
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 6 Issue 7 July 2017, Page No. 21978-21981

Index Copernicus value (2015): 58.10 DOI: 10.18535/ijecs/v6i7.13

Rima Debnath, IJECS Volume 6 Issue 7 July 2017 Page No. 21978-21981 Page 21978

Level of Project Management of Estimation, Planning and Tracking and

uses techniques
1
Rima Debnath,

2
Dr. Amit Asthana

1
 M TECH.-Computer Science and Engineering,

 2
H.O.D of

Department of Computer Science and Engineering
1
S.I.T.E, Swami Vivekanand Subharti University, Meerut

Abstract: The process begins with estimating the size, effort and time required for the development of the software and ends with the product

and other work products built in different phases of development. Model based technique is one of the best techniques used for estimation.

Software engineering is the discipline which paves the roadmap for development within given schedule and effort and with the desired

quality. The technique uses different parameters for estimation. The estimates should be accurate, failing to which leads to wrong estimates

and consequently results in software crisis.

The tools available for automating some of the activities are great help in the whole development process. However these tools isolate the

process of estimation, planning & tracking and calibration. Secondly Software Engineering is a nascent discipline and still the metrics

introduced for quantifying the attributes of software are not judgments. Handling large volume of data for these processes is a tiresome

task.

Keywords: software engineering, estimation...

1. Introduction

 Software engineering requires highest degree of analyses,

hard work and the management of the two. It is the discipline

that aggregates the application of scientific and technological

knowledge through the computer programs, to the requirements

definition, functional specification, design description, program

implementation, and test methods that lead up to test the code

[1]. Software engineering is about engineering the software

development process.

Effective estimation is essential for proper project planning and

control and is one of the most critical and challenging task in

the development process. Under-estimating a project leads to

quality degradation, employee over exploitation and setting

short schedule and hence results in missed deadlines.

Allocating more resources to the project and thus increasing the

cost of the project without any scope.

Proper planning of the project and tracking the project

development is the second essential task for assuring the

success of the project. Once the estimates are available the next

task is to assign the tasks to individual’s project. Estimation

plays the key role in the management of the development

process. The most recent data available and if standard

parameters are being used in the method then those parameters

should be well calibrated with the available data.

This chapter comprises the discussion on the current scenario

of typical project management and drawbacks of the current

scenario, proposed solution over view, benefits of proposed

solution, system over view, system development phases, system

development schedule and development environment.

2. The Current Scenario

In this section the current scenario for the software estimation,

planning and tracking is discussed.

Figure 1.1 shows five categories of software estimation

techniques in practice.

Figure: 1 Software Estimation Techniques

Various estimation techniques have been developed in the past

which follows mathematical model for estimation. SLIM

(Software life cycle model), COCOMO (Constructive Cost

Model), SEER (System Evaluation and Estimation of

Resources)

Case-Based technique is another kind of learning based

techniques in which a database of completed projects is

maintained and new project’s cost is estimated by comparing

the new project with similar projects in the database.

In the model based techniques the values for different

standard parameters are fetched according to the project being

developed and using the equations defined in the model the

estimates are calculated [2, 3, 4].

2.1 Drawbacks in the Current Scenario
Study of tools [2, 3, 4] has revealed the following

drawbacks in the current scenario

1. Reports at any stage of development are needed another

important feature absent in available tools.
2. The tools available for planning used to send the

information of task assigned to individuals through

http://www.ijecs.in/

DOI: 10.18535/ijecs/v6i7.13

Rima Debnath, IJECS Volume 6 Issue 7 July 2017 Page No. 21978-21981 Page 21979

mails and the information pertinent to the assigned task

is kept in some version control system.

3. During the development, the management needs to keep

track of information about the status of project; the tools

available do not have such features.

4. While calibration, past projects’ data need to fetched

manually.

5. The method used for calibration of tools does not

incorporate the expert’s judgment in the resulting

parameter values.

6. Tools available for the above activities are isolated to

each other i.e. the tools available are either estimation

tools or for planning and tracking.

7. Any supporting documents or reports should be

available to the person in the organization like SRS for

the project, design specification. Current tools do not

have this feature.

3. System overview

The proposed system is devised by using COCOMO II

method for estimation.

1. Scheduling Module

2. Tracking Module

3. Calibration Module

Figure: 2 systems over view

3.1 System Development Phases

The proposed System has three development phases.

1. Phase I

Phase I was dedicated to the database design, designing

the system and for developing the part which estimates the

size, effort and schedule for the project along with the

programs for inserting the data into the backend and for its

manipulation.

2. Phase II

Being estimation model at its place the next point of focus

was development of planning and tracking module. Phase II

was concerned about developing system for taking inputs

from the developers and comparing them.

3. Phase III

The last but the most important phase was phase III with

the implementation of calibration method using the

regression analysis [7].

4. COCOMO II over COCOMO 81

COCOMO 81 was the model of 1980s. This section

compares both the flavors of COCOMO [5].

