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Abstract 

This paper analyses a three component system with single repair facility. Denoting the failure times 

of the components as T1 and T2 and the repair time as R, the joint survival function of (T1, T2, R) is assumed 

to be that of trivariate distribution of Marshall and Olkin. Here, R is an exponential variable with parameter 

α and T1 and T2 are independent of each other. In this paper use of Laplace-Transform is taken for finding 

Mean Time Between Failure, Availability and Mean Down Time and table for Reliability measure is shown 

in the end. 
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[1] Introduction 

  Reliability measures for a two-component standby system with repair facility were obtained 

by several authors under different assumptions in the past. Lie et al. (1977) and Yearout et al. (1986) have 

done extensive reviews for the failure times and repair times assuming that these are statistically 

independent.  Joshi and Dharmadhikari (1989) considered the bivariate exponential distribution to derive the 

performance measures associated with a two-component standby system. Goel and Srivastava (1991) 

considered a correlated structure for the failure and repair times and obtained various reliability measures. 

  In many situations, a unit or system can be repaired immediately after breakdown. In such 

cases, the mean time between failures refers to the average time of breakdown until the device is beyond 

repair. When a system is often unavailable due to breakdowns and is put back into operation after each 

breakdown with proper repairs, the mean time between breakdowns is often defines as the mean time 

between failures. If we consider only active repair time i.e. the time spent for actual repair, then the mean 

time to repair (MTTR) is the statistical mean time for active repair. It is the total active repair time during a 

given period divided by the number of during the same interval. Frequently, a system may be unavailable on 

account of periodic inspections and not because of breakdowns. By the systematic inspection or preventive 

maintenance for the detection of defects and prevention of failures, the system is kept in a satisfactory 
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operational condition. The time spent for this is termed as the preventive maintenance downtime.  There is 

difference between mean time between maintenance (MTBM) and mean time between failures (MTBF). 

When preventive maintenance downtime is zero or is not considered, MTBM is same as MTBF. 

  Here in this paper, we perform the analysis of a three-component standby system with single 

repair facility. Here T1 is the exponential variable with parameter k1 and T2 is another random variable with 

parameter k2. R is an exponential variable with parameter α . T1 and T2 are independent of each other. It is 

further assumed that these components are identical in nature and each unit works as new after the repair and 

switching devices are perfect and instantaneous. 

The following are the assumptions for the model: 

(i) The system is composed of three components linked in parallel-series configuration (Fig. 1). 

(ii) The components are non-identical in nature. 

(iii) At time t=0, all the components are in operable mode. 

(iv) After repair each unit works as new. 

(v) Switching devices are perfect and instantaneous. 

Define 2,1,0,}0)0(:)(Pr{)(  iXitXtpi
  

Here in this model, we consider the following trivariate exponential distribution for (T1, T2, R) with survival 

function of (Marshall and Olkin, 1967) of the form : 

0;0,;0,,

)}]max(),{max()(exp[),,(

321321

3221332211321


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kkkttt
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                [1.1] 

It may be observed that 

i) T1 and T2 are independent and identically distributed exponential random variables with the 

parameter (k1+k2), 

ii) R is exponential with the parameter (k2+2k3), not necessarily independent of (T1,T2) and 

iii) (T1,R) and (T2,R) are identically distributed as bivariate exponential with the parameter (k1, 

k2+k3, k3). 

By considering (1) as the survival function of (T1,T2,R) , we obtain expressions for reliability, 

MTBF and the gain due to repair facility. The state transition diagram for the system, in the 

interval ),( ttt  is given below: 
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Figure 1 State Transition Diagram of three-unit standby System 

[2] MTBF Calculation 

Since reliability of the system is given by R(t)= P0(t) + P1(t) + P2(t), we want to find the expressions for 

P0(t), P1(t) and P2(t). We know that MTBF = 


0

)( dttR  
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 Dividing by 
t
 and taking limit 

0 t
we have 
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 Similarly, we can write 
}0)0(:1)(()(1  XttXprttp
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so, we have )(})(1{)()( 101 tpttptttp   which on simplification gives 

)()()()( 10

/

1 tptptp                   

Assuming,  
31 kk   , 

1k  and 
32 kk  , we get the equations [6.2.3] and [6.2.4] in the following 

reduced form: 
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/

1 tpkkktpkktp 
  

)()()()()( 22132102

/

2 tpktpkkktpktp 
     

[2.2-2.4]
        

