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Abstract:- 

Business and healthcare application are tuned to automatically detect and react events generated from local are remote sources. Event 

detection refers to an action taken to an activity. The association rule mining techniques are used to detect activities from data sets. Events 

are divided into 2 types’ external event and internal event. External events are generated under the remote machines and deliver data 

across distributed systems. Internal events are delivered and derived by the system itself. The gap between the actual event and event 

notification should be minimized. Event derivation should also scale for a large number of complex rules. Attacks and its severity are 

identified from event derivation systems. Transactional databases and external data sources are used in the event detection process. The 

new event discovery process is designed to support uncertain data environment. Uncertain derivation of events is performed on uncertain 

data values.  

 

 Index Terms-Association, selectability, derivation, sampling, 

approximation 

 
patterns can be utilized for clinical diagnosis. However, the 

available raw medical data are widely distributed, 

heterogeneous in nature, and voluminous specialty and 

moreover there is a shortage of resource persons at certain 

places. Therefore, an automatic medical diagnosis system would 

probably be exceedingly beneficial by bringing all of them 

together. Appropriate computer-based information and/or 

decision support systems can aid in achieving clinical tests at a 

reduced cost. Efficient and accurate implementation of 

automated system needs a comparative study of various 

techniquesavailable.

 

1. INTRODUCTION 

 Medical data mining has great potential for exploring the 

hidden patterns in the data sets of the medical domain. These  
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information system. Data mining technology provides a user 

oriented approach to novel and hidden patterns in the data. 

Healthcare has been one of the top demands of this generation. 

In the advent of technology, the provision of healthcare 

continues to improve. One of the top priorities is the provision 

of diagnosis, and the one responsible for this is the physician. 

Physician’s diagnosis is the most relevant factor that leads to 

the acquisition of proper health guides. As technology soars, 

there are changing medical requirements and solutions, and 

sometimes physicians are not updated with these upgrades, that 

they need to surf the internet for more information. 
    Medical diagnosis is regarded as an important yet 

complicated task that needs to be executed accurately and 

efficiently. The automation of this system would be extremely 

advantageous. Regrettably all doctors do not possess expertise 

in every sub.  

   One of the solutions that could aid in the physician’s 

diagnosis is the Clinical Diagnostics Decision Support System 

(CDSS). The CDSS is generally defined as any computer 

program designed to help health professionals make clinical 

decisions. Clinical Decision Support Systems supports case-

specific advice which addresses to the aiding of physician’s 

diagnosis via computer-based facility. Since physicians 

sometimes encounter complicated ailments, a CDSS can make 

decision making simpler by providing relevant pre-diagnosis. 

With the use of CDSS, a prediagnosis could be extracted which 

can strongly support the physician’s decision. Hence, lesser 

time could only be consumed in the provision of diagnosis to 

the patient. Along with this CDSS is a logic which provides 

probabilistic conditions that leads to a specific outcome, which 

is the Fuzzy Logic; another one is the method to be taken, 

which is the rule-based method. 

 

 

II.  RELATED WORK 

    Complex event processing is supported by systems from 

various domains. These include ODE, Snoop and others for 

active databases and the Situation Manager Rule Language, a 

general purpose event language. Event management was also 

introduced in the area of business process management [3] and 

service-based systems [7]. An excellent introductory book to 

complex event processing is also available. A recent book 

introduces principles and applications of distributed event based 

systems [6]. Architectures for complex event processing were 

proposed, both generic and by extending middleware.  

   The majority of existing models do not support event 

uncertainty. Therefore, solutions adopted in the active database 

literature, such as the Rete network algorithms fail to provide an 

adequate solution to the problem, since they cannot estimate 

probabilities. An initial rule-based approach for managing 

uncertain events was proposed in [14]. This work was followed 

by a probabilistic event language for supporting RFID readings. 

Our proposed model shares some commonalities with, namely 

uncertainty specification at both the event occurrence and the 

rule level, and providing an algorithm for uncertain event 

derivation. However, unlike [4], our framework does not limit 

the type of temporal expressions it can handle nor does it limit 

attribute derivation types. We extend the work by providing 

algorithms for deriving uncertain events and empirical evidence 

to the scalability of the approach.  

