
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN: 2319-7242

Volume 4 Issue 12 Dec 2015, Page No. 15183-15189

Nikhitha Cyril
1
 IJECS Volume 04 Issue 12 December 2015, Page No.15183-15189 Page 15183

Map-based Multi-source Message Passing Model to find

Betweenness Centrality using MapReduce

Nikhitha Cyril
1
, Arun Soman

2

1PG Student, Department of Information Technology,

Rajagiri School of Engineering & Technology, Kochi, India

nikhithacyril@gmail.com

2Assistant Professor, Department of Information Technology,

Rajagiri School of Engineering & Technology, Kochi, India

arunnediyasala@gmail.com

Abstract: The need for large-scale graph analysis and finding efficient methods for the same are increasing. MapReduce framework has

already been accepted as a standard for large-scale analysis. Finding betweenness centrality is highly significant in finding the importance

of a node in a network. In this paper, we propose a map-based method to find betweenness centrality using the multi-source message

passing model. The multi-source message passing model has two phases namely the breadth-first traversal phase and the backtracking

phase. In the breadth-first traversal phase, we traverse the graph in breadth-first form by sending and receiving messages and in the process

find the shortest paths in the graph. In the backtracking phase, we traverse back to the source node. While doing so, we find the dependency

of the source node on other vertices by transmitting messages. Both these phases are implemented in the map-based method which consists

of an initial MapReduce job followed by a number of iterations of mapper functions until there are no more messages to send. We can then

find betweenness centrality by summing the dependencies of all the source nodes on the vertex.

Keywords: MapReduce, Betweenness Centrality, message passing model, map-based model.

1. Introduction

The increasing usage of web and social networks have resulted

in the need for better and improved ways of graph analysis.

Hadoop [11] with its MapReduce programming framework has

already proved to be big help in this matter. However, most

graph analysis techniques like finding betweenness centrality,

pagerank, etc. involves iterative algorithms. The MapReduce

framework does not support this directly. In order to make it

possible multiple MapReduce jobs should be manually

allocated and executed using a driver function. But, in this case

the data which is mostly the same needs to be reloaded and

reprocessed during each iteration thereby resulting in a wastage

of I/O, network bandwidth and CPU resources. Deciding when

to stop the iterations also causes an overhead. Hence, it is

necessary that we find better methods to do it [1].

 Twister [2], HaLoop [1], etc. are enhancements made on

MapReduce to support iterative algorithms. Gupta introduced a

method of graph analysis involving iterative algorithms where

he separated the data that remains constant from the data that

keeps varying during each iteration. This reduced the overhead

caused by reloading and reprocessing the same data. Gupta’s

method was a map-based method that avoided the reduce phase

in the iteration to save the communication time required to send

intermediate results from the map phase to the reduce phase

[3].

 The nodes in large networks may not be equivalent. Hence,

modifying a node in the network might affect the network

differently based on the modified node. For example, if the

node is a central node connected with a significant number of

nodes is removed, then the impact it will have on the network

will be much greater than that caused by an end node. Hence,

it is important that the centrality of the node is measured so as

to protect it from attacks and breakdowns [4].

 Freeman [5] suggested three different measures for centrality

namely degree, closeness and betweenness. Here, degree

specifies the number of nodes connected to the node under

consideration. Even though it is used to measure the node’s

involvement in the network, it does not consider the global

structure of the network. This is where closeness comes in.

Closeness centrality is the inverse sum of the shortest distances

from the node to all other nodes. However, this measure is

meaningless in the case of disconnected components. The third

measure which is betweenness centrality is the number of

shortest paths between two other nodes for which the node is a

part of [6].

 The betweenness centrality measure suggested by Freeman

had a complexity of θ(n
3
) time and θ(n

2
) space. Also, it could

only be used in unweighted graphs. Brandes [7] introduced an

efficient and faster method which enabled finding betweenness

centrality in weighted graphs as well. He considered the fact

that transaction might be quicker in large number of strongly

connected nodes than in a lesser number of weakly connected

nodes as the strongly connected nodes will have frequent

contact than the weakly connected nodes [6].This technique

had a space complexity of O(n + m) and a time complexity of

O(nm) and O(nm + n
2
 log n) for unweighted and weighted

networks respectively. Zeng [8] introduced a multi-source

message passing model to implement Brandes technique on the

MapReduce framework. In this method the vertices can send

and receive messages from other vertices during each iteration.

