
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 6 Issue 9 September 2017, Page No. 22469-22476

Index Copernicus value (2015): 58.10 DOI: 10.18535/ijecs/v6i9.13

Soha S. Zaghloul, IJECS Volume 6 Issue 9 September 2017 Page No. 22469-22476 Page 22469

Parallelizing A* Path Finding Algorithm

Soha S. Zaghloul
1
, Hadeel Al-Jami

2
, Maha Bakalla

3
, Latifa Al-Jebreen

4
, Mariam Arshad

5

Arwa Al-Issa
6

College of Computer and Information Sciences King Saud University,

Riyadh, KSA

Abstract:

Parallel processing is adopted with the aim to run multiple independent program tasks simultaneously on

multiple CPUs with the objective of minimizing the execution time of the whole program. In this

research, parallel A* is implemented on a shared-memory multiprocessor system. Experimental results are

compared with the sequential A* to find an optimum or near-optimum path between two points in a grid

map. The most prominent drawback of the A* algorithm is the long execution time since it examines each

of the neighbor nodes, beginning at the start node going through to the goal node. Therefore, having

different threads running simultaneously to find the path from each neighbor of start node to goal node is

expected to reduce the computation time dramatically. Different parameters are used to assess the

performance of the parallel version of the A* algorithm; namely, the execution time, the speedup, the

scalability, and the efficiency. The experiments are conducted with different number of threads. Interesting

results are given with respect to the previously mentioned four metrics.

Keywords: Parallel A*, Shared-memory multiprocessors, Path finding.

1. Introduction

A* is an informed search algorithm used to find the

shortest path from a given start node to a goal node.

It uses heuristic functions to reduce search space like

Manhattan distances. Usually, the A* algorithm is

used in games, robotics, path finding in grid maps,

and motion planning problems. In general, the

sequential implementation of A* requires a lot of

computation time, which makes it impractical for

domains that have huge search space.

Parallelizing the A* algorithm will overcome

timing constraints problem, which is our main focus

in this paper. Parallelization can be made by

splitting path finding problem in sub parts where

search space is divided among multiple threads.

This allows different numbers of available cores to

work simultaneously to find the best path, which

will result in less computational time. Our

contribution here will be beneficial for domains like

motion planning problems where finding optimal

solution requires a lot of time and memory-

consuming expansions.

In this paper, we have introduced a parallel

version of the A* algorithm, which can be

implemented to make use of the available number of

cores to speedup the execution of the A* algorithm.

In most cases, our algorithm showed better

performance than the sequential version in terms

of execution time and speedup, particularly in

large-sized grids.

This paper is organized as follow: in section 2,

a background of the search algorithm and parallel

processing is provided; section 3 comprises a

comprehensive review of the most prominent

state-of-the-art algorithms. In Section 4, the

proposed solution is presented. The result and

discussion of the proposed algorithm is presented in

Section 5, and the last section 6 contains our

conclusion.

2. Background

This section includes basics about Parallel

processing and the A* algorithm. It describes

features of parallel computing and how it is

implemented by using parallel computers. Moreover,

the architecture of parallel computers and parallel

programming models commonly used is discussed in

this section. The section further gives an insight

about working of the traditional A* algorithm.

http://www.ijecs.in/

DOI: 10.18535/ijecs/v6i9.13

Soha S. Zaghloul, IJECS Volume 6 Issue 9 September 2017 Page No. 22469-22476 Page 22470

2.1 Parallel Processing

Previously, in software computation, the program

was divided into several instructions; then these

instructions were executed in a single processor

sequentially. This process is called serial or

sequential computing. In parallel computing, the

program is divided into parts that can be executed in

parallel. Each of these parts also consist of several

instructions executed separately on different

processors.

Parallel computers can be classified into three

categories: the First is the Single Instruction

Multiple Data (SIMD) type, where an instruction

is executed by all processors operating on different

data; in this type of parallel computing, the

pipeline CPU architecture is used; the Second is

the Multiple Instruction Single Data (MISD)

type, where multiple processors with a single data

stream are used and each processor operates on

data using separate instructions. The Multiple

Instruction Multiple Data (MIMD) is the third type

of parallel computing; each processor deals with

different instructions and works with different data.

