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Abstract:  

Parallel processing is adopted with the aim to run multiple independent program tasks simultaneously on 

multiple CPUs with  the  objective  of minimizing the execution  time of the whole program.  In this 

research, parallel A* is implemented on a shared-memory multiprocessor system. Experimental results are 

compared with the  sequential  A* to  find an  optimum or near-optimum path  between  two points  in a grid 

map.  The most prominent drawback of the A* algorithm is the long execution time since it examines each 

of the neighbor nodes, beginning at the start node going through to the goal node.  Therefore, having 

different threads running simultaneously to find the path from each neighbor of start node to goal node is 

expected to reduce the computation time dramatically. Different parameters are used to assess the 

performance of the parallel version of the A* algorithm; namely, the execution time, the speedup, the 

scalability, and the efficiency. The experiments are conducted with different number of threads. Interesting 

results are given with respect to the previously mentioned four metrics.  

Keywords: Parallel A*, Shared-memory multiprocessors, Path finding.  

1. Introduction 

A* is an informed search algorithm used to find the 

shortest path from a given start node to a goal node.  

It uses heuristic functions to reduce search space like 

Manhattan distances.  Usually, the A* algorithm is 

used in games, robotics, path finding in grid maps, 

and motion planning problems. In general, the 

sequential implementation of A* requires a lot of 

computation time, which makes it impractical for 

domains that have huge search space. 

Parallelizing the A* algorithm will overcome 

timing constraints problem, which is our main focus 

in this paper.  Parallelization can be made by 

splitting  path finding  problem  in sub  parts  where  

search  space  is divided  among  multiple threads. 

This allows different numbers of available cores to 

work simultaneously to find the best path, which 

will result in less computational time.  Our 

contribution here will be beneficial for domains like 

motion planning problems where finding optimal 

solution requires a lot of time and memory-

consuming expansions.  

In this paper, we have introduced a parallel 

version of the A* algorithm, which can be 

implemented to make use of the available number of 

cores to speedup the execution of the A* algorithm. 

In most  cases, our algorithm showed better  

performance  than  the  sequential  version  in terms  

of execution  time  and speedup,  particularly in 

large-sized grids. 

This  paper  is organized  as follow: in section  2, 

a background of the  search algorithm and  parallel  

processing  is provided;  section  3 comprises  a 

comprehensive  review of the  most  prominent  

state-of-the-art algorithms. In Section 4, the 

proposed solution is presented. The result and 

discussion of the proposed algorithm is presented in 

Section 5, and the last section 6 contains our 

conclusion.  

2. Background 

This section includes basics about Parallel 

processing and the A* algorithm. It describes 

features of parallel computing and how it is 

implemented by using parallel computers. Moreover, 

the architecture of parallel computers and parallel 

programming models commonly used is discussed in 

this section. The section further gives an insight 

about working of the traditional A* algorithm.  
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2.1 Parallel Processing  

Previously,   in  software  computation, the  program  

was  divided  into  several instructions; then  these  

instructions were executed  in a single processor  

sequentially. This process is called serial or 

sequential computing. In parallel computing, the 

program is divided into parts that can be executed in 

parallel. Each of these parts also consist of several 

instructions executed separately on different 

processors. 

Parallel  computers  can be classified into three 

categories: the First  is the Single Instruction 

Multiple  Data  (SIMD)  type, where an instruction 

is executed  by all processors  operating  on different 

data;  in this  type of parallel  computing, the  

pipeline  CPU  architecture is used;  the  Second  is 

the  Multiple  Instruction  Single Data  (MISD)  

type, where multiple  processors  with  a single data 

stream  are used and  each processor  operates  on 

data  using separate instructions.  The Multiple 

Instruction Multiple Data (MIMD) is the third type 

of parallel computing; each processor deals with 

different instructions and works with different data. 

Parallel programming models can be classified 

into three categories, which are the shared memory 

processor (SMP), the distributed memory (cluster), 

and the hybrid model. The model extensively used is 

SMP, where all the processors can share the main 

memory with a global address space that allow 

processors to use the data.  In contrast, in the 

distributed memory architecture, a separate memory  

for each  processor  is used instead  of having  a 

shared  memory  with a  global  address  space.  

Communication between processors occurs through 

message passing.  However, the hybrid model 

integrates both shared and distributed memory.  In 

this model, the threads on the same processor share 

the same address space, and the threads on different 

processors communicate with each other through 

messages to transfer data [1], [2] and [3]. 

In our proposed approach, we follow the second 

model in implementing the parallel A* algorithm. 

