
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume – 4 Issue - 12 December, 2015 Page No. 15240-15245

Kavyashree S ,IJECS Volume 04 Issue 12 December 2015,Page No.15240-15245 Page 15240

Design and Implementation of UART using Verilog

Kavyashree S

1
st
 semester, M Tech VLSI and Embedded Systems

R.V College of Engineering

Bengaluru, India

kavyasree131091@gmail.com

Abstract: Universal Asynchronous Receiver Transmitter (UART) is a serial communication interface.

This paper presents the design of UART for FPGA based systems using Verilog. The UART design has

programmable features for Transmission, Reception and Baud Rate generation. It has FIFO storage,

programmable serial interface characteristics, complete status reporting capabilities and error detection.

The design is implemented using Hardware Description Language Verilog. The design is simulated and

verified on Xilinx ISE.

Keywords: UART, First IN First Out (FIFO), Baud Rate Generator (BRG), interrupts, registers

1. Introduction

UART converts parallel data into serial and enables

serial communication. Many processors need UART

as an external interface. UART designed for FPGA

can serve as an interface for FPGA based embedded

systems which uses soft core processors .This

reduces external routing problems and cost as FPGA

has huge number of logic gates unused. FPGA can

be a good solution for reconfiguration of the system

hardware modification.

2. Problem Statement

 For FPGA based applications, UART IC is used as

Serial communication interface external to FPGA

board. This is posing certain problems like:

• Extra space requirement to place IC on the

board

• Routing problems

• High recurring engineering costs

• Flexibility issues while interfacing with

different end devices.

3. Proposed Solution

The above problem can be approached by

 Implementing the UART IC characteristics on

FPGA board to address the extra space

requirement and routing problems.

 Designing for FPGA that has the ability to update

the functionality by partial re-configuration of a

portion of the design to address the cost and the

flexibility issues.

4. Design Details

The design of UART mainly consists of 6

modules. Each module is designed individually

and implemented using Verilog and simulated

on Xilinx ISE and verified.

 1. Interface

 2. Configuration module

 3. Baud Rate Generator

 4. Transmitter

 5. Receiver

 6. Interrupt Controller

http://www.ijecs.in/
mailto:kavyasree131091@gmail.com

DOI: 10.18535/Ijecs/v4i12.27

Kavyashree S ,IJECS Volume 04 Issue 12 December 2015,Page No.15240-15245 Page 15241

Fig 1.UART Module

1. Interface

 The two subsystems involved in communication

interfaced to UART module may be operating at

different clock frequencies than UART.

Therefore Interface module is used to

synchronize the control signals (cs, rd, wr)

which indirectly synchronizes the address and

data .

2. Configuration module

 Configuration module is a set of controlling,

monitoring and data transfer registers.

Configuration module enables the UART to be

suited for several applications. It allows the

UART to become programmable to different

configurations. The registers may be read only,

write only or read write. This module consists of

9 registers and each is accessed using 3 bit

address lines to this module. All the registers are

of 8 bit. The memory mapping is shown in fig.2

3. Baud Rate Generator(BRG)

 BRG specifies the rate at which transmission or

reception should happen. During transmission the

data is shifted out to Tx line at Baud Rate and in

reception data on Rx line is sampled at baud rate. It

is configurable with 8 bit latch registers (DLL and

DLH) to different baud rates.

 Divisor (decimal) = (clock frequency) / (baud rate

x clock sampling rate)

DOI: 10.18535/Ijecs/v4i12.27

Kavyashree S ,IJECS Volume 04 Issue 12 December 2015,Page No.15240-15245 Page 15242

Fig 2: Memory map of Registers

4. Transmitter

 Fig 3: Transmitter Subsystem

The UART Transmitter consists of TxFIFO,

Transmit Shift Register (TSR) which functions

along with Transmit Holding Register(THR). The

Transmit holding register is an 8-bit register

providing a data interface to the host processor.

TxFIFO is used to buffer the data to be transmitted

when two subsystems are operating at different rates.

Tx FIFO stores the data up to 16 bytes. Transmit

shift register (TSR) shifts out the data to Tx line at

baud rate after framing.

 Framing is done to synchronize the

communication .It consists of start , stop , parity and

data bits and optional parity are specified by Line

Control Register (LCR).The TSR is a state machine

having five states- idle, start, data, parity (optional)

and stop.