Parallel programming models can be classified

into three categories, which are the shared memory

processor (SMP), the distributed memory (cluster),

and the hybrid model. The model extensively used is

SMP, where all the processors can share the main

memory with a global address space that allow

processors to use the data. In contrast, in the

distributed memory architecture, a separate memory

for each processor is used instead of having a

shared memory with a global address space.

Communication between processors occurs through

message passing. However, the hybrid model

integrates both shared and distributed memory. In

this model, the threads on the same processor share

the same address space, and the threads on different

processors communicate with each other through

messages to transfer data [1], [2] and [3].

In our proposed approach, we follow the second

model in implementing the parallel A* algorithm.

Thus we rely on a shared single memory for sharing

the data between threads.

2.2 A* (A Star) Algorithm

The A* (A star) algorithm is a classic, widely-used

search algorithm, developed in 1968 by Peter Hart,

Nils Nilsson, and Bertram Raphael. It is a best-first

search strategy that uses a heuristic to guide itself

to find the shortest and optimal path between two

points. Its effectiveness is based on producing a

good heuristic estimator on the remaining distance

from the current state to the destination.

To clarify the concept of A*, lets assume the

environment as shown in Figure 1. The blue square

is the starting point S, and red square is the ending

point D. The white squares are walkable nodes, and

the green squares are the obstacles or walls between

them.

The algorithm uses two lists: an Open List that

contains squares that are being considered to find

the shortest path, and a Closed List that contains

squares that do not have to be considered again.

The A* algorithm begins at the starting point S and

adds it to the Open List of squares to be considered.

After examining all of its neighbour squares (The

yellow square in Figure 2), the starting point S will

move from the Open List to the Closed List, such

that we don’t need to look at it again. All of the

neighbour squares will be added to the Open List to

be checked. Then, choosing one of the neighbour

squares on the Open List will depend on the path

cost. The process is repeated until the destination is

found. For each time, the parent square of its

neighbours will be saved to help in tracing the path

back to the source cell.

The A* algorithm uses an evaluation function f (n)

to guide the selection of the neighbour square.

)()()(nhngnf  (1)

Where g (n) represents the cost of the path from

the starting node S to any node, and h(n) represents

the heuristic estimated

Figure 1. Start, destination and obstacle nodes in A*

Search Algorithm

DOI: 10.18535/ijecs/v6i9.13

Soha S. Zaghloul, IJECS Volume 6 Issue 9 September 2017 Page No. 22469-22476 Page 22471

cost from any node to the destination D. The A*

turns into Dijkstra’s algorithm if h(n) is 0; then

only g(n) performs a role in the evaluation

function. In addition, if h (n) is always less than or

similar to the cost of traveling from n to the goal, A*

can be used with certainty to find the shortest path.

Figure 3 shows the pseudo code of A* algorithm.

The heuristic h (n) can be estimated in different

ways depending on the allowed movement [4]; some

of these ways are:

1. Manhattan distance

It allows a move to a square grid in four

directions (North, South, East and West). The

following equation is used to calculate the

Manhattan distance:

|)..|

|..(|*)(

ygoalynode

xgoalxnodeDnh





 (2)

Where D represents the cost of moving one

node to one of its neighbours.

In the simple case, we can set D to be 1. The

advantage of the Manhattan heuristic is that it

runs faster than the other distance measures,

and the main disadvantage is that it is used to

find the shortest path to the goal; however, an

optimal solution is not a certainty with this

approach

2. Diagonal distance

In this method, moving to a square grid in

eight directions is allowed; however,

computation speed is slower than that in the

Manhattan method. The equation used to

calculate the Diagonal distance is as follows:

|)..|

|,..max(|*)(

ygoalynode

xgoalxnodeDnh





 (3)

3. Euclidean distance

It allows moving to a square grid in any

direction. The equation used to calculate the

Euclidean distance is as follows:

)2)..(

2)..((
*)(






ygoalynode

xgoalxnode
Dnh (4)

Using the Euclidean heuristic as a heuristic is

admissible, but usually results in an

underestimation. Compared with the Manhattan

heuristic, this heuristic is more expensive to

apply as it additionally involves two

multiplication operations and calculating the

square root [4].

