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Abstract: In this paper analysis of a semi-markov model is done with reference to famous Jelinski-Moranda 

model which is probably the first model in software reliability. Fault removal resulting from the execution of 

program depends on the occurrence of the associated failure. Occurrence of failure depends both on the 

length of time for which the software has been executing and on the execution environment or operating 

condition. When different functions are executed, different faults are encountered and failures that are 

exhibited tend to be different. 
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Markov Process Modelling : 

Markov processes which are a general 

class of stochastic processes have been widely 

used and studied in Reliability Analyses. Many 

reliability models also belong to this category. A 

Markov Process is characterized by its state space 

together with the transition probabilities between 

these states. 

A Stochastic Process {X(t), t≥ 0} is said to 

be a Markov Process if its future development 

depends only on the present state of the process 

but not on the past i.e. 

P[X(t) ≥ x(t)│X(t1) ≥ x1, …………, X(tn) 

≥ xn]= P[X(t) ≥ x(t)│X(tn) ≥ xn]  

for all t1 < t2 <…….tn < t. 

The above property is generally called the 

Markov Property which has the following 

explanation: Given the present state of the 

process, its future behavior is independent of the 

past history of the process. This is the most 

important characteristic of a Markov Process. If 

the state space is discrete, a Markov Process is 

also called the Markov Chain. Let pij be the 

transition probability of the process between state 

i and j, i.e. pij(t+s)=P[X(t+s) = j│X(s) = i], s , t > 

0. 

In general, pij may depend on t as well as 

on s. If all pij, i, j > 0 are independent of t, the 

Markov Chain is called time homogeneous. 

The most famous result of homogeneous 

continuous time Markov Chain is that it satisfies 

the so called Kolmogorov equation, i.e. pij(t+s)=∑ 

pik(s) pkj(t), s , t > 0. 

The theory of Markov Processes is well 

developed. The initial condition of the process 
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together with the transition probabilities 

completely determines the stochastic behavior of 

the Markov Process. Knowing the transition 

probabilities, the probability that the process is in 

a certain state can be can be obtained by solving 

Kolmogorov equations and other reliability 

measures can also be calculated. However, in 

order to get a mathematically tractable reliability 

model, some further assumptions usually have to 

be made. 

The Jelinski-Moranda(JM) Model : 

 The best known software reliability model 

originally developed by Jelinski and Moranda in 

1972 is also a Markov Process Model. It is one of 

the earliest models and has strongly influenced 

many later models which are in fact modifications 

of this simple model.  

Model Assumptions and Some Properties: 

 The underlying assumptions of the JM 

model are : 

1. The number of initial faults is an unknown 

but fixed constant. 

2. A detected fault is removed immediately 

and no new fault in introduced. 

3. The time between failures is independent 

and exponentially distributed random 

quantities. 

4. All remaining faults contribute the same 

amount to the failure intensity. 

Denote by N0 the number of faults in the 

software before the test begins. By the assumption 

(3) and (4), the initial failure intensity is then 

equal to N0φ, where φ is the constant of 

proportionality denoting the failure intensity 

contributed by each fault. It follows from the 

assumption (2) that, after a new fault is detected 

and removed, the number of the remaining faults 

is decreased by one. Hence after the k
th

 failure, 

there are (N0-k) faults left and the failure intensity 

is decreased by (N0-k)φ. Denote by Ti, i= 

1,2,……N0, the time between (i-1)
th

 and the i
th

 

failure, Ti is thus the i
th

 failure free time interval. 

By the assumptions, Ti’s are then exponentially 

distributed random variables with parameter 

 λ(i) = φ[N0-(i-1)], i= 1,2,……….. , N0 and 

the distribution of Ti is given by: 

P(Ti < ti) = φ(N0-i+1) exp {-φ(N0-i+1)ti}, i = 1, 

2, ………N0. 

The main property of the JM-model is that the 

failure intensity is constant between the detection 

of two consecutive failures. This is quite 

reasonable if the software is unchanged and the 

testing is random and homogenous.  

Decreasing Failure Intensity (DFI) models: 

A serious critique of the JM- models that 

not all software faults are of same size. Some 

faults are more easily detected than the others. By 

incorporating this fact, some generalizations and 

modifications of JM-model are presented by Xie 

in 1987. The general formulation together with 

some special cases thereof is presented here.  

A General DFI Formulation: 
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 The JM-model can be modified by using 

other jump function λ (i). Here, λ (i) is defined as 

the rate of occurrence of next failure after the 

removal of the (i-1)
th

 fault.  We define a failure 

intensity function λ (i) is DFI if λ (i) is a 

decreasing function of i. A DFI model is thus a 

Markov counting process model with decreasing 

failure intensity function. The general 

assumptions of the DFI Markov model are same 

as those for the JM-model. The failure counting 

process is assumed to be a Markov counting 

process. We also assume that all detected faults 

are immediately removed and no new faults are 

introduced during the testing. It should be noted 

here that these assumptions have lower order 

effects on software reliability and failure data can 

be usually modified in practice by counting the 

number of detected faults instead the number of 

failures, if a fault has caused more than one 

failures.  Also, we assume that the test data are 

taken randomly from the input space of the 

software. Under the Markov assumptions, the 

times between failures are exponentially 

distributed with parameter λ (i). 