1. In the era of COCOMO 81, software was developed

with a limited scope and reusability was not a popular

concept and hence there was no such concept in

COCOMO 81 to accommodate these new features.

COCOMO II incorporates the features mentioned and

adjusts the estimates for reuse.

2. The estimation model needs to be consistent with the

information available for the projects. In COCOMO 81

there is only three models organic, semi-detached and

embedded and these models describe the nature of

projects. COCOMO II has three models application

composition, early design and post-architecture to be

used according to the phases of development.

3. COCOMO 81 gives output in the form of an exact

value, which in most of the cases is not accurate.

COCOMO II gives output in the form of ranges

(optimistic, pessimistic and most likely) according to

the phases of development, which is a better way to plan

the development process.

4. B is the constant used in both versions of COCOMO. In

COCOMO 81 B is a constant value that depends on the

type of project (organic, semi-detached, and embedded).

Whereas in COCOMO II B is the result of equation

containing five scale factors.

5. User
User is the origin of the application. The application starts with

the user authentication.

5.1Utility
The package contains the classes responsible for non-business

logic functions. The classes in the package are responsible for

validation, connection to the database and for parsing the xml

file containing the details for database access.

5.2 MailerPkg
The tool has the ability for sending mails to the developers

triggered under the conditions selected by the developers. The

package is responsible for sending mails.

5.3 ClientPkg
The package contains classes for the operations related to the

clients like addition of a new client, searching a client, finding

a client’s information etc.

DOI: 10.18535/ijecs/v6i7.13

Rima Debnath, IJECS Volume 6 Issue 7 July 2017 Page No. 21978-21981 Page 21980

5.4 Project Pkg
The package has a collection of classes responsible for the

persistence of the information pertinent to the projects. It

includes projects’ normal information like description, client

name, project leaders name etc.

5.5 ModulePkg
The package contains the classes for keeping information about

the module and for its size, effort and schedule estimation.

5.6 TaskPkg

The package contains the classes for keeping information about

the task and for its size, effort and schedule estimation.

5.7 ScaleFactorsPkg
The package keeps track of the information of the scale factors

in the task.

5.8 ActivityPkg
While developing the tool, a task is further subdivided into 24

activities. The classes in the package are responsible for

operating on the activities and for drawing the bar chart

representing the time taken by each activity in the organization.

6. COCOMO II Models

Development market in future can be divided into following

categories [5]:

1. End-User programming: Increased literacy has

increased the number of end users. New tools available in

market allows user to develop their own software for simple

uses or for information processing. Some examples are

spreadsheets, query browsers, planning tools etc.

2. Application Generators: The area which generates

the readymade solution which need to be customized according

to user.

3. Application Composition: The problems which

cannot be solved through single prepackaged solutions needs to

be generated by combining different reusable components.

Such development comes under the category of application

composition.

4. System Integration: Large scale software requiring

high degree of system engineering and cannot be generated by

application composition comes under this category.

5. Infrastructure: The area concerned with the

development of operating system, database management

systems etc. comes under this category.

The first category (end user programming) does not need

COCOMO II for estimation because its applications are easy

to develop with very low complexity and can be developed

within hours. For other four sectors COCOMO II has three

models of estimation.

7. Related work

Software development effort estimation is the process of

predicting the most realistic amount of effort (expressed in

terms of person-hours or money) required to develop or

maintain software based on incomplete. Effort estimates may

be used as input to project plans, iteration plans, budgets,

investment analyses, pricing processes [8].

 Expert estimation: The quantification step, i.e., the

step where the estimate is produced based on

judgmental processes [9].

 Formal estimation model: The quantification step is

based on mechanical processes, e.g., the use of a

formula derived from historical data.

 Combination-based estimation: The quantification

step is based on a judgmental and mechanical

combination of estimates from different sources[10].

 This implies that different organizations benefit from different

estimation approaches. Findings, summarized in[11] that may

support the selection of estimation approach based on the

expected accuracy of an approach include:

Expert estimation is on average at least as accurate as model-

based effort estimation. In particular, situations with unstable

relationships and information of high importance not included

in the model may suggest use of expert estimation.

The most robust finding, in many forecasting domains, is that

combination of estimates from independent sources, preferable

applying different approaches, will on average improve the

estimation accuracy[12][13][14]. It is important to be aware of

the limitations of each traditional approach to measuring

software development productivity[15].

COCOMO (Constructive Cost Model) is a model that allows

software project managers to estimate project cost and

duration. It was developed initially (COCOMO 81) by Barry

Boehm in the early eighties
2
. The COCOMO II

1
model is a

COCOMO 81 update to address software development

practices in the 1990's and 2000's. The model is simple and

well tested.

 Provides about 20% cost and 70% time estimate

accuracy

COCOMO II estimates project cost, derived directly from

person-months effort, by assuming the cost is basically

dependent on total physical size of all project files, expressed

in thousands single lines of code (KSLOC). The estimation

formulas have the form:

Hide Copy Code

Effort (in person-months) = a x

KSLOC^b

COCOMO is approximately cube root of effort (in person-

months).