    Recent works on event stream modeling propose formal 

languages to support situations such as event negations. Various 

aspects of event-oriented computing were discussed at CIDR 

2007 (e.g., [2]). Our focus in this work is on modeling 

and efficiently managing uncertainty in complex 

event systems, which was not handled by these 

works. Modeling probabilistic data and events was 

suggested in [8]. This work extends those models by 

proposing a model and a probability space 

representation of rule uncertainty. A common 

mechanism for handling uncertainty reasoning is a Bayesian 

network, a method for graphically representing a probability 

space, using probabilistic independencies to enable a relatively 

sparse representation of the probability space. Qualitative 

knowledge of variable interrelationships is represented 

graphically, while quantitative knowledge of specific 

probabilities is represented as Conditional Probability Tables 

(CPTs). The network is, in most applications, manually 

constructed for the problem at hand. In our framework, we 

automatically construct a Bayesian network from a set of events 

and rules, following the Knowledge Based Model Construction 

(KBMC) paradigm. This paradigm separates uncertain 

knowledge representation from inference, which is usually 

carried out by transforming the knowledge into a Bayesian 

network that can model knowledge at the propositional logic 

level knowledge. The work also follows the KBMC paradigm. 

In this work, the quantitative knowledge, as well as the 

quantitative deterministic knowledge, are represented as a set of 

Horn clauses and the qualitative probabilistic knowledge is 

captured as a set of CPTs. Our framework, however, in that our 

framework need not be restricted to first order knowledge. For 

example, second order knowledge, or knowledge that can be 

expressed using any procedural language, can also be captured. 

In addition, in our framework, probabilities may have a 

functional dependency on the events themselves. For example, 

the probability assigned to a flu outbreak could be specified to 

be min (90 + (X - 350)=10, 100). In addition, our framework 

enables the uncertainty associated with such event derivation to 

be captured by different probability spaces at different points in 

time.  

   Existing works [9] for processing complex events in specific 

domains tailor probabilistic models or direct statistical models 

to the application. No general framework was defined there to 

derive uncertain events.  Some details of our framework were 

presented in [13] with two significant extensions in this work. 
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We discuss in details efficiency aspects of our algorithms, and 

in particular event selectability. We also significantly extended 

our empirical analysis to include more cases.  

 

III. EVENT DRIVEN SYSTEMS (EDS) 

   In recent years, there has been a growing need for event 

driven systems, i.e., systems that react automatically to events. 

The earliest event-driven systems in the database realm 

impacted both industry and academia. New applications in areas 

such as Business Process Management (BPM) [5]; sensor 

networks [11]; security applications; engineering applications; 

and scientific applications all require sophisticated mechanisms 

to manage and react to events. 

   Some events are generated externally and deliver data across 

distributed systems, while other events and their related data 

need to be derived by the system itself, based on other events 

and some derivation mechanism. In many cases, such derivation 

is carried out based on a set of rules. Carrying out such event 

derivation is hampered by the gap between the actual 

occurrences of events, to which the system must respond, and 

the ability of event-driven systems to accurately generate 

events. This gap results in uncertainty and may be attributed to 

unreliable event sources, an unreliable network, or the inability 

to determine with certainty whether a phenomenon has actually 

occurred given the available information sources. Therefore, a 

clear trade-off exists between deriving events with certainty, 

using full and complete information, and the need to provide a 

quick notification of newly revealed events. Both responding to 

a threat without sufficient evidence and waiting too long to 

respond may have undesirable consequences. 

    In this work, we present a generic framework for representing 

events and rules with uncertainty. We present a mechanism to 

construct the probability space that captures the semantics and 

defines the probabilities of possible worlds using an abstraction 

based on a Bayesian network. In order to improve derivation 

efficiency we employ two mechanisms: The first mechanism, 

which we term selectability, limits the scope of impact of events 

to only those rules to which they are relevant, and enables a 

more efficient calculation of the exact probability space. The 

second mechanism we employ is one of approximating the 

probability space by employing a sampling technique over a set 

of rules. We show that the approximations this mechanism 

provides truly represent the probabilities defined by the original 

probability space. We validate the approximation solution using 

a simulation environment, simulating external event generation, 

and derive events using our proposed sampling algorithm.  