The algorithm consists of a breadth- first traversal phase to find

the shortest paths and a backtracking phase to find the

http://www.ijecs.in/

DOI: 10.18535/Ijecs/v4i12.17

Nikhitha Cyril
1
 IJECS Volume 04 Issue 12 December 2015, Page No.15183-15189 Page 15184

dependency of the source vertex on other vertices. Finally, the

dependencies of all the source nodes on the vertex are summed

to find the betweenness centrality of that vertex.

 In this paper, we introduce an algorithm to implement

Zeng’s multi-source message passing model to find the

betweenness centrality in the map-based form suggested by

Gupta. The breadth-first traversal and backtracking phases in

this method will have an initial MapReduce job to send the first

set of messages followed by iterations of Mapper functions to

receive the messages and to send the next set of messages until

there are no more messages to send. After the execution of both

these phases, the betweenness centrality is calculated by

summing the dependencies of source vertices.

 The rest of the paper is structured as follows. Section 2

describes the multi-source message passing model and how to

find betweenness centrality using the model. Section 3

describes the proposed method which is finding betweenness

centrality using the map-based multi-source message passing

model. Section 4 evaluates the performance of the proposed

method and compares it with the multi-source message passing

model. Finally, we arrive at a conclusion.

2. Multi-source Message Passing Model

The message passing model is executed on a direct graph

where each vertex of the graph stores the vertex details and has

a message table to store the messages that it receives. The

vertex details include the state of the vertex. The vertex state is

active only when it has to send messages. The vertex state

becomes inactive when it has no more messages to send. The

inactive vertices do not take part in the subsequent iterations

unless they receive one or more messages and are activated

again. During each iteration, the active vertices will send the

active messages in its message table to all its adjacent vertices

and become inactive. When there are no more active vertices,

the algorithm terminates [8].

 The message passing model can be used to find, the shortest

distance, betweenness centrality, for enumerating triangles, etc.

In case of single-source message passing model, there is only

one active node in the beginning. For example, while finding

the shortest distance, we start from the source node as active. In

this case we can only find the shortest path from the given

source node. However, in cases where we need to find the

shortest path from more than one source node we might have to

repeatedly execute the algorithm with all the source nodes. This

will not only result in more number of iterations but also in the

iterations not being fully used as there will be many inactive

vertices in each iteration [8].

 Hence, we use multi-source message passing model where

we can have more than one active vertex in the beginning. To

enable this we need the message to contain details like the

source vertex and state of the message along with the actual

message content in order to distinguish the message from the

messages send from other source nodes [8].

2.1 Implementing the Message Passing Model on

MapReduce

The MapReduce method consists of the Map phase for

mapping data into <key, value> pairs and Reduce phase to

obtain an aggregated value for each key generated in the map

phase [9], [10]. Each vertex of the graph will contain details

like vertex id, list of adjacent vertices and the message table. In

addition, the vertex will also contain two functions named

sendMessage() and receiveMessage() for sending and receiving

messages respectively. These functions are defined based on

the purpose of the algorithm [8].

The map function will call the sendMessage() to obtain the

list of active messages that are to be send by the vertex. Since

these messages are to be send to each of the vertex’s adjacent

vertices, the map function will output <adjacent vertex idi, list

of active messages> as the<key, value> pair where 0≤ i ≤

number of adjacent vertices. The map function will also output

<vertex id, vertex details> along with the above [8].

Figure 1: Implementing Message Passing model using

MapReduce [8].

The reduce function will have a vertex details and the lists of

received messages as values for each vertex. If the value is

vertex details, then create a vertex using those details. Make a

collection of all the other values which are messages to be

received and then call the receiveMessage() of the created

vertex to add those messages to the message table of the vertex.

The output of the reduce function will be this vertex. Figure 1

shows the MapReduce algorithm explained here [8].