The first set is external and can be loosely matched to trade-off

triangle/matrix view and its vocabulary is frequently used while

negotiating costs with stakeholder, and the second set is

COCOMO II internal and usually cannot be used for this

purpose. In this trade-off triangle/matrix perspective, schedule

is loosely corresponding to SCED (required development

schedule), quality to RELY (required reliability), and

functionality to a combination of CPLX (product complexity),

DATA (database size), TIME (execution time), DOCU

(documentation match to life-cycle needs), and occasionally

DOI: 10.18535/ijecs/v6i7.13

Rima Debnath, IJECS Volume 6 Issue 7 July 2017 Page No. 21978-21981 Page 21981

RUSE, STOR, PVOL parameters. Comparing to classical

COCOMO 81, COCOMO II introduces five scale factors, at

least three of them are directly related to PM activities, and,

thus, raises the role of project management in reducing project

costs:

 Takes into account process maturity in the

organization (CMM levels)

 Takes into account the degree to which project

architecture exists and is stabilized before

construction phase

 Takes into account relationships perspective: team

cohesion, relations with stockholder

Of course, you can use COCOMO II as it is: choose model,

formulas, figure out the values for parameters, and manually

calculate project costs. I believe it is a matter what tool you

prefer in every spring, filling out tax forms – just simple

calculator or automated software tools. I would cover in this

section one of the specific tools for making COCOMO II

estimates.

 db_provider

 servlet

1. database_scripts

2. ui_web_testing

Now, when initial state of components is set up in the Costar

project, we can start making actual COCOMO II estimates. The

total cost of the project in COCOMO models is largely

determined by total SLOC count, adjustment and scaling

parameters for a real project can vary project costs in hundreds

of times. The first set, 17 cost drivers, are largely inherited

from COCOMO 81 model, and the second set, 5 scale drivers,

and are new in COCOMO II model.

7.1 An introduction to COCOMO II techniques

and terminology based on real project

COCOMO II as it is choose model, formulas, figure out the

values for parameters, and manually calculate project costs.

 db_provider

1. servlet

2. database_scripts

3. ui_web_testing

When initial state of components is set up in the Costar project,

we can start making actual COCOMO II estimates. The total

cost of the project in COCOMO models is largely determined

by total SLOC count. The first set, 17 cost drivers, are largely

inherited from COCOMO 81 model, and the second set, 5 scale

drivers, and are new in COCOMO II model.

 As a project manager, you need to gather information about

most important sides of your project such as required product

characteristics, required schedule, required product quality,

experience and capability of project team, project infrastructure

readiness and maturity. Since an introduction to COCOMO II

techniques and terminology based on real project, I will only

briefly describe assumptions that I made for the case study

project.

8. Conclusion

Estimating the project and then planning it without caring about

the status of project at any instant of time is a problem worth to

be considered. Everything changes with time the team, the

process, and the life-cycle. So a static model cannot be used.

There are much severe consequences of using a static model for

estimation. The core of software crisis starts with the wrong

estimation. Thus the calibration of the model being used for the

estimation, with the past projects’ data experienced by the

organization, is an activity of utmost importance.

Instead of being one of the lately introduced branches of

Engineering, Software Engineering has grown enough to invent

successful software development models, estimation

techniques, designs, architectures and testing methods. After so

many findings still the metrics needed to measure software

precisely are not complete. Under such circumstances experts’

judgment cannot be ignored, but it requires time, work and

money.

9. References

[1] “McGraw-Hill Dictionary of Scientific and Technical

Terms”, 6th edition, published by The McGraw-Hill

Companies, Inc.

[2] “Construx Estimate tool”, www.construx.com

[3] “CoStar tool”, www.softstarsystems.com

[4] “SLIM-ESTIMATE tool”, www.qsm.com

[5] “COCOMO II Model definition manual”, version 1.4,

University of Southern California.

[6] Swapna kishore and Rajesh Naik, “Software Requirements

and Estimation”, Tata McGraw-Hill, New Delhi, 2003.

[7] Bradford Clark, Sunita Devnani-Chulani and Barry

Boehm, “Calibrating the COCOMO I1 Post-Architecture

Model”, 1998 IEEE

[8] Java, Sun MicroSystems,

[9] java.sun.com/javase/downloads/index.jsp

[10] Java Server Faces,

java.sun.com/javaee/javaserverfaces/download.html

[11] MySQL, dev.mysql.com/downloads/mysql/4.1.html

[12] MySQL jdbc connector,

dev.mysql.com/downloads/connector/j/3.1.html

[13] JFreeChart,

www.softpedia.com/get/Multimedia/Gr

aphic/Graphic-Others/JFreeChart.shtml

[14] ChartCreator,

sourceforge.net/project/showfiles.php?group_id=137466

[15] MyFaces, apache.tradebit.com/pub/myfaces/binaries/

[16] Jdom, www.jdom.org