3. Related Work

Several modifications have been suggested ever

since the first version of the sequential A* algorithm

was introduced. Evidence suggests that there has

been a remarkable progress in the performance of

the A* algorithm due to these; however, there is

room for its improvement. In this section, we present

some of the recent and prominent state-of-the-art

algorithms for A* search, namely, sequential and

parallel. Mentioned below are the contributions of

well-known A* algorithms proposed for different

search domains.

3.1 Sequential A* Algorithm

Liang Zhang et al. in [5] proposed a novel hybrid

method to find the optimum path planning for

mobile robots. The A* algorithm and the genetic

algorithm form the basis for this method. The

workspace of the robot in this paper is previously

known and consists of a grid map of its indoor

environment. At first, the method find the shortest

path by the A* algorithm using Manhattan distance

as heuristic function. Next, it uses the genetic

algorithm to optimize the path found. Matlab was

used to simulate the proposed method and to

compare it with the results of the two previously

proposed methods. They achieved good results, one

of them having the length of the path 26.26 in 0.92

seconds, which is less than that observed with

method [6] 27.35 in 1.15 seconds.

Barnouti et al. [7] built a GUI application system

that implements the A* search algorithm, which

Figure 2. Parent relation to start point

DOI: 10.18535/ijecs/v6i9.13

Soha S. Zaghloul, IJECS Volume 6 Issue 9 September 2017 Page No. 22469-22476 Page 22472

addresses the pathfinding problem to find the

shortest path between source and destination. The

problem of pathfinding in commercial computer

games has to be solved in real-time, usually

requiring memory and CPU resources. The

algorithm is tested by using images that represent

either a map that belongs to strategy games or a

maze. The system performance is tested using 100

images for each map and maze. The overall

performance of the system is acceptable; for more

than 85% of the images, the shortest path between

the source and destination could be found.

3.2 Parallel A* Algorithm

Luis Henrique and Luiz Chaimowicz in [8] aimed to

improve the A* algorithm performance by

implementing the bidirectional search algorithm as a

parallel version for robotics, digital games, and

DNA alignment. The sequential version of New

Bidirectional A* (NBA*) uses two processes that

execute in a sequential manner to find the path. In

this paper, the researchers proposed PNBA*

(Parallel New Bidirectional A*). In PBNA*, both

search processes execute in parallel and that

enhances its performance. Authors implemented the

algorithm using C++ programming language on

Linux operating system. They compared their

algorithm with A* and NBA* for fifteen puzzles and

grids pathfinding scenarios. They used random

mazes with uniform and non- uniform costs. As a

result, the execution time decreased significantly

when using PNBA*.

Sandy Brand and Rafael Bidarra in [9]

implemented several versions of parallel pathfinding

algorithms, namely, Parallel Bidirectional Search

(PBS), Distributed Fringe Search (DFS), and

Parallel Hierarchic Search (PHS) to analyse their

behaviors. They found that these three algorithms

suffer from some limitations such as a large

overhead yielding from far optimality, not scaling up

to many cores, or their cache being unfriendly.

Therefore, they proposed Parallel Ripple Search

(PRS), which employs two essential cores for

flooding at the path boundaries like PBS; then,

each core uses A* flooding behavior for expanding

toward each other. PRS relies on the opportunistic

use of node collisions between collaborating cores.

For assessing the performance of the PRS algorithm,

it was compared with PBS, Fringe Search (FS), and

classic A*. To conclude, in a PRS, the fact that

more than two cores in large and complex maps

can be utilized is exploited; the speedup factor is

in the range 2,510 when compared with classic A*.

Mahafzah in [10] presented a parallel

multithreaded A*heuristic search algorithm for a 15-

puzzle problem. When using this algorithm, in the

first phase, the search tree is expanded to a

certain level by implementing the Limited Depth

BFS algorithm. A number of threads are created

depending upon the number of nodes generated

within each level. It was implemented using the

POSIZ threads library (Pthreads). The proposed

algorithm has been evaluated analytically using

different parameters; time complexity, space

complexity, optimality, and completeness. Better

performance was observed in case of parallel A* in

terms of various performance measures.