 

IV. CHALLENGES IN EDS 

   A generic model is used for representing the derivation of 

new events under uncertainty. Uncertain derivations of events 

are performed on uncertain data values. Relevance estimation is 

a more challenging task under uncertain event analysis. 

Selectability and sampling mechanism are used to improve the 

derivation accuracy. Selectability filters events that are 

irrelevant to derivation by some rules. Selectability algorithm is 

applied to extract new event derivation. A Bayesian network 

representation is used to derive new events given the arrival of 

an uncertain event and to compute its probability. A sampling 

algorithm is used for efficient approximation of new event 

derivation. The following drawbacks are identified from the 

existing system. 

 Static rule base model 

 Limited accuracy in rule probability estimation 

 Manages limited incoming events only 

 Rule class and structure are not generalized 

 

 

V. EVENT DERIVATION MODELS 

  The challenges associated with event derivation, note first that 

such events only suggest a high probability of a flu outbreak, 

which does not necessarily mean that such an event should be 

derived. We term this type of uncertainty derivation uncertainty, 

as it stems from the inability to derive such events with 

certainty from the available information. In addition, there is 

uncertainty regarding the data itself, because the provided data 

are rounded to the nearest ten. For example, the increase from 

November 30 to December 4 is of 350 units, yet rounding may 

also suggest a smaller increase of 341 units. This is considered 

uncertainty at the source, resulting from inaccurate information 

provided by the event source. Additional details regarding the 

different types of uncertainty can be found in [1]. 

 

EID Date Daily Sales (Rounded) 

113001 Nov 30 600 

120101 Dec 1 700 

120201 Dec 2 800 

120301 Dec 3 900 

120401 Dec 4 950 

120501 Dec 5 930 

 

TABLE 1: Over-the-Counter Sales Relation 
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Fig. 1. Anthrax rule. 

   To highlight the complexity of the processing uncertain 

events and rules we note that the rule presented above is a 

simplified version of rules expected to exist in the real world. 

For example, instead of just specifying a single certainty level 

of 90 percent, one could compute the probability of an outbreak 

as a function of the amount of increase.  Note that while such a 

rule may be sufficient to capture in some settings the derivation 

uncertainty, it does not capture uncertainty at the source. 

   We also note that real-life applications need to process 

multiple rules with multiple data sources [10]. To illustrate, 

consider Fig. 1, where we need to consider the possibility of an 

anthrax attack, in addition to the flu outbreak. In this setting, 

data must be combined from events that come from different 

data sources. A lower probability should be assigned to an 

anthrax attack whenever a flu outbreak is recognized and a 

higher probability otherwise. As a result, a flu outbreak event is 

not derived; a significant increase of hospital emergency 

department visits with respiratory complaints is enough to 

assign a probability of 60 percent to the occurrence of an 

anthrax attack event. Other examples of more complex settings 

may involve correlating data between pharmacies or across 

regions. Therefore, it must be possible to specify a set of rules 

that captures this complexity. 

 

VI. PROBABILISTIC EVENT MODEL 

A.Event Model 

    An event is an actual occurrence or happening that is 

significant and atomic. Examples of events include termination 

of workflow activity, daily OtCCMS and a person entering a 

certain geographical area. We differentiate between two types 

of events. Explicit events are signaled by external event 

sources. Derived events are events for which no direct signal 

exists, but rather need to be derived based on other events, e.g., 

Flu Outbreak and Anthrax Attack events.   Data can be 

associated with an event occurrence. Some data types are 

common to all events, while others are specific. The data items 

associated with an event are termed attributes.  