 Since software failure is a reliability 

growth process, by detecting and removing faults, 

the reliability does also increase. The failure 

intensity between the removals of two faults 

should also be constant, provided that the testing 

is random and homogeneous and the software is 

not subject to any change. However, the shape of 

the failure intensity as a function of removed 

faults may take different forms, depending on the 

inherent nature of the software. It can be observed 

that the failure intensity λ (i) for the JM-model is 

a linear function of the number of the remaining 

faults. In fact, since at the beginning, the big faults 

are likely to be detected, the decrease of the 

failure intensity is probably larger at the beginning 

than at the end of the testing phase. As a function 

of the number of the remaining faults, the failure 

intensity function is likely to be a convex 

function. Note that if all the software faults are 

removed, then the software will never fail. Hence, 

if a model for finite number of faults will be used, 

another general requirement on λ (i) is that λ 

(N0+1) = 0 i.e. the failure intensity should be zero 

when the last fault has been removed. 

Under the general assumptions above, the 

cumulative number of faults detected and 

removed,  {N (t), t>0}, is a Markov Counting 

process with decreasing failure intensity λ (i). The 

theory of continuous time Markov chain can be 

applied. It can be shown that the collection of 

probabilities {pi(t)=P[N(t) = i]; i = 0,1,2,……., 

N0, t≥0} satisfies the Kolmogorov differential 

equations. The forward form of differential 

equations are given as follows: 
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Furthermore, the assumption N(0) = 0 yields the 

following initial conditions: 

P0(0) = 1 and pi(0) = 0 for i > 0. 

The above Kolmogorov’s differential equations 

can be easily solved and the solution is as follows: 
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Where the quantities ej, j = 0, 1,2,…….N0-1 , are 

defined as  ej = e
-λ(j+1)t

,  j= 0, 1, 2,…..,N0-1.  
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Generally, for a DFI model with parameter λ (i) , 

we have a set of parameters to be determined by 

using collected failure data.  

Some Specific DFI Models: 

Xie and Bergman in 1988 studied the 

power type DFI Markov model in which they 

assumed that the failure intensity λ (i) is a power-

type function of the number of remaining faults, 

i.e. 

λ (i) = φ[N0-(i-1)]
α
, I = 1, 2 ,………   N0. 

Since λ (i) should decrease fast at the 

beginning and the decrease become slower for 

each i. Hence, it is reasonable to assume the λ (i) 

is a convex function of i and α is likely to be 

greater than one, since in this case, the decrease of 

the failure intensity is larger at the beginning. The 

exponential type Markov DFI model assumes that 

the failure intensity is an exponential function of 

the number of the remaining faults. It is 

characterized by the failure intensity function 

λ (i) = φ[e
-β(N

0
-i+1)

-1] , i = 1, 2 ,………   N0. 

For the exponential type DFI model, the 

decrease of the failure intensity at the beginning is 

much faster than that at a later phase. The power 

type DFI model is a direct generalization of the 

JM-model which corresponds to the case α = 1. 

The parameter α can be treated as a new 

parameter and in this case, we have a three-

parametric model. It is possible to reduce it to a 

two-parametric model by using a fixed value of α. 

It is interesting to note that the 

exponential-type DFI model is similar to that of 

the Geometric De-Eutrophication model 

suggested by Moranda in 1975. Usually, software 

can never be completely fault-free and we may 

assume that there are an infinite number of faults 

in the software and the detection rate per fault φ is 

infinitely small. These assumptions together with 

the condition ab
N


10 , where a and b are 

unknown constants, gives 1;)( 1   iabi i . 
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This is just the failure intensity after 

removing i faults for the Moranda Geometric De-

Eutrophication model. A similar model has been 

studied by Currit et al in 1986 where the mean 

time to next failure after m changes of the 

software is estimated by  MTTFm = MTTF0R
m

, 

where MTTFm is the mean time to failure after m 

changes. In the above model R and m are other 

model parameters. 

Validation of the Exponentiality :  

The power-type and exponential-type DFI 

model can be derived using aheuristic size-based 

sampling argument. Usually, a large fault 

corresponds to a larger failure probability and this 

means that larger faults are likely to be detected 

earlier than smaller faults are. The assumption that 

all faults have the same size is the most critical 

one for the JM-model. 

Let M be the size of the input data, i.e. the 

number of data which can be used as input to the 

software. The quantity M is assumed to be large 

but finite for the sake of simplicity. One reason 

that M cannot be infinite in practice is that all data 

that can be stored in a computer are truncated and 

the number of data is limited. Note that an input 

datum can be multi-dimensional. Let M
* 

be the 

total number of these input data which may cause 

software failure. We also assume that M
*
 is much 

smaller that M since otherwise the software is too 

bad to be analyzed statistically. 

Suppose that input data arrive at the 

software system according to a Poisson process 

with the intensity function ω which can be 

interpreted as the intensity of testing. Then the 

probability that the software encounters no failure 

in a time interval t is 
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and ω. According to Langberg and Singurwalla 

(1985) this has shock model interpretation. The 

first term inside the summation sign denotes the 

probability that j inputs or shocks are received 

during the time interval [0,t) while the second 

term inside the summation sign denotes that none 

of the j inputs causes software failure. If we let λ 

be defined as 
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have time to next failure has the following 

distribution tetF 1)( , which implies that if λ 

does not depend on t, then the time to next failure 

of the software is exponentially distributed with 

parameter λ. In this model the software testing 

remains valid, even in the case when all 

parameters depend on the number of removed 

software faults. Generally, we have that Ti, the 

time between the (i-1)
th

 failure of the software, 

has a distribution function 

tietTPtF )(1][)(   

It should be pointed out that usually λ(i) 

may also be a function of time. If this is the case, 

the exponentiality assumption is not valid and we 

have to use other distribution. However, if the 

system is specified and it does not suffer from any 
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great change, then the time dependence should be 

very weak, provided also that the test is 

homogeneous in the sense that the test intensity is 

constant on a reasonable scale such as man-power 

time or CPU-time whichever is suitable. Hence, 

we may assume that λ(i) is not time dependent and 

we have exponentially distributed time between 

failures. 
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