Thus we rely on a shared single memory for sharing 

the data between threads.  

2.2 A* (A Star) Algorithm  

The A* (A star) algorithm is a classic, widely-used 

search algorithm, developed in 1968 by Peter Hart, 

Nils Nilsson, and Bertram Raphael.  It  is a best-first 

search  strategy that uses a heuristic  to  guide  itself 

to  find the  shortest and optimal  path  between  two  

points.  Its  effectiveness  is based  on producing  a 

good heuristic  estimator on the  remaining  distance  

from the  current state  to the destination. 

To clarify the concept of A*, lets assume the 

environment as shown in Figure 1. The blue square 

is the starting point S, and red square is the ending 

point D. The white squares are walkable nodes, and 

the green squares are the obstacles or walls between 

them. 

The  algorithm uses  two lists:  an  Open  List  that 

contains  squares  that are being  considered  to  find 

the  shortest path,  and  a Closed  List  that contains 

squares  that do not have to be considered  again.  

The A* algorithm begins at the starting point S and 

adds it to the Open List of squares to be considered. 

After examining all of its neighbour squares (The 

yellow square in Figure 2), the starting point S will 

move from the Open List to the Closed List, such 

that we don’t need to look at it again. All of the 

neighbour squares will be added to the Open List to 

be checked. Then, choosing one of the neighbour 

squares on the Open List will depend on the path 

cost. The process is repeated until the destination is 

found.  For each time, the parent square of its 

neighbours will be saved to help in tracing the path 

back to the source cell. 

The A* algorithm uses an evaluation function f (n) 

to guide the selection of the neighbour square.  

)()()( nhngnf   (1)  

  

Where g (n) represents the cost of the path from 

the starting node S to any node, and h(n) represents 

the heuristic estimated  

 

 

 

 

 

 
Figure 1. Start, destination and obstacle nodes in A* 

Search Algorithm 
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cost from any node to the destination D. The  A* 

turns  into  Dijkstra’s  algorithm if h(n)  is 0; then  

only g(n)  performs  a role in the  evaluation 

function.  In addition, if h (n) is always less than or 

similar to the cost of traveling from n to the goal, A* 

can be used with certainty to find the shortest path.  

Figure 3 shows the pseudo code of A* algorithm.   

The heuristic h (n) can be estimated in different 

ways depending on the allowed movement [4]; some 

of these ways are:  

1. Manhattan distance  

It allows a move to a square grid in four 

directions (North, South, East and West).  The 

following equation is used to calculate the 

Manhattan distance:  

                
|)..|

|..(|*)(

ygoalynode

xgoalxnodeDnh




     

 (2) 

Where D represents the cost of moving one 

node to one of its neighbours. 

In the simple case, we can set D to be 1. The 

advantage of the Manhattan heuristic  is that it 

runs  faster  than  the  other  distance  measures,  

and  the main  disadvantage is that it is used to 

find the  shortest path  to the  goal; however, an 

optimal  solution  is not a certainty with this 

approach 

 

2. Diagonal distance  

In  this  method,  moving  to a  square  grid  in  

eight directions  is allowed; however, 

computation speed is slower than  that in the 

Manhattan method. The equation used to 

calculate the Diagonal distance is as follows:  
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3. Euclidean distance  

It allows moving to a square grid in any 

direction.  The equation used to calculate the 

Euclidean distance is as follows:     

)2)..(

2)..((
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Dnh    (4) 

Using the Euclidean heuristic as a heuristic is 

admissible, but usually results in an 

underestimation. Compared with the Manhattan 

heuristic, this heuristic is more expensive to 

apply as it additionally involves two 

multiplication operations and calculating the 

square root [4].   

3. Related Work  

Several modifications have been suggested ever 

since the first version of the sequential A* algorithm 

was introduced. Evidence suggests that there has 

been a remarkable progress in the performance of 

the A* algorithm due to these; however, there is 

room for its improvement. In this section, we present 

some of the recent and prominent state-of-the-art 

algorithms for A* search, namely, sequential and 

parallel.  Mentioned below are the contributions of 

well-known A* algorithms proposed for different 

search domains.  

