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Abstract : In this paper, we present a generic computer tool based on the Nakamura finite difference scheme in order to solve laminar fluid flow 

problems.  The present study is restricted to the category of one-dimensional, two-dimensional and three-dimensional fluid flows expressed in one 

spatial coordinate. All problems are assumed to be time dependant. The equations describing the flow and other relevant parameters are defined in a 

generic file which is used as input to the system. A generic interpreter is used to generate postfix codes that it will interpret in the process of 

calculations. For the purpose of application, we consider a two-dimensional unsteady flow of an incompressible electrically conducting viscous fluid 

along an infinite flat plate. The effects of the various parameters entering into the problem are discussed extensively and shown graphically. 
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1. Introduction 
The study of fluid flows has important applications in 

engineering. That importance has made it necessary for 

researchers to try and know more about the motion of fluids. 

Some of the authors who made important contributions in that 

area are Soundalgekar and Takhar [10], Bestman and Adiepong 

[1], Nakamura [6], Brewster [2], Raptis and Massalas [8], 

Raptis and Perdikis [9], Naroua et al [7], Ghosh and Pop [3]. 

Yamauchi et al. [11] presented modified finite-difference 

formulas for a general proposition of an interface that they 

applied to the propagating beam analysis of z-variant rib 

waveguides. They found the modified formula based on the 

semivectorial H-field to be more insensitive to variation in an 

interface position than that on the E-field. They also observed 

that a discretization error is satisfactorily reduced in tilted and 

tapered rib waveguides. Zhu et al. [12] analysed explicit/implicit 

schemes for parabolic equations with discontinuous coefficients. 

Numerical experiments, which were given for both linear and 

nonlinear problems, showed that their theoretical estimates are 

optimal in some sense. Khader and Ahmed [4] introduced a 

numerical simulation using finite difference method with the 

theoretical study for the problem of the flow and heat transfer 

over an unsteady stretching sheet embedded in a porous 

medium in the presence of a thermal radiation. Matsuoka and 

Nakamura [5] proposed a stable numerical scheme for a Cahn-

Hilliard type equation with long-range interaction describing 

the micro-phase separation of diblock copolymer melts. They 

designed their scheme by using the discrete variational 

derivative method which is one of the structure preserving 

numerical methods. They observed that their proposed scheme 

has the same characteristic properties, mass conservation and 

energy dissipation, as the original equation does. They also 

discussed the stability and unique solvability of their proposed 

scheme. 

Although many improvements have been made in the 

use of numerical methods, we are proposing a generic 

computer tool that can be used to solve laminar fluid flow 

problems. It is generic in the sense that it is a common 

solution to the category of time dependant problems expressed 

in one spatial coordinate. For the purpose of application, we 

consider a two-dimensional unsteady flow of an 

incompressible electrically conducting viscous fluid along an 

infinite flat plate. 

 

2.  Generic Simulator Using Finite Differences 
In the process of solving fluid flow problems, various 

mathematical tools have been developed and applied, among 

which is the finite difference method. Different schemes have 

been developed with different stability issues. One of the finite 

difference schemes used in numerical simulation of fluid flow 

problems is that of Nakamura [6] due to its stability. In this 

paper, we present a generic software tool based on the 

Nakamura model as shown in Figure 1.  
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                      Figure 1: Generic simulator 

 

It is intended to be generic in providing a solution to the 

category of systems of partial differential equations describing 

laminar fluid flow problems. To be more precise, we restricted 

our study to the types of problems expressed in time and one 

spatial coordinate. It may be one-dimensional, two-

dimensional or three-dimensional fluid flows. In order to 

ensure that the system is generic, it is important to follow it 

with applications. The proposed generic system takes as input 

a generic file and contains a generic equation interpreter, a 

module responsible for parameters management, a results 

manager and a calculator. A special unit designated as 

“Control Unit” supervises the totality of the system and 

ensures the correctness of computations. In the generic file, 

the following items are defined: 

- Active parameters; 

- Dependent variables; 

- Energy equation; 

- Momentum equations; 

- Boundary conditions; 

- Initial conditions. 

The generic equation interpreter reads the generic file and 

produces an interpretable code in postfix notation. All 

operations on the parameters and the generated results are 

under the responsibilities of the parameters manager and the 

results manager respectively. The calculator is responsible for 

all computations and interacts directly with the equation 

interpreter, the parameters manager and the results manager. 