2.2 Finding Betweenness Centrality

Finding the betweenness centrality using multi-source message

passing model consists of two phases. The first phase is the

breadth-first traversal phase where we find the shortest distance

from the source node to the current node as well as the number

of shortest paths between them during the traversal. The second

phase is a backtracking phase where we find the dependency of

the source node on the current node while backtracking [8].

 Each vertex will contain the vertex id, list of adjacent

vertices and the message table. Each message in the message

table will contain the state of the message, predecessor list,

distance from the source vertex, number of shortest paths and

the dependency of the source vertex on the current vertex. If

the state of the message is 0, then the message is inactive and if

it is 1, then the message is active. If the message table of a

vertex contains active messages, then the vertex is active and it

will send the active messages to the adjacent vertices. Initially,

each vertex will contain an active message of the form (<1,

vertex id, 0, 1, 0.0) [8].

DOI: 10.18535/Ijecs/v4i12.17

Nikhitha Cyril
1
 IJECS Volume 04 Issue 12 December 2015, Page No.15183-15189 Page 15185

Figure 2: Algorithm for Breadth First Traversal [8].

Figure 2 shows the algorithm for the sendMessage() and

receiveMessage() for the breadth first traversal. The

sendMessage will return the list of active messages with the

modified distance considering the weight of the edge from the

vertex to the adjacent vertex. The receiveMessage() first

checks if the vertex has already received a message from the

same source. If it has, then it will compare the distance of the

old message with that of the new message. If the distance of the

old message is less than the new message, then it will ignore

the new message and if the distance of the new message is

lesser, then it will replace the old message with the new

message. If both the messages have the same distance, then the

path of the new message will be stored along with the path of

the old message and the number of paths of old message will be

increased by the number of paths of the new message. If there

are no messages from the same source id, then the message will

be stored in the message table [8].

 In the backtracking phase we start from the vertex that is

farthest from the source node. This will be the vertex with the

largest distance. Then we traverse back to the source vertex and

in the process we find the dependency of the source node on

the vertex. The dependency of the source vertex, s, on any

vertex, v is defined by the formula given below.

)

)(

)(1()(














pv
s

s

sv
v

s
 (1)

Here,
sv

 and



s

 is the number of shortest paths between s

and v, and s and  respectively,)(p is the predecessor list

of vertex [8].

 Figure 3: Algorithm for Backtracking [8].

In the sendMessage() of backtracking phase, we have to find

the current farthest distance, D. The messages with D as the

distance are collected and send to the predecessor nodes. The

receive message finds the part dependency of the vertex from

which it receives the message using the above formula (i.e.,

))(1(






s

s

sv  where  is the vertex from which it

received the message) and adds it to the dependency of the

message. The backtracking phase terminates when D becomes

0. The algorithm for the sendMessages() and

receiveMessages() are shown in figure 3.

Once the breadth-first traversal and backtracking is

completed we can find the betweenness centrality of the vertex

by adding the dependency of all the source vertices on that

vertex [8].

Figure 4 shows an example for finding betweenness

centrality of a graph with five vertices. Figure 4(a) shows each

iteration of the breadth-first traversal and 4(b) shows each

iteration of the backtracking phase. The active messages are

shown in bold [8].

DOI: 10.18535/Ijecs/v4i12.17

Nikhitha Cyril
1
 IJECS Volume 04 Issue 12 December 2015, Page No.15183-15189 Page 15186

Figure 4(a): Example showing the iterations of breadth-first traversal

DOI: 10.18535/Ijecs/v4i12.17

Nikhitha Cyril
1
 IJECS Volume 04 Issue 12 December 2015, Page No.15183-15189 Page 15187

Figure 4(a): Example showing the iterations of backtracking phase. The final image shows the betweenness centrality obtained.

3. Proposed Method

Gupta [3] introduced the method of Map-Based Graph analysis

on MapReduce. Through this method, he separated the graph

topology which remains constant throughout the iterations from

the intermediate details obtained during the iterations. A

parallel merge-join is performed at each map stage to combine

these details and thereby the communication time is reduced

considerably. The communication time reduced further by

eluding the reduce phase of MapReduce and thus saving the

communication time between the map and reduce phases.