3.1 Sequential A* Algorithm 

Liang Zhang et al. in [5] proposed a novel hybrid 

method to find the optimum path planning for 

mobile robots.  The A* algorithm and the genetic 

algorithm form the basis for this method.  The  

workspace  of the  robot  in this  paper  is previously  

known  and  consists  of a grid  map  of its  indoor  

environment. At first, the method find the shortest 

path by the A* algorithm using Manhattan distance 

as heuristic function.  Next, it uses the genetic 

algorithm to optimize the path found.  Matlab  was 

used  to  simulate  the  proposed  method  and  to 

compare  it  with  the  results  of the  two previously  

proposed  methods.  They achieved good results, one 

of them having the length of the path 26.26 in 0.92 

seconds, which is less than that observed with 

method [6] 27.35 in 1.15 seconds. 

Barnouti et al.  [7] built a GUI  application system  

that  implements the  A* search algorithm, which 

 
Figure 2. Parent relation to start point 
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addresses the pathfinding problem to find the 

shortest path  between  source and destination. The 

problem of pathfinding in commercial computer 

games has to be solved in real-time, usually 

requiring memory and CPU resources. The 

algorithm is tested by using images that represent 

either a map that belongs to strategy games or a 

maze. The system performance is tested using 100 

images for each map and maze. The overall 

performance of the system is acceptable; for more 

than 85% of the images, the shortest path between 

the source and destination could be found.   

3.2 Parallel A* Algorithm  

Luis Henrique and Luiz Chaimowicz in [8] aimed to 

improve the A* algorithm performance by 

implementing the bidirectional search algorithm as a 

parallel version for robotics, digital games, and 

DNA alignment. The sequential version of New 

Bidirectional A* (NBA*) uses two processes that 

execute in a sequential manner to find the path.  In 

this paper, the researchers proposed PNBA* 

(Parallel New Bidirectional A*).  In PBNA*, both 

search processes execute in parallel and that 

enhances its performance.  Authors implemented the 

algorithm using C++ programming language on 

Linux operating system. They compared their 

algorithm with A* and NBA* for fifteen puzzles and 

grids pathfinding scenarios.  They used random 

mazes with uniform and non- uniform costs.  As a 

result, the execution time decreased significantly 

when using PNBA*.  

Sandy Brand and Rafael Bidarra in [9] 

implemented several versions of parallel pathfinding 

algorithms, namely, Parallel Bidirectional Search 

(PBS), Distributed Fringe Search (DFS), and 

Parallel Hierarchic Search (PHS) to analyse their 

behaviors.  They found that these three algorithms 

suffer from some limitations such as a large 

overhead yielding from far optimality, not scaling up 

to many cores, or their cache being unfriendly.  

Therefore,  they proposed  Parallel Ripple  Search  

(PRS),  which employs  two  essential  cores for 

flooding at the path  boundaries  like PBS; then,  

each core uses A* flooding behavior  for expanding  

toward  each other.  PRS relies on the opportunistic 

use of node collisions between collaborating cores. 

For assessing the performance of the PRS algorithm, 

it was compared with PBS, Fringe Search (FS), and 

classic A*. To conclude,  in a PRS,  the  fact  that 

more than  two cores in large and  complex maps  

can  be utilized  is exploited;  the  speedup  factor  is 

in the  range  2,510 when compared  with classic A*.  

Mahafzah in [10] presented a parallel 

multithreaded A*heuristic search algorithm for a 15-

puzzle problem.  When  using this algorithm, in the 

first phase, the  search  tree  is expanded  to  a 

certain  level by  implementing the  Limited Depth  

BFS algorithm. A number of threads are created 

depending upon the number of nodes generated 

within each level. It was implemented using the 

POSIZ threads library (Pthreads). The proposed 

algorithm has been evaluated analytically using 

different parameters; time complexity, space 

complexity, optimality, and completeness.  Better 

performance was observed in case of parallel A* in 

terms of various performance measures.  

Particularly, in case of the parallel multithreaded A* 

algorithm, the time complexity  was O(βk/t ); 

however, for the  sequential  A* algorithm, the  time  

complexity  was O(βk), where βrepresents the  

branching  factor,  k represents the  depth  of the  

shallowest  solution,  and  t is the number  of 

threads.  

In [11], Rafia presents her masters research project 

based on A* Algorithm for Multicore Graphics 

Processors.  The author proposed a parallel version 

of A* to find the shortest path in several segments, 

instead of the complete path as a whole in the grid 

illustration of a map. They create eight threads in 

parallel, as each node has a maximum of eight 

neighbours.  The program is implemented in CUDA,  

NVIDIAs  programming platform  for graphics  

processors,  using data structure temporary list that 

 
Figure 3. Pseudo code of A* algorithm 
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divides the shared memory into an array  of eight 

places,  one accessible  by  each  thread. 

Experimental results of the improvement are 

presented in the paper demonstrating the efficiency 

of the proposed algorithm. 

