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Abstract: The need for large-scale graph analysis and finding efficient methods for the same are increasing. MapReduce framework has 

already been accepted as a standard for large-scale analysis. Finding betweenness centrality is highly significant in finding the importance 

of a node in a network. In this paper, we propose a map-based method to find betweenness centrality using the multi-source message 

passing model. The multi-source message passing model has two phases namely the breadth-first traversal phase and the backtracking 

phase. In the breadth-first traversal phase, we traverse the graph in breadth-first form by sending and receiving messages and in the process 

find the shortest paths in the graph. In the backtracking phase, we traverse back to the source node. While doing so, we find the dependency 

of the source node on other vertices by transmitting messages. Both these phases are implemented in the map-based method which consists 

of an initial MapReduce job followed by a number of iterations of mapper functions until there are no more messages to send. We can then 

find betweenness centrality by summing the dependencies of all the source nodes on the vertex. 

Keywords: MapReduce, Betweenness Centrality, message passing model, map-based model. 

  

1. Introduction 

The increasing usage of web and social networks have resulted 

in the need for better and improved ways of graph analysis. 

Hadoop [11] with its MapReduce programming framework has 

already proved to be big help in this matter. However, most 

graph analysis techniques like finding betweenness centrality, 

pagerank, etc. involves iterative algorithms. The MapReduce 

framework does not support this directly. In order to make it 

possible multiple MapReduce jobs should be manually 

allocated and executed using a driver function. But, in this case 

the data which is mostly the same needs to be reloaded and 

reprocessed during each iteration thereby resulting in a wastage 

of I/O, network bandwidth and CPU resources. Deciding when 

to stop the iterations also causes an overhead. Hence, it is 

necessary that we find better methods to do it [1]. 

 Twister [2], HaLoop [1], etc. are enhancements made on 

MapReduce to support iterative algorithms. Gupta introduced a 

method of graph analysis involving iterative algorithms where 

he separated the data that remains constant from the data that 

keeps varying during each iteration. This reduced the overhead 

caused by reloading and reprocessing the same data. Gupta’s 

method was a map-based method that avoided the reduce phase 

in the iteration to save the communication time required to send 

intermediate results from the map phase to the reduce phase 

[3]. 

 The nodes in large networks may not be equivalent. Hence, 

modifying a node in the network might affect the network 

differently based on the modified node. For example, if the 

node is a central node connected with a significant number of 

nodes is removed, then the impact it will have on the network 

will be much greater than that caused by an end node.  Hence, 

it is important that the centrality of the node is measured so as 

to protect it from attacks and breakdowns [4]. 

 Freeman [5] suggested three different measures for centrality 

namely degree, closeness and betweenness. Here, degree 

specifies the number of nodes connected to the node under 

consideration. Even though it is used to measure the node’s 

involvement in the network, it does not consider the global 

structure of the network. This is where closeness comes in. 

Closeness centrality is the inverse sum of the shortest distances 

from the node to all other nodes. However, this measure is 

meaningless in the case of disconnected components. The third 

measure which is betweenness centrality is the number of 

shortest paths between two other nodes for which the node is a 

part of [6].  

 The betweenness centrality measure suggested by Freeman 

had a complexity of θ(n
3
) time and θ(n

2
) space. Also, it could 

only be used in unweighted graphs. Brandes [7] introduced an 

efficient and faster method which enabled finding betweenness 

centrality in weighted graphs as well. He considered the fact 

that transaction might be quicker in large number of strongly 

connected nodes than in a lesser number of weakly connected 

nodes as the strongly connected nodes will have frequent 

contact than the weakly connected nodes [6].This technique 

had a  space complexity of O(n + m) and a time complexity of 

O(nm) and O(nm + n
2
 log n) for unweighted and weighted 

networks respectively. Zeng [8] introduced a multi-source 

message passing model to implement Brandes technique on the 

MapReduce framework. In this method the vertices can send 

and receive messages from other vertices during each iteration. 