 The proposed method involves converting the multi-source

message passing model into the map-based form to find the

betweenness centrality more efficiently. Also, once a vertex

receives all the messages, then it is possible to send the next set

of active messages from that vertex in the same iteration i.e., it

doesn’t have to wait till the next iteration to send those

messages. Hence, in each map function, it will first receive the

messages and then send the next set of active messages.

 This method requires an initial MapReduce phase to send the

first set of messages and also to separate graph topology from

the intermediate details which in this case is the messages

transmitted and the message table. These messages are stored

in the form of multiple output files each of which acts as a

graph partition and the graph topology is stored as the normal

output of the MapReduce.

DOI: 10.18535/Ijecs/v4i12.17

Nikhitha Cyril
1
 IJECS Volume 04 Issue 12 December 2015, Page No.15183-15189 Page 15188

 The figure 5 shows the algorithm for the initial MapReduce

task. The input is the list of edges in the graph i.e., from and to

vertices of the edge. The map function outputs these from and

to vertices as output. Thus, in the reduce function will have for

each key, the set of edges as the values. These data are used to

form the vertex. It then calls the vertex’s sendMessage() to get

the list of active messages. For each edge of the vertex, these

messages are stored to a file named as the edge’s id. The

reduce function also stores the message table to a file with the

name as the vertex’s id. The list of edges of the vertex is given

as the normal output of the function and will serve as the input

to all the following iterations of map-based MapReduce jobs.

Figure 5: Initial MapReduce algorithm

 The initial MapReduce job is followed by a number of

iterations of the map-only jobs which receives and sends

messages to necessary for finding the betweenness centrality.

Each mapper initially performs a merge-join between the

mapper input which is the vertex and edge list and the graph

partitions containing the message table and send message list.

During the join, the mapper initially aggregates the graph

partitions. The messages from the message table are stored to a

TreeMap named map and the send message list is stored to a

dictionary D. Now, map will contain the message table of all

the vertices and D will contain all the message list send to each

vertex. The input to the map function is the vertex id and its

edge list. This along with the message table for that vertex from

map will form a vertex. The mapper calls the receiveMessage()

of that vertex to add the message list from D to the vertex’s

message table. It then calls the sendMessage() to send the new

active messages to its edges. This message list and the message

table of the vertex are stored to a sequential file that forms the

new graph partitions that is used for the next iteration.

Obviously, there are no reduce functions for these MapReduce

jobs. The algorithm for these mapper functions are shown in

figure 6.

 The sendMessages() and receiveMessages() used in the

proposed method are same as those used in the multi-source

message passing model for finding betweenness centrality. The

initial MapReduce job and the iterative map-based jobs should

be implemented for the breadth-first traversal and the

backtracking phase using the sendMessages() and

receiveMessages() for the same(algorithms for which are

shown in figure 2 and 3 respectively).

 Once the breadth-first traversal and the backtracking phases

are completed, we can find the betweenness centrality of all the

vertices by adding the dependency of all the source vertices on

that vertex.

Figure 6: Algorithm for the Mapper functions

4. Experiment Result

The experiment was performed on a hadoop cluster set up

using the Amazon EC2 Servers. Ubuntu Server 14.04 LTS was

used. Hadoop 1.2.1 was installed on each server and the

multinode setup was formed. The master node was used

extensively as the Namenode and JobTracker. The 3 worker

nodes acted as the DataNodes and TaskTrakers. One of the

worker node was also set as the Secondary NameNode. The

input dataset used is a graph topology consisting of 100 nodes.

 The graphs below show the comparison between the multi-

source message passing model and the map-based multi-source

message passing model. Figure 7 shows the time taken for each

of the iterations during the breadth-first traversal and Figure 8

shows the time taken for each of the iterations of the

backtracking phase. Both the graph shows that the each

iteration of the map-based method took much less time than

that of the multi-source message passing model.