Phillips  et al. [12] presented PA*SE,  a parallel  

implementation of A* search algorithm, another  

version based on a relaxed independence  check that 

allows a trade-off between higher parallelization at 

the cost of optimality, and finally a parallel  

implementation of weighted  A*. The experimental 

results on up to 32 processors demonstrated a linear 

speedup over A* and weighted A*.  

4. Proposed Solution   

The main focus of this paper is to measure the 

performance of the parallel A* algorithm and 

compare it with a sequential version. We began by 

programing the well-known A* algorithm. Then, a 

parallel version was developed as shown in the 

Pseudo code section.  Finally, we compared the 

results obtained from our experiments.   

4.1 Pseudo Code  

In the parallel A* algorithm, we set the neighbours 

of the start cell to be a local start and assigned one to 

each thread. The goal cell is the same for all the 

neighbours.  In all threads, the A* algorithm will be 

initiated to find the best path from their respective 

local start to the goal node. Each thread will return 

the path along with its score, and the best path score 

will be chosen as the final path.  Figure 4 shows our 

proposed algorithm.  

5. Discussion  

In this section, we present the results obtained from 

our experiments and dis- cuss the improvement in 

performance of the A* algorithm due to our 

proposed method.  We compared the performance of 

sequential and parallel versions of the A* algorithm 

in terms of speedup and running time. For better 

analysis, we have tested our method on different 

problem sizes and number of processors. Following 

are the experiments environment that contain the 

specifications of hardware and software we have 

used to conduct all experimental runs. Subsequently, 

the obtained result will be discussed.  Finally, we 

analyse our results with respect to other theoretical 

laws.  

5.1 Experiment’s Environment  

The computer hardware used in the experiment 

comprises an Intel CPU with 4 processors and 8 

cores at a speed of 2.40 GHz; the memory consisted 

of 16.00 GB RAM.  The  operating  system  used is 

Windows  10 operating  system,  and the  code is 

written in Java  using  the  Eclipse  IDE  (Integrated 

Development Environment).   

In our experiments, we executed  the parallel  A* 

algorithm and the sequential A* algorithm on  three  

problem  sizes; first,  with  the  problem  size that 

has at  least  60 seconds running  time  for sequential  

version,  which is 2000*2000. Second, for 

3000*3000, and finally for 4000*4000 (maximum 

size allowed based on available memory size). We 

ran the sequential version seven times for each 

problem size; then we took the minimum execution 

time value. Next, we ran the parallel version on 

different number of threads, ranging from one to 

eight (maximum number of processors available). 

Each  run  was  performed  seven times;  after  these  

iterations, we took  the  minimum  value  of 

execution  time. Moreover,  we tested   our  

experiment on  three  different cases  based  on  the 

number  of neighbours  of the  start cell: first, a 3-

neighbour  configuration  was used  with  the  global  

start located  at  the  corner  of the  grid.  Second,  a  

5- neighbour  configuration   was  used  with  the  

 
Figure 1. Parallel A* Algorithm 
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global  start cell located  at  the border  of the  grid; 

and  last,  a 8- neighbour  configuration  was used 

with  the global start cell located  at the centre  of the 

grid.  

5.2 Result  

Results obtained from parallel version were used to 

calculate the gained speedup when utilizing the 

maximum number of threads as depicted in Table 1. 

Figure 5 shows a graph obtained by plotting the 

number of threads and gained speedup on x and y 

axis, respectively, in an 8-neighbour scenario.  Each 

line represents the result corresponding to a different 

grid size used in our experiments. By in- creasing 

the number of threads, a considerable increase in the 

gained speedup can be observed.  However, with a 

certain number of threads, gained speedup will reach 

a saturation point; at that point, increasing the 

number of threads will not make any difference.  

Note  that the  result  of one  thread shows  an 

exception  in gained  speedup  compared  with two 

threads, because  there  is no scheduling  overhead  

of parallelism  between  two threads.  

 

The next graph is obtained by plotting problem 

size (N) on x-axis and gained speedup on y-axis 

when we have 8 neighbours.  As shown in Figure 6, 

each line represents different number of threads used 

in different runs, ranging from minimum (1) to 

maximum (8). The graph shows clearly that greater 

the number of threads, the more we can observe the 

effect of parallelism.  We can also see that gained 

speedup  is maximum  in case of maximum  number  

of processors (8)  and  smallest  problem  size 

(2000*2000),  because  of more  number  of threads 

used for a small search space.  