The algorithm consists of a breadth- first traversal phase to find 

the shortest paths and a backtracking phase to find the 
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dependency of the source vertex on other vertices. Finally, the 

dependencies of all the source nodes on the vertex are summed 

to find the betweenness centrality of that vertex. 

 In this paper, we introduce an algorithm to implement 

Zeng’s multi-source message passing model to find the 

betweenness centrality in the map-based form suggested by 

Gupta. The breadth-first traversal and backtracking phases in 

this method will have an initial MapReduce job to send the first 

set of messages followed by iterations of Mapper functions to 

receive the messages and to send the next set of messages until 

there are no more messages to send. After the execution of both 

these phases, the betweenness centrality is calculated by 

summing the dependencies of source vertices. 

 The rest of the paper is structured as follows. Section 2 

describes the multi-source message passing model and how to 

find betweenness centrality using the model. Section 3 

describes the proposed method which is finding betweenness 

centrality using the map-based multi-source message passing 

model. Section 4 evaluates the performance of the proposed 

method and compares it with the multi-source message passing 

model. Finally, we arrive at a conclusion.  

2. Multi-source Message Passing Model 

The message passing model is executed on a direct graph 

where each vertex of the graph stores the vertex details and has 

a message table to store the messages that it receives. The 

vertex details include the state of the vertex. The vertex state is 

active only when it has to send messages. The vertex state 

becomes inactive when it has no more messages to send. The 

inactive vertices do not take part in the subsequent iterations 

unless they receive one or more messages and are activated 

again. During each iteration, the active vertices will send the 

active messages in its message table to all its adjacent vertices 

and become inactive. When there are no more active vertices, 

the algorithm terminates [8]. 

 The message passing model can be used to find, the shortest 

distance, betweenness centrality, for enumerating triangles, etc. 

In case of single-source message passing model, there is only 

one active node in the beginning. For example, while finding 

the shortest distance, we start from the source node as active. In 

this case we can only find the shortest path from the given 

source node. However, in cases where we need to find the 

shortest path from more than one source node we might have to 

repeatedly execute the algorithm with all the source nodes. This 

will not only result in more number of iterations but also in the 

iterations not being fully used as there will be many inactive 

vertices in each iteration [8]. 

 Hence, we use multi-source message passing model where 

we can have more than one active vertex in the beginning. To 

enable this we need the message to contain details like the 

source vertex and state of the message along with the actual 

message content in order to distinguish the message from the 

messages send from other source nodes [8]. 

2.1 Implementing the Message Passing Model on 

MapReduce 

The MapReduce method consists of the Map phase for 

mapping data into <key, value> pairs and Reduce phase to 

obtain an aggregated value for each key generated in the map 

phase [9], [10]. Each vertex of the graph will contain details 

like vertex id, list of adjacent vertices and the message table. In 

addition, the vertex will also contain two functions named 

sendMessage() and receiveMessage() for sending and receiving 

messages respectively. These functions are defined based on 

the purpose of the algorithm [8]. 

The map function will call the sendMessage() to obtain the 

list of active messages that are to be send by the vertex. Since 

these messages are to be send to each of the vertex’s adjacent 

vertices, the map function will output <adjacent vertex idi, list 

of active messages> as the<key, value> pair where 0≤ i ≤ 

number of adjacent vertices. The map function will also output 

<vertex id, vertex details> along with the above [8].  

 

 
Figure 1: Implementing Message Passing model using 

MapReduce [8]. 

 

The reduce function will have a vertex details and the lists of 

received messages as values for each vertex. If the value is 

vertex details, then create a vertex using those details. Make a 

collection of all the other values which are messages to be 

received and then call the receiveMessage() of the created 

vertex to add those messages to the message table of the vertex. 

The output of the reduce function will be this vertex. Figure 1 

shows the MapReduce algorithm explained here [8]. 