Particularly, in case of the parallel multithreaded A*

algorithm, the time complexity was O(βk/t);

however, for the sequential A* algorithm, the time

complexity was O(βk), where βrepresents the

branching factor, k represents the depth of the

shallowest solution, and t is the number of

threads.

In [11], Rafia presents her masters research project

based on A* Algorithm for Multicore Graphics

Processors. The author proposed a parallel version

of A* to find the shortest path in several segments,

instead of the complete path as a whole in the grid

illustration of a map. They create eight threads in

parallel, as each node has a maximum of eight

neighbours. The program is implemented in CUDA,

NVIDIAs programming platform for graphics

processors, using data structure temporary list that

Figure 3. Pseudo code of A* algorithm

DOI: 10.18535/ijecs/v6i9.13

Soha S. Zaghloul, IJECS Volume 6 Issue 9 September 2017 Page No. 22469-22476 Page 22473

divides the shared memory into an array of eight

places, one accessible by each thread.

Experimental results of the improvement are

presented in the paper demonstrating the efficiency

of the proposed algorithm.

Phillips et al. [12] presented PA*SE, a parallel

implementation of A* search algorithm, another

version based on a relaxed independence check that

allows a trade-off between higher parallelization at

the cost of optimality, and finally a parallel

implementation of weighted A*. The experimental

results on up to 32 processors demonstrated a linear

speedup over A* and weighted A*.

4. Proposed Solution

The main focus of this paper is to measure the

performance of the parallel A* algorithm and

compare it with a sequential version. We began by

programing the well-known A* algorithm. Then, a

parallel version was developed as shown in the

Pseudo code section. Finally, we compared the

results obtained from our experiments.

4.1 Pseudo Code

In the parallel A* algorithm, we set the neighbours

of the start cell to be a local start and assigned one to

each thread. The goal cell is the same for all the

neighbours. In all threads, the A* algorithm will be

initiated to find the best path from their respective

local start to the goal node. Each thread will return

the path along with its score, and the best path score

will be chosen as the final path. Figure 4 shows our

proposed algorithm.

5. Discussion

In this section, we present the results obtained from

our experiments and dis- cuss the improvement in

performance of the A* algorithm due to our

proposed method. We compared the performance of

sequential and parallel versions of the A* algorithm

in terms of speedup and running time. For better

analysis, we have tested our method on different

problem sizes and number of processors. Following

are the experiments environment that contain the

specifications of hardware and software we have

used to conduct all experimental runs. Subsequently,

the obtained result will be discussed. Finally, we

analyse our results with respect to other theoretical

laws.

5.1 Experiment’s Environment

The computer hardware used in the experiment

comprises an Intel CPU with 4 processors and 8

cores at a speed of 2.40 GHz; the memory consisted

of 16.00 GB RAM. The operating system used is

Windows 10 operating system, and the code is

written in Java using the Eclipse IDE (Integrated

Development Environment).

In our experiments, we executed the parallel A*

algorithm and the sequential A* algorithm on three

problem sizes; first, with the problem size that

has at least 60 seconds running time for sequential

version, which is 2000*2000. Second, for

3000*3000, and finally for 4000*4000 (maximum

size allowed based on available memory size). We

ran the sequential version seven times for each

problem size; then we took the minimum execution

time value. Next, we ran the parallel version on

different number of threads, ranging from one to

eight (maximum number of processors available).

Each run was performed seven times; after these

iterations, we took the minimum value of

execution time. Moreover, we tested our

experiment on three different cases based on the

number of neighbours of the start cell: first, a 3-

neighbour configuration was used with the global

start located at the corner of the grid. Second, a

5- neighbour configuration was used with the

Figure 1. Parallel A* Algorithm

DOI: 10.18535/ijecs/v6i9.13

Soha S. Zaghloul, IJECS Volume 6 Issue 9 September 2017 Page No. 22469-22476 Page 22474

global start cell located at the border of the grid;

and last, a 8- neighbour configuration was used

with the global start cell located at the centre of the

grid.

5.2 Result

Results obtained from parallel version were used to

calculate the gained speedup when utilizing the

maximum number of threads as depicted in Table 1.