DOI: 10.18535/Ijecs/v4i12.27

Kavyashree S ,IJECS Volume 04 Issue 12 December 2015,Page No.15240-15245 Page 15243

 idle: The Tx line has a value „1‟ when there is no

transmission.

 start: Appends a bit „0‟ at the start of data

transmission.

 data: Shifts all data bits (specified by FCR) at

baud rate(specified by DLL and DLH).

 parity: An optional parity bit is appended as

specified by LCR. The parity type may be odd or

even.

 stop: Specify the end of one frame

transmission(specified by LCR).

5. Receiver

Fig 4: Receiving Subsystem

The receiver section contains an 8-bit Receive

Shift Register (RSR) and 16 bytes of FIFO

which works along with a byte-wide Receive

Holding Register (RHR).

 The RSR samples the Rx line at baud rate at

the center of each bit period to avoid false

detection like glitches. RSR is serial to parallel

converter. It removes the framing content bits

like start, stop and uses parity to detect errors.

If there were any error(s), they are reported in

the LSR register bits. The sampled data is put

into RxFIFO and it is read out through RHR

address onto data_out. RHR reads

continuously the new data stored in RxFIFO.

6. Interrupt Controller

The receiving event and transmitting events are

interrupt driven that is an interrupt occurs when

either TxFIFO or RxFIFO reaches trigger levels.

These are serviced by corresponding transmission

and reception. Apart from this during transmission

and reception there may be many undesired events.

These may lead to improper functioning of the

UART. Interrupt controller handles such

situations and takes a course of action to come of

situation to proper functioning. The user can

configure the interrupts via the Interrupt Enable

Register (IER). When the processor is interrupted, it

can find out more details regarding the interrupt by

reading the Interrupt Identity Register (IIR). The

design is capable of handling 4 interrupts.

 Timeout interrupt: Interrupt arises when a

particular data remains in the RxFIFO for a very

long time. The timeout counter is reset by following

events:

 When new data is received from the

UART

 When RHR is read

 When Rx FIFO is empty

As in many standard UART ICs the timeout is

designed to be 44 bit-times which allows enough

large time to fill more data.

 Trigger Level: When FIFO(RxFIFO or TxFIFO)

reaches a certain level configured by the user in

FIFO control Register (FCR)this interrupt is raised.

This is used to avoid the reading one byte at a time.

When the FIFO reaches the level all the data are

DOI: 10.18535/Ijecs/v4i12.27

Kavyashree S ,IJECS Volume 04 Issue 12 December 2015,Page No.15240-15245 Page 15244

transmitted or received data is read at once saving

the system‟s resources. The FIFO trigger level can

be set to 1, 4, 8 and 14 bytes. If the received data

does not reach the level then the timeout interrupt is

used to read out the data.

Tx_empty: It is raised when TxFIFO is empty

and transmission is attempted.

Receive data error: This interrupt is raised

when there are errors in the received data. The errors

may be parity or framing errors.

5. Results and Discussion

 The UART designed is tested and verified. Each

component is individually tested and the integrated

module is tested for the overall function. The

simulated results are shown below:

 Transmission

 The data sent is transmitted on the Tx line at

baud rate. The baud rate is configured to

57.6kbps. The word length is 8 bits. The data

10010111 is transmitted on Tx line with start bit

„0‟, stop bit „1‟

.

Fig. 5 Simulation Waveform of Transmission

A. Receiver

Fig. 6. Simulation Waveform of Receiver

B. Complete UART Module

 The UART with all the controls is shown. It shows the transmission of data „11100100‟ on Tx with start

and stop bits and also the receiving of „11101000‟ on Rx line illustrating the duplex behavior.

DOI: 10.18535/Ijecs/v4i12.27

Kavyashree S ,IJECS Volume 04 Issue 12 December 2015,Page No.15240-15245 Page 15245

Fig. 7 Simulation Waveform of UART Module

6. Conclusion

 In this paper the design of UART is described

along with the individual modules contained in it.

Each module is described using Verilog and

simulated using Xilinx ISE. This design provides a

programmable UART suitable for variety of FPGA

based systems reducing the routing problems, cost

issues and improving flexibility and integrity.

7. References

 1. Fang Yi-yuan, Chen Xue-jun, “Design and

Simulation of UART Serial Communication Module

Based on VHDL”, 3rd International Workshop on

Intelligent Systems and Applications, 2011, Wuhan,

China.

 2. Mahat, N.F.,” Design of a 9-bit UART module

based on Verilog HDL”, 10th IEEE conference on

semiconductor electronics, 2012.

 3. Datasheets

 Texas Instruments

 Exar

 Incore.

 4. Microcomputer Systems- the 8086/8088

Family: Yu- cheng Liu & Glenn A. Gibson

 5. Pong P Chu,”FPGA prototyping by Verilog

Examples”, Wiley publications