2.2 Finding Betweenness Centrality 

Finding the betweenness centrality using multi-source message 

passing model consists of two phases. The first phase is the 

breadth-first traversal phase where we find the shortest distance 

from the source node to the current node as well as the number 

of shortest paths between them during the traversal. The second 

phase is a backtracking phase where we find the dependency of 

the source node on the current node while backtracking [8]. 

 Each vertex will contain the vertex id, list of adjacent 

vertices and the message table. Each message in the message 

table will contain the state of the message, predecessor list, 

distance from the source vertex, number of shortest paths and 

the dependency of the source vertex on the current vertex. If 

the state of the message is 0, then the message is inactive and if 

it is 1, then the message is active. If the message table of a 

vertex contains active messages, then the vertex is active and it 

will send the active messages to the adjacent vertices. Initially, 

each vertex will contain an active message of the form (<1, 

vertex id, 0, 1, 0.0) [8].  
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Figure 2: Algorithm for Breadth First Traversal [8]. 

 

Figure 2 shows the algorithm for the sendMessage() and 

receiveMessage() for the breadth first traversal. The 

sendMessage will return the list of active messages with the 

modified distance considering the weight of the edge from the 

vertex to the adjacent vertex. The receiveMessage() first 

checks if the vertex has already received a message from the 

same source. If it has, then it will compare the distance of the 

old message with that of the new message. If the distance of the 

old message is less than the new message, then it will ignore 

the new message and if the distance of the new message is 

lesser, then it will replace the old message with the new 

message. If both the messages have the same distance, then the 

path of the new message will be stored along with the path  of 

the old message and the number of paths of old message will be 

increased by the number of paths of the new message. If there 

are no messages from the same source id, then the message will 

be stored in the message table [8]. 

 In the backtracking phase we start from the vertex that is 

farthest from the source node. This will be the vertex with the 

largest distance. Then we traverse back to the source vertex and 

in the process we find the dependency of the source node on 

the vertex. The dependency of the source vertex, s, on any 

vertex, v is defined by the formula given below. 
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of vertex  [8]. 

 

 
 Figure 3: Algorithm for Backtracking [8]. 

 

In the sendMessage() of backtracking phase, we have to find 

the current farthest distance, D. The messages with D as the 

distance are collected and send to the predecessor nodes. The 

receive message finds the part dependency of the vertex from 

which it receives the message using the above formula (i.e., 

))(1( 






s

s

sv   where   is the vertex from which it 

received the message) and adds it to the dependency of the 

message. The backtracking phase terminates when D becomes 

0. The algorithm for the sendMessages() and 

receiveMessages() are shown in figure 3. 

Once the breadth-first traversal and backtracking is 

completed we can find the betweenness centrality of the vertex 

by adding the dependency of all the source vertices on that 

vertex [8]. 

Figure 4 shows an example for finding betweenness 

centrality of a graph with five vertices. Figure 4(a) shows each 

iteration of the breadth-first traversal and 4(b) shows each 

iteration of the backtracking phase. The active messages are 

shown in bold [8]. 
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Figure 4(a): Example showing the iterations of breadth-first traversal 
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Figure 4(a): Example showing the iterations of backtracking phase. The final image shows the betweenness centrality obtained. 

 

3. Proposed Method 

Gupta [3] introduced the method of Map-Based Graph analysis 

on MapReduce. Through this method, he separated the graph 

topology which remains constant throughout the iterations from 

the intermediate details obtained during the iterations. A 

parallel merge-join is performed at each map stage to combine 

these details and thereby the communication time is reduced 

considerably. The communication time reduced further by 

eluding the reduce phase of MapReduce and thus saving the 

communication time between the map and reduce phases. 

 The proposed method involves converting the multi-source 

message passing model into the map-based form to find the 

betweenness centrality more efficiently. Also, once a vertex 

receives all the messages, then it is possible to send the next set 

of active messages from that vertex in the same iteration i.e., it 

doesn’t have to wait till the next iteration to send those 

messages. Hence, in each map function, it will first receive the 

messages and then send the next set of active messages. 