 

In the third graph, we have plotted problem size 

versus running time, where problem size (N) is on x-

axis and running time (T) is on y-axis, when we 

have 8 neighbours.  As shown in Figure 7, each line 

represents the result obtained by using a different 

number of threads. The graph shows that there is a 

significant decrease in running time because of 

parallelism, particularly in case of the biggest 

problem size and maximum number of processors 

(8). 

As mentioned previously, our algorithm uses 

various number of threads to find the shortest path, 

based on location of global start. Possible number of 

threads are 3, 5 or 8 in case of corner cell, border 

cell or middle cell, respectively. Figure 8 shows the 

result of finding the shortest path from different 

global start cells to the same goal cell, where x-axis 

represents gained speedup, y-axis represents grid 

size, and each line represents one of the three 

possible cases using different number of threads. As 

is clear from the graph, speedup is maximum when 

the maximum number of threads, i.e. 8, are used for 

searching the shortest path.   

 
Figure 4. Efficiency gained number of threads 

 

Figure 9. Efficiency gained number of threads 

 
Figure 2. The speedup gained when increasing the number of 

threads 

 

Figure 5.  

 

 
Figure 3. The speedup gained for each thread when we 

increases the problem 

 

Figure 6.  

Table 1. Speedup results 

Size of grid Sequential  

execution time 

Parallel  

execution time 

Speedup 

2000*2000 72.895 16.752 4.351 
3000*3000 173.669 52.725 3.294 

4000*4000 396.468 123.189 3.218 
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Also, speedup is maximum in case of the smallest 

grid size because of a smaller search space as 

compared to a bigger grid size.   

As we have observed previously, increasing the 

number of threads results in an increase of the 

gained speedup.  However, when we plotted 

efficiency against the number of threads, we could 

observe in Figure 9 that efficiency decreases with an 

increase in the number of threads. Efficiency can 

have a value between 0 and 1; in our case, it is the 

maximum in case of one thread because of no 

overhead caused by parallelism, and keeps 

decreasing with subsequent increase of processors. 

This can also be justified by the fact that speedup 

and efficiency are inversely proportional to each 

other.  

From the results shown above, we concluded that 

parallelizing the A* decreases the overall execution 

time of the algorithm.    

 

 

5.3 Analysis   

To analyse the obtained result, first, we applied 

Amdahl’s law given in Equation 5 where F 

represents sequential fraction and K is the number of 

processors. F was calculated from the 

Experimentally Determined Sequential Fraction 

(EDSF) formula, given in equation 6. Using 

Amdahl’s law, when we are utilizing the maximum 

number of threads, we achieved a speedup as shown 

in Table 2 and Figure 10. This proves that our 

proposed algorithm enhanced the gained speedup 

considerably.   
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Secondly,  in  term  of scalability, we started with  

problem  size N in  the  sequential  version that gives 

more than  60 second as execution  time  which is a 

comparable  start. Then we used this problem size 

also in executing the parallel version.  After that, we 

increased the problem size till getting out of memory 

exception.  

 Our program scalability can be calculated using 

the formula 7. As a result, the scalability when we 

have different number of neighbors is shown in 

Table 3 and Figure 11.  

)(min

)(max

Nmsizeimumproble

Nmsizeimumproble
yScalabilit             (7) 

 

 

 

 
Figure 5. The execution time for each thread when we 

increases the problem size 

 

Figure 7. The execution time for each thread when we 

increases the problem size 

Table 3. Scalability 

Number of 

Neighbor      

scalability 

3 1.5625 
5 2.0408 

8 4 

 

 

Table 2. Amdahl's Speedup 

Size of grid Sequential  

Fraction (F) 

 Amdahl’s  

Speedup 

Actual Speedup 

2000*2000 0.120  4.348 4.351 
3000*3000 0.204  3.295 3.294 

4000*4000 0.212  3.221 3.218 

 

 
Figure 7. Speedup analysis against problem size 

 

Figure 10. Speedup analysis against problem size 

 
Figure 6. Speedup gained problem size in different cases 
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Figure 8. Scalability 

6. Conclusion   

We have contributed by implementing parallel 

version of A* for finding the shortest path in a grid 

map.  Based  on our results,  we concluded  that 

parallelizing the  A* decreases  the  overall 

execution  time  and  increases  the  gained speedup  

of the  algorithm. Therefore, a considerable 

improvement in performance of A* was observed.  

With the advent of recent technological 

developments users are getting their hands on more 

powerful hardware, thus this type of parallelism will 

be very beneficial for people dealing with path 

finding search domains.  
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