Figure 7: Comparison between the time taken during each

iteration of breadth-first traversal

DOI: 10.18535/Ijecs/v4i12.17

Nikhitha Cyril
1
 IJECS Volume 04 Issue 12 December 2015, Page No.15183-15189 Page 15189

Figure 7: Comparison between the time taken during each

iteration of backtracking phase

For multi-source message passing model, the average time

taken for an iteration of Breadth First Traversal was 21,569ms

and the average time taken for an iteration of Back Tracking

was 21,733ms. Total Time taken for finding betweenness

centrality using this method was 3,23,078ms. For Map-based

multi-source message passing model, the average time taken

for an iteration of Breadth First Traversal was 12,239ms and

the average time taken for an iteration of Backtracking was

12,313ms. Total Time taken for finding betweenness centrality

using this method was 2,24,323ms. The figure 8 shows this

chart in a logarithmic scale.

Figure 8: Comparison between the multi-source message

passing model and the map-based multi-source message

passing model

 From these statistics, it is clear that each iteration of the

map-based multi-source message passing model takes much

less time than normal multi-source message passing model both

during the breadth-first traversal as well as the backtracking

phase. Even though the initial MapReduce job for the breadth-

first traversal and backtracking phase results in an extra

overhead, this overhead is proved to negligible compared to the

total time saved in the Mapper functions.

5. Conclusion

Betweenness Centrality is a significant measure in finding the

importance of a node in a network. However, the existing

methods to find betweenness centrality are time consuming

iterative methods with high complexity. This paper proposes a

map-based multi-source message passing model that is faster

and more efficient than the existing techniques. Experimental

studies were conducted to compare the map-based method with

the multi-source message passing model for finding

betweenness centrality and it was found that the proposed

method was about 44% faster than the multi-source message

passing model.

References

[1] Y. Bu, B. Howe, M. Balazinska, M. D. Ernst, “HaLoop:

efficient iterative data processing on large clusters,”

In Proceedings of the VLDB Endowment, 3(1-2), pp.

285-296, 2010.

[2] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S. H. Bae,

J. Qiu, G. Fox, “Twister: a runtime for iterative

mapreduce,” In Proceedings of the 19th ACM

International Symposium on High Performance

Distributed Computing, pp. 810-818, 2010.

[3] U. Gupta, L. Fegaras, “Map-based graph analysis on

MapReduce,” In 2013 IEEE International Conference on

Big Data, pp. 24-30, 2013.

[4] M. Barthelemy, “Betweenness centrality in large complex

networks,” The European Physical Journal B-Condensed

Matter and Complex Systems, 38(2), pp. 163-168, 2004.

[5] L. C. Freeman, “Centrality in social networks conceptual

clarification,” Social networks, 1(3), pp. 215-239, 1979.

[6] T. Opsahl, F. Agneessens, J. Skvoretz, “ Node centrality

in weighted networks: Generalizing degree and shortest

paths,” Social Networks, 32 (3), pp. 245-251, 2010.

[7] U. Brandes, “A faster algorithm for betweenness

centrality*,” Journal of Mathematical Sociology, 25(2),

pp. 163-177, 2001.

[8] Z. F. Zeng, B. Wu, T.T. Zhang, “A multi-source message

passing model to improve the parallelism efficiency of

graph mining on MapReduce,” In 2012 IEEE 26th

International Parallel and Distributed Processing

Symposium Workshops & PhD Forum (IPDPSW), pp.

2019-2025,2012.

[9] “MapReduce Tutorial,” (n.d.), Hadoop.apache.org., June

29, 2015. [Online]. Available:

https://hadoop.apache.org/docs/current/hadoop-

mapreduce-client/hadoop-mapreduce-client-

core/MapReduceTutorial.html. [Accessed: Nov. 21,

2015].

[10] R. Ho, “How Hadoop Map/Reduce works,” Dzone.com,

Dec. 16, 2008. [Online]. Available:

https://dzone.com/articles/how-hadoop-mapreduce-

works. [Accessed: Nov. 21, 2015].

[11] T. White, Hadoop: The definitive guide, O'Reilly Media,

Inc., United States of America, 2012.

	PointTmp