 This method requires an initial MapReduce phase to send the 

first set of messages and also to separate graph topology from 

the intermediate details which in this case is the messages 

transmitted and the message table. These messages are stored 

in the form of multiple output files each of which acts as a 

graph partition and the graph topology is stored as the normal 

output of the MapReduce. 
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 The figure 5 shows the algorithm for the initial MapReduce 

task.  The input is the list of edges in the graph i.e., from and to 

vertices of the edge. The map function outputs these from and 

to vertices as output. Thus, in the reduce function will have for 

each key, the set of edges as the values. These data are used to 

form the vertex. It then calls the vertex’s sendMessage() to get 

the list of active messages. For each edge of the vertex, these 

messages are stored to a file named as the edge’s id. The 

reduce function also stores the message table to a file with the 

name as the vertex’s id. The list of edges of the vertex is given 

as the normal output of the function and will serve as the input 

to all the following iterations of map-based MapReduce jobs. 

 

 
Figure 5: Initial MapReduce algorithm 

 

 The initial MapReduce job is followed by a number of 

iterations of the map-only jobs which receives and sends 

messages to necessary for finding the betweenness centrality. 

Each mapper initially performs a merge-join between the 

mapper input which is the vertex and edge list and the graph 

partitions containing the message table and send message list. 

During the join, the mapper initially aggregates the graph 

partitions. The messages from the message table are stored to a 

TreeMap named map and the send message list is stored to a 

dictionary D. Now, map will contain the message table of all 

the vertices and D will contain all the message list send to each 

vertex. The input to the map function is the vertex id and its 

edge list. This along with the message table for that vertex from 

map will form a vertex. The mapper calls the receiveMessage() 

of that vertex to add the message list from D to the vertex’s 

message table. It then calls the sendMessage() to send the new 

active messages to its edges. This message list and the message 

table of the vertex are stored to a sequential file that forms the 

new graph partitions that is used for the next iteration. 

Obviously, there are no reduce functions for these MapReduce 

jobs. The algorithm for these mapper functions are shown in 

figure 6. 

 The sendMessages() and receiveMessages() used in the 

proposed method are same as those used in the multi-source 

message passing model for finding betweenness centrality. The 

initial MapReduce job and the iterative map-based jobs should 

be implemented for the breadth-first traversal and the 

backtracking phase using the sendMessages() and 

receiveMessages() for the same(algorithms for which are 

shown in figure 2 and 3 respectively).  

 Once the breadth-first traversal and the backtracking phases 

are completed, we can find the betweenness centrality of all the 

vertices by adding the dependency of all the source vertices on 

that vertex.  

 

 
Figure 6: Algorithm for the Mapper functions 

4. Experiment Result 

The experiment was performed on a hadoop cluster set up 

using the Amazon EC2 Servers. Ubuntu Server 14.04 LTS was 

used. Hadoop 1.2.1 was installed on each server and the 

multinode setup was formed. The master node was used 

extensively as the Namenode and JobTracker. The 3 worker 

nodes acted as the DataNodes and TaskTrakers. One of the 

worker node was also set as the Secondary NameNode. The 

input dataset used is a graph topology consisting of 100 nodes. 

 The graphs below show the comparison between the multi-

source message passing model and the map-based multi-source 

message passing model. Figure 7 shows the time taken for each 

of the iterations during the breadth-first traversal and Figure 8 

shows the time taken for each of the iterations of the 

backtracking phase. Both the graph shows that the each 

iteration of the map-based method took much less time than 

that of the multi-source message passing model. 

