
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN: 2319-7242

Volume 4 Issue 12 Dec 2015, Page No. 15114-15116

Gaurav Pradip Pande ,IJECS Volume 04 Issue 12 December, 2015 Page No.15114-15116 Page 15114

Design Patterns’ Model for Application Development in Object

Oriented Languages

Gaurav Pradip Pande ,Akshay Janardan Mendki

Dept. of Computer EngineeringVidyalankar Institute of TechnologyMumbai, India

gaurav.pande@vit.com

Senior software engineer, Capgemini India