 

B. Derivation Model 

    Derived events in our model are inferred using rules. For ease 

of exposition, we refrain from presenting complete rule 

language syntax. Rather, we represent a rule by a quintuple, r = 

rrrrr prmaps ,,,,  defining the necessary conditions for the 

derivation of new events. Such a quintuple can be implemented 

in a variety of ways, such as a set of XQuery statements, Horn 

clauses, and CPTs such as in [12], or as a set of procedural 

statements. We detail next each of the rule elements, illustrating 

them with the rule r1: ―If there is an increase in OtCCMS for 

four sequential days to a total increase of 350, then the 

probability of a flu outbreak is 90 percent.‖ Recall that 

OtCCMS events contain the volume of the daily sales.  

 

C. Event Detection Algorithms 

   Selectability, as defined by function sr in a rule specification, 

plays an important role in event derivation, in both the 

deterministic and the uncertain settings. In our setting, the 

relevance of an EID to derivation according to rule r is 

determined by the function sr. sr is a function sr : h   hr that 

receives an event history as input, and returns a subset hr 
  h. 

As an example of a function sr consider the selection function 

corresponding. Given an event history h, it returns a set 

consisting of all possible events e that indicate an increase in 

OtCCMS in two consecutive days. Formally, this would be 

defined as all possible events e such that e may be one of a pair 

of events {e1, e2} in h such that both e1 and e2 are OtCCMS 

events, e2 occurred one day after e1, and the number of cough 

medication sold as indicated by e2 is greater than the number of 

cough medication sold as indicated by e1. It is the role of the 

selection expression to filter out events that are irrelevant for 

derivation according to r.  An event e   h to be relevant to 

derivation according to rule r iff e   sr (h).We also require that 

for every pair of event histories h, h’ such that h   h0   sr (h) 

it must hold that sr (h) = sr (h’). (1) 

  Note that from (1) we have the following special case: sr (h) = 

sr (sr (h)). (2) 

 

C. Selectability Algorithm 

   As in the uncertain setting derivation is carried out on EIDs, 

algorithms are required to compute which EIDs, from a given 

system event history H, are selectable. Deciding whether an 

EID E is selectable by rule r may, by itself, incur significant 

computational effort. This is because, selectability depends on 

the possible event histories in which the event corresponding to 

E participates.  

   We propose an efficient algorithm based on a decomposition 

of sr. We decompose sr into two functions as follows: Let = {e1 

,. . . , en}, then sr may be described by csr (esr (e1))   esr (e2) 

….. esr (en)), such that esr : e   {{}, {e}.esr receives a 

single event as input, and returns as output either the empty set 

if it is clear from the attributes of this event that this event is not 

selectable by the rule, or the set containing the single event 

received as input otherwise. This representation enables 

distinguishing between a selection that can be carried out only 

by looking at an individual event and its attributes using the 

function e sr, and filtering that requires looking at combinations 

of events in h, which is carried out by function c sr. Note that 

such decomposition into e sr and c sr can always be carried out, 

since e sr can, in the worst case, return the set containing the 

input event. In such a case, sr = csr. 
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  Based on this decomposition we provide an algorithm 

that, for each rule r, provides the subset of EIDs in a system 

event history that is selectable by r. In this algorithm the 

function esr is first used to test selectability at the individual 

EID level. A set of EIDs will be constructed such that EID E is 

in the set iff one of the possible states of E corresponds to an 

event e that esr returns as selectable. Following this, only the set 

of event histories defined by this subset of EIDs is checked for 

selectability, by using the c sr function. The pseudocode of this 

algorithm—function calculateSelectableEIDs—appears in 

Algorithm 1. 