 

 
Figure 7: Comparison between the time taken during each 

iteration of breadth-first traversal 
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Figure 7: Comparison between the time taken during each 

iteration of backtracking phase 

 

For multi-source message passing model, the average time 

taken for an iteration of Breadth First Traversal was 21,569ms 

and the average time taken for an iteration of Back Tracking 

was 21,733ms. Total Time taken for finding betweenness 

centrality using this method was 3,23,078ms. For Map-based 

multi-source message passing model, the average time taken 

for an iteration of Breadth First Traversal was 12,239ms and 

the average time taken for an iteration of Backtracking was 

12,313ms. Total Time taken for finding betweenness centrality 

using this method was 2,24,323ms. The figure 8 shows this 

chart in a logarithmic scale. 

 

 
Figure 8: Comparison between the multi-source message 

passing model and the map-based multi-source message 

passing model 

 

 From these statistics, it is clear that each iteration of the 

map-based multi-source message passing model takes much 

less time than normal multi-source message passing model both 

during the breadth-first traversal as well as the backtracking 

phase. Even though the initial MapReduce job for the breadth-

first traversal and backtracking phase results in an extra 

overhead, this overhead is proved to negligible compared to the 

total time saved in the Mapper functions.  

5. Conclusion 

Betweenness Centrality is a significant measure in finding the 

importance of a node in a network. However, the existing 

methods to find betweenness centrality are time consuming 

iterative methods with high complexity. This paper proposes a 

map-based multi-source message passing model that is faster 

and more efficient than the existing techniques. Experimental 

studies were conducted to compare the map-based method with 

the multi-source message passing model for finding 

betweenness centrality and it was found that the proposed 

method was about 44% faster than the multi-source message 

passing model.  

References 

[1] Y. Bu, B. Howe, M. Balazinska, M. D. Ernst, “HaLoop: 

efficient iterative data processing on large clusters,” 

In Proceedings of the VLDB Endowment, 3(1-2), pp. 

285-296, 2010. 

[2] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S. H. Bae, 

J. Qiu, G. Fox, “Twister: a runtime for iterative 

mapreduce,” In Proceedings of the 19th ACM 

International Symposium on High Performance 

Distributed Computing, pp. 810-818, 2010. 

[3] U. Gupta, L. Fegaras, “Map-based graph analysis on 

MapReduce,” In 2013 IEEE International Conference on 

Big Data, pp. 24-30, 2013. 

[4] M. Barthelemy, “Betweenness centrality in large complex 

networks,” The European Physical Journal B-Condensed 

Matter and Complex Systems, 38(2), pp. 163-168, 2004. 

[5] L. C. Freeman, “Centrality in social networks conceptual 

clarification,” Social networks, 1(3), pp. 215-239, 1979. 

[6] T. Opsahl, F. Agneessens, J. Skvoretz, “ Node centrality 

in weighted networks: Generalizing degree and shortest 

paths,” Social Networks, 32 (3), pp. 245-251, 2010. 

[7] U. Brandes, “A faster algorithm for betweenness 

centrality*,” Journal of Mathematical Sociology, 25(2), 

pp. 163-177, 2001. 

[8] Z. F. Zeng, B. Wu, T.T. Zhang, “A multi-source message 

passing model to improve the parallelism efficiency of 

graph mining on MapReduce,” In 2012 IEEE 26th 

International Parallel and Distributed Processing 

Symposium Workshops & PhD Forum (IPDPSW), pp. 

2019-2025,2012. 

[9]  “MapReduce Tutorial,” (n.d.), Hadoop.apache.org., June 

29, 2015. [Online]. Available: 

https://hadoop.apache.org/docs/current/hadoop-

mapreduce-client/hadoop-mapreduce-client-

core/MapReduceTutorial.html. [Accessed: Nov. 21, 

2015]. 

[10] R.  Ho, “How Hadoop Map/Reduce works,” Dzone.com, 

Dec. 16, 2008. [Online]. Available: 

https://dzone.com/articles/how-hadoop-mapreduce-

works. [Accessed: Nov. 21, 2015]. 

[11] T. White, Hadoop: The definitive guide, O'Reilly Media, 

Inc., United States of America, 2012. 
 


	PointTmp