Figure 5 shows a graph obtained by plotting the

number of threads and gained speedup on x and y

axis, respectively, in an 8-neighbour scenario. Each

line represents the result corresponding to a different

grid size used in our experiments. By in- creasing

the number of threads, a considerable increase in the

gained speedup can be observed. However, with a

certain number of threads, gained speedup will reach

a saturation point; at that point, increasing the

number of threads will not make any difference.

Note that the result of one thread shows an

exception in gained speedup compared with two

threads, because there is no scheduling overhead

of parallelism between two threads.

The next graph is obtained by plotting problem

size (N) on x-axis and gained speedup on y-axis

when we have 8 neighbours. As shown in Figure 6,

each line represents different number of threads used

in different runs, ranging from minimum (1) to

maximum (8). The graph shows clearly that greater

the number of threads, the more we can observe the

effect of parallelism. We can also see that gained

speedup is maximum in case of maximum number

of processors (8) and smallest problem size

(2000*2000), because of more number of threads

used for a small search space.

In the third graph, we have plotted problem size

versus running time, where problem size (N) is on x-

axis and running time (T) is on y-axis, when we

have 8 neighbours. As shown in Figure 7, each line

represents the result obtained by using a different

number of threads. The graph shows that there is a

significant decrease in running time because of

parallelism, particularly in case of the biggest

problem size and maximum number of processors

(8).

As mentioned previously, our algorithm uses

various number of threads to find the shortest path,

based on location of global start. Possible number of

threads are 3, 5 or 8 in case of corner cell, border

cell or middle cell, respectively. Figure 8 shows the

result of finding the shortest path from different

global start cells to the same goal cell, where x-axis

represents gained speedup, y-axis represents grid

size, and each line represents one of the three

possible cases using different number of threads. As

is clear from the graph, speedup is maximum when

the maximum number of threads, i.e. 8, are used for

searching the shortest path.

Figure 4. Efficiency gained number of threads

Figure 9. Efficiency gained number of threads

Figure 2. The speedup gained when increasing the number of

threads

Figure 5.

Figure 3. The speedup gained for each thread when we

increases the problem

Figure 6.

Table 1. Speedup results

Size of grid Sequential

execution time

Parallel

execution time

Speedup

2000*2000 72.895 16.752 4.351
3000*3000 173.669 52.725 3.294

4000*4000 396.468 123.189 3.218

DOI: 10.18535/ijecs/v6i9.13

Soha S. Zaghloul, IJECS Volume 6 Issue 9 September 2017 Page No. 22469-22476 Page 22475

Also, speedup is maximum in case of the smallest

grid size because of a smaller search space as

compared to a bigger grid size.

As we have observed previously, increasing the

number of threads results in an increase of the

gained speedup. However, when we plotted

efficiency against the number of threads, we could

observe in Figure 9 that efficiency decreases with an

increase in the number of threads. Efficiency can

have a value between 0 and 1; in our case, it is the

maximum in case of one thread because of no

overhead caused by parallelism, and keeps

decreasing with subsequent increase of processors.

This can also be justified by the fact that speedup

and efficiency are inversely proportional to each

other.

From the results shown above, we concluded that

parallelizing the A* decreases the overall execution

time of the algorithm.

5.3 Analysis

To analyse the obtained result, first, we applied

Amdahl’s law given in Equation 5 where F

represents sequential fraction and K is the number of

processors. F was calculated from the

Experimentally Determined Sequential Fraction

(EDSF) formula, given in equation 6. Using

Amdahl’s law, when we are utilizing the maximum

number of threads, we achieved a speedup as shown

in Table 2 and Figure 10. This proves that our

proposed algorithm enhanced the gained speedup

considerably.

K

F
F

KNSpeedUp





1

1
),(

(5)

)1,()1,(*

)1,(),(*

NTNTK

NTKNTK
F






(6)

Secondly, in term of scalability, we started with

problem size N in the sequential version that gives

more than 60 second as execution time which is a

comparable start. Then we used this problem size

also in executing the parallel version. After that, we

increased the problem size till getting out of memory

exception.

 Our program scalability can be calculated using

the formula 7. As a result, the scalability when we

have different number of neighbors is shown in

Table 3 and Figure 11.