Taking Laplace transform on both the sides of [6.1.5] and [6.1.6] and noting that )()}({ sLtpL ii   

We get 1)()()()()()( 23132031  sLsksLkksLskk  

0)()()()()( 221321031  sLksLskkksLkk   

0)()()()()()( 2311102  sLskksLsksLskand  

solving using Cramer rule, we get 
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Resolving into partial fractions, we have 
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Taking inverse Laplace transforms of the above equations , we get 
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Hence the reliability of the system is given by 
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it may be noted that MTBF when there is no repair facility is given by 

MTBF (no repair facility) = E (T1+T2) = E (T1) + E (T2) = 
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[3] Availability analysis of the system 

  In this section, we consider the transient solution of the system and the availability measures 

such as the point wise availability and the steady-state availability by considering the above model. By 

considering the equation [1.1] as the survival function of (T1, T2, R), we obtain the expressions for point 

wise availability and the steady-state availability. Using similar arguments as in the case of MTBF, we 

obtain the following differential equations: 
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Resolving into partial fractions, we have 
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Taking Inverse Laplace transform on both the sides of equations [6.2.7-6.2.8], we get  

21

3232

1221

3232321221

2121

3232321112

0

)2)((

)(

)}2)()(32({

)(

)}2)(()32({
)(

2

1

ss

kkkk

ssss

kkkkkkksses

ssss

kkkkkkksses
tp

ts

ts














 

21

32

1221

313221

2121

313212

1

)2(

)(

))(2(

)(

))(2(
)(

21

ss

kk

ssss

kkkkses

ssss

kkkkses
tp

tsts











  

21

311

1221

3111

2121

3112

2

)(

)(

)(

)(

)(
)(

21

ss

kkk

ssss

kkkes

ssss

kkkes
tp

tsts











               [3.9-3.11] 

The point availability of the system is given as    A (t) =p0(t)+p1(t)= 1-p2(t) i.e. 
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Thus the steady state availability of the system is given as  

)3()2(

)2)(2()(
1)(

3211

2

32

32132

21

311

kkkkkk

kkkkk

ss

kkk
tALimA

t 










             [3.13]

 



DOI: 10.18535/Ijecs/v4i12.6 

Ashish Namdeo
1IJECS Volume 04 Issue 12 December 2015, Page No.15123-15131 Page 15130 

[4] Mean Down Time Calculation: The system mean down time is an important aspect of Availability 

analysis and is evaluated by the formula )
1

(
A

A
MTBFMDT 

 . So, using the results from [3.10] and [3.13], 

we get  
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[6] Observation: 

We provide the data in the following table. The table gives the values for MDT for various values for k1, k2 

and k3. 

                                                           Table 6.1 
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k1 k2 k3 S1 S2 R(t) 

.01 0.1 .01 -5.984 

-3.123 

-2.136 

-6.293 

-5.603 

-1.610 

12.992e
-2t

-10.526e
-2.5t

-.02e
-7.876t 

10.965e
-4t

-0.785e
-6.5t

-.802e
-4.976t 

9.095e
-6t

-0.584e
-7.5t

-.04e
-9.872t

 

.02 0.2 .02 -7.000 

-6.667 

-3.125 

-6.177 

-5.986 

-2.955 

3.09e
-2.07t

-5.506e
-2.5t

-.076e
-6.874t 

2.654e
-4.24t

-1.085e
-6.86t

-2.202e
-0.906t 

4.889e
-6.76t

-0.004e
-2.56t

-3.045e
-6.952t

 

.03 0.3 .03 -6.875 

-4.414 

-3.250 

-6.172 

-4.133 

-3.074 

4.225e
-2.0t

-3.793e
-7.5t

-.068e
-6.07t 

6.259e
-7.25t

-3.005e
-2.85t

-2.762e
-0.006t 

7.809e
-3.75t

-0.974e
-2.06t

-0.049e
-0.952t

 

.04 0.4 .04 -7.224 

-4.454 

-1.667 

-6.179 

-3.264 

-1.633 

10.09e
-5.07t

-5.506e
-2.5t

-.084e
-0.874t 

12.690e
-9.24t

-7.025e
-9.82t

-9.002e
-0.006t 

14.249e
-0.76t

-0.904e
-8.56t

-3.045e
-6.952t

 

 

 

 

 