The first step is to rewrite the equations using backward 

difference approximation (which is stable) in the time 

coordinate. For each dependent variable, the central difference 

scheme (which is unconditionally stable) is used to evaluate the 

derivatives with respect to the spatial coordinate. The resulting 

system of equations cannot be solved individually for each grid 

point. The equations for all the grid points must be solved 

simultaneously. The set of equations for all the grid points 

forms a tridiagonal system of equations as described by 

Nakamura [6] of the form: 

    [A].{ut+1} = {p} 

This system of equations for each time step requires an 

iterative procedure due to the presence of non-linear 

coefficients. Successive substitutions and iterations are 

continuously executed for each time step until convergence is 

reached. The mesh system is shown in Figure 2. 

 

 
                         Figure 2: Mesh system 

 

The operations of the simulator are expressed in the following 

algorithm: 

 

Algorithm simulator 

begin 

  define region of the flow ( ); 

  define boundary conditions; 

  define initial conditions; 

  define number of spatial grid points; 

  define number of  time grid points; 

  set parameters; 

  define equations;   

  for each equation 

     optimize equation;    

     produce an interpretable code;  

  for each iteration 

     for each equation  

        compute results;   

     edit parameters; 

end 
 

3.  Application 
For the sake of application, we consider a two-dimensional 

unsteady flow of an incompressible electrically conducting 

viscous fluid along an infinite flat plate. The geometry and the 

unsteady flow fields for this problem are described by Raptis 

and Massalas [8]. The problem considered reduces to the 

following non-dimensional differential equations:  
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The corresponding boundary conditions are: 

{

                                                                                                             
                                                                                     ( )

           ( )                                                                                       
 

 

where 

- u is the dimensionless velocity; 

- H is the dimensionless induced magnetic field; 

- T is the dimensionless temperature; 

-  Pr is the Prandtl number; 

-  Pm is the magnetic Prandtl number; 

- Ec is the Eckert number; 

- M is the magnetic field; 

-  R is the Radiation parameter; 

- U(t) = 1+εe
iωt

 is the stream velocity. 

The above system of equations (1 - 3) with boundary 

conditions (4) has been solved numerically by the proposed 

generic tool. The mesh system used is as shown in Figure 2. 

The system of equations is first transformed using backward 

difference approximation in time as shown below: 
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where 
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respect to y. 

For the sake of simplicity, we write: 
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; 

The   
  coefficients and the       

  terms are transformed into 

an interpretable code which is in this case in postfix notion. 

For any computation involved in the process, the postfix code 

is interpreted in order to return a real value. 

Using the above formulation, Equations (5-7) take the form: 
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Using the central difference scheme which is unconditionally 

stable, Equations (8-10) reduce to: 
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At time step j+1, Equations (11-13) reduce to: 
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Equations (14 - 16) cannot be solved individually for each grid 

point i. The equations for all the grid points must be solved 

simultaneously. The set of equations for i = 1,2,...........,I forms 

a tridiagonal system of equations as described by Nakamura 

[6] and shown in Equations (17-19).0 
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.q1 = p1  (17) 
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where q3 = 
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For each time step, the system of equations (17-19) 

requires an iterative procedure due to the presence of non-

linear coefficients. The designed tool continuously executes 

successive substitutions and iterations for each time step until 

convergence is reached. 

 

4. Discussion of Results 
To study the behavior of the velocity and temperature profiles, 

curves are drawn for various values of the parameters that 

describe the flow and are shown in Figures 3-6. The value of 

the magnetic field is kept constant (M = 0.4). 

From Figure 3, we observe that: 

i) the velocity profile (u) decreases due to an 

increase in time (t); 

ii) there is an insignificant change in the velocity 

profile (u) due to an increase in the magnetic 

Prandtl number (Pm). 

From Figure 4, we observe that the H profile decreases with 

time (t) whereas it increases due to an increase in the magnetic 

Prandtl number (Pm). 

From Figures 5 and 6, we observe that: 

i) the temperature profile (T) increases due to an 

increase in time (t); 

ii) There is a fall in the temperature profile (T) due 

to an increase in the Prandtl number (Pr) and the 

radiation parameter (R), which is in agreement 
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with Raptis and Massalas [8]; 

iii) there is an insignificant change in the 

temperature profile (T) due to an increase in the 

magnetic Prandtl number (Pm) and the Eckert 

number (Ec). 

 

 
 

Series t Pm 

I 0.004 1 

II 0.005 1 

III 0.004 5 

Figure 3: Velocity profiles (u) 

 

 

 
Series t Pm 

I 0.004 1 

II 0.005 1 

III 0.004 5 

Figure 4: Induced magnetic field profiles (H) 

 

 
Series t 

I 0.004 

II 0.005 

III 0.006 

Figure 5: Temperature profiles (T) 

 

 
Series Pr Pm R Ec 

I 0.71 1 3 0.001 

II 7 1 3 0.001 

III 0.71 5 3 0.001 

IV 0.71 1 30 0.001 

V 0.71 1 3 0.005 

Figure 6: Temperature profiles (T) 
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