)(min

)(max

Nmsizeimumproble

Nmsizeimumproble
yScalabilit  (7)

Figure 5. The execution time for each thread when we

increases the problem size

Figure 7. The execution time for each thread when we

increases the problem size

Table 3. Scalability

Number of

Neighbor

scalability

3 1.5625
5 2.0408

8 4

Table 2. Amdahl's Speedup

Size of grid Sequential

Fraction (F)

 Amdahl’s

Speedup

Actual Speedup

2000*2000 0.120 4.348 4.351
3000*3000 0.204 3.295 3.294

4000*4000 0.212 3.221 3.218

Figure 7. Speedup analysis against problem size

Figure 10. Speedup analysis against problem size

Figure 6. Speedup gained problem size in different cases

DOI: 10.18535/ijecs/v6i9.13

Soha S. Zaghloul, IJECS Volume 6 Issue 9 September 2017 Page No. 22469-22476 Page 22476

Figure 8. Scalability

6. Conclusion

We have contributed by implementing parallel

version of A* for finding the shortest path in a grid

map. Based on our results, we concluded that

parallelizing the A* decreases the overall

execution time and increases the gained speedup

of the algorithm. Therefore, a considerable

improvement in performance of A* was observed.

With the advent of recent technological

developments users are getting their hands on more

powerful hardware, thus this type of parallelism will

be very beneficial for people dealing with path

finding search domains.

Acknowledgements

The authors would like to extend their sincere

appreciation to the Deanship of Scientific Research

at King Saud University for its funding this

Research group NO (RG 1435-077). In addition,

all authors have contributed equally to this paper.

References

1. P. Pacheco, An Introduction to Parallel

Programming, 1st Edition, Massachusetts, USA,

Elsevier, Morgan Kaufmann, 2011.

2. D. B. Skillicorn, Foundations of Parallel

Programming, 6th Edition, New York, USA,

Cambridge University Press, 2005.

3. W.-m. Hwu and D. Kirk, ”Programming

massively parallel processors,” 3rd Edition, MA,

USA, Elsevier, Morgan Kaufmann 2016.

4. M. Kilinarslan, ”Implementation of a path

finding algorithm for the navigation of visually

impaired people,” in MS Thesis in Computer

Engineering, Atilim University, Ankara,Turkey,

pp.68-73, 2007.

5. Zhang, Liang, et al. ”Global path planning for

mobile robot based on A* algorithm and

genetic algorithm,” Robotics and Biomimetics

(ROBIO), 2012 IEEE International Conference

on. IEEE, California, USA, pp. 1795-1799,

2012.

6. C.Zeng,Q.Zhang,X.Wei, “GA-based global path

planning for mobile robot employing A*

algorithm,” Journal of Computers, pp. 470474,

2012.

7. N. H. Barnouti, S. S. M. Al-Dabbagh, and M.

A. S. Naser, ”Pathfinding in Strategy Games

and Maze Solving Using A Search

Algorithm,” Journal of Computer and

Communications, p. 15, 2016.

8. L. H. O. Rios and L. Chaimowicz,”PNBA*: A

Parallel Bidirectional Heuristic Search

Algorithm,” Proceedings of the XXXI Congressa

da Sociedade Brasileira de Computaao (CSBC),

Brazil, Brasilia, 2011.

9. S. Brand and R. Bidarra, “Multi-Core scalable

and efficient pathfinding with Parallel Ripple

Search,” Computer. Animation. Virtual Worlds,

pp. 7385, 2012.

10. B. A. Mahafzah,”Performance evaluation of

parallel multithreaded A* heuristic search

algorithm,” Journal of Information Science,

p.363375, 2014.

11. I. Rafia, ”A* Algorithm for Multicore

Graphics Processors,”, M.S. thesis, Department

of Computer Science and Engineering Division

of Computer Engineering, CHALMERS

UNIVERSITY OF TECHNOLOGY, Gteborg,

sweden, 2010.

12. M. Phillips, M. Likhachev, and S. Koenig,”PA*

SE: Parallel A* for Slow Expansions,” in

ICAPS, New Hampshire, USA, pp. 208216,

2014.