Algorithm 1. calculateSelectableEIDs(H,r) 

1. selectableEIDs    

2. esEIDs   , 

3. for all E   H 

4.   for all e   E 

5.   if esr (e) = {{e}} 

6.    esEIDs esEIDs   E 

7.   end if 

8.  end for 

9. end for 

10.for all h   esEIDs 

11. for all e   sr (h) 

12.   E getCorrespondingEID(e) 

13.   selectableEIDs  selectableEIDs   E 

14.  end for 

15. end for 

16. return selectableEIDs 

 

E. Sampling Algorithm 

   The algorithm described in the generates a Bayesian network 

from which the exact probability of each event can be 

computed. Given an existing Bayesian network, it is also 

efficiently possible to approximate the probability of an event 

occurrence using a sampling algorithm, as follows: Given a 

Bayesian network with nodes E1, . . . , En, we calculate an 

approximation for the probability that Ei = {occurred} by first 

generating m independent samples using a Bayesian network 

sampling algorithm. Then, Pr(Ei = {occurred}) is approximated 

by 
m

){occurred}  (Ei# 
, where #(Ei = {occurred}) is the 

number of samples in which Ei has received the value occurred. 

Algorithm 2. RuleSamp, triggered by a new event arrival 

1. h     

2. for all E   H0 

3.  e   probSampling(E) 

4.  h h   e 

5. end for 

6. order obtainTriggeringOrder 

7. while order    

8.  r   deleteNextRule(order) 

9.  h’     

10.  selEvents  sr (h) 

11.  if pr(selEvents) = true 

12.   assocT uples  ar (selEvents) 

13.   for all tuple   assocT uples 

14.     {s1, . . . , sn}   mr (tuple) 

15.     prob  prr (tuple, mr (tuple)) 

16.    probSamp   

sampleBernoulli(prob) 

17.    if probSamp = 1 

18.        e  {occurred, s1,. , sn} 

19.     else 

20.       e  {notOccurred} 

21.    end if 

22.    h  h’   {e} 

23.    end for 

24.  end if 

25.  h  h   h’ 

26. end while 

27. return h 

 

VII. DISEASE PREDICTION WITH HYBRID RULE BASE 

MODEL 

   The event derivation system is enhanced to map dynamic 

rules on uncertain data environment. The rule base construction 

and maintenance operations are handled by the system. Rule 

probability estimation is carried out using the apriori algorithm. 

The rule derivation process is optimized for domain specific 

model. The system is designed to detect events on uncertain 

data environment. Dynamic rule base model is used in the 

system. The system integrates the rule base update process. The 

system is divided into six major modules. They are patient 

diagnosis, rule base management, sampling process, selection 

process, event detection and rule base update. 

 

A. Patient Diagnosis 

    The system uses TB patient diagnosis information. Patient 

diagnosis data can be imported from external databases. The 

user can also update new patient diagnosis details. Diagnosis 

list shows the patient symptom levels. 

 

B. Rule Base Management 

    Rule base is used to manage the rules and event names. Rule 

base details are collected from domain experts. The rules are 

composed with attribute combination and values. Three types of 

rules are used in the system. Static, dynamic and hybrid rules 

are maintained under the rule base.  

 

C. Sampling Process 

   The sampling process is performed to select event derivation 

models. The attribute values are sampled from uncertain data 
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collections. The sampling algorithm is used to select sample 

data derivations. Sampled data values are passed to rule analysis 

process. 

D. Selection Process 

    The selection process is applied to filter irrelevant events. 

Item combinations are selected under the selection process. The 

selectability algorithm is used in the selection process. Event 

derivations are used in the rule analysis process.  
 

E. Event Detection 

   The rule base analysis is performed with user data collections. 

The bayesian network is used in the event detection process. 

The attribute combinations are compared with rule base 

information. Event detection is carried out with rank and 

priority information. 

 

F. Rule Base Update 

    The dynamic rules are derived from user data and static rule 

base information. The dynamic rules are updated with event 

name and priority values. Rule ranking is performed with 

frequency information. Rules are updated with priority details. 

 

VIII. CONCLUSION 

    Rule bases are build to manage activities and their class 

information. Event derivation is carried out with rule bases. 

Dynamic rule base update model introduced to improve the 

event detection process. Selective and sampling algorithms are 

enhanced to derive events under dynamic and uncertain domain 

environments. The system integrates the experts knowledge and 

local domain information for rule base construction. Rule base 

generation and maintenance operations are done using machine 

learning models. Event classes and its structures are 

generalized. Association rule mining methods are used to 

extract rule patterns.  
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