinite in practice is that all data

that can be stored in a computer are truncated and

the number of data is limited. Note that an input

datum can be multi-dimensional. Let M
*

be the

total number of these input data which may cause

software failure. We also assume that M
*
 is much

smaller that M since otherwise the software is too

bad to be analyzed statistically.

Suppose that input data arrive at the

software system according to a Poisson process

with the intensity function ω which can be

interpreted as the intensity of testing. Then the

probability that the software encounters no failure

in a time interval t is






 


0

*

))(
!

)(
()(1

j

jt

M

MM

j

te
tF



 given M, M*

and ω. According to Langberg and Singurwalla

(1985) this has shock model interpretation. The

first term inside the summation sign denotes the

probability that j inputs or shocks are received

during the time interval [0,t) while the second

term inside the summation sign denotes that none

of the j inputs causes software failure. If we let λ

be defined as 
M

M *

 then it is easy to verify

that
t

j

j

jt

e
M

MM

j

te 
  











0

*

))(
!

)(
(and we

have time to next failure has the following

distribution tetF 1)(, which implies that if λ

does not depend on t, then the time to next failure

of the software is exponentially distributed with

parameter λ. In this model the software testing

remains valid, even in the case when all

parameters depend on the number of removed

software faults. Generally, we have that Ti, the

time between the (i-1)
th

 failure of the software,

has a distribution function

tietTPtF)(1][)(

It should be pointed out that usually λ(i)

may also be a function of time. If this is the case,

the exponentiality assumption is not valid and we

have to use other distribution. However, if the

system is specified and it does not suffer from any

DOI: 10.18535/Ijecs/v4i12.29

Ashish Namdeo, IJECS Volume 04 Issue 12 December 2015, Page No.15252-15257 Page 15257

great change, then the time dependence should be

very weak, provided also that the test is

homogeneous in the sense that the test intensity is

constant on a reasonable scale such as man-power

time or CPU-time whichever is suitable. Hence,

we may assume that λ(i) is not time dependent and

we have exponentially distributed time between

failures.

References:

1. Jelinski, Z. and Moranda, P.B. [1972]

“Software Reliability Research” Statistical

Computer Performance Evaluation, Academia,

New York, pp 465-484.

2. Shooman, M.L. and Trivedi, A.K. [1976], “A

Many State Markov Model for Computer

Software Performance Parameters”, IEEE

Transactions on Reliability, R-25(2), pp 66-

68.

3. Currit, P.A.,Dyre, M. and Mills, H.D. [1986]

“Certifying the Reliability of Software”, IEEE

Transactions on Software Engineering, SE-

12(1), pp 3-11.

4. Langberg, N. and Singurwalla N. [1985] “A

Unification of Some Software Reliability

Models”, SIAM Journal on Scientific and

Statistics Computing, 6(3), pp781-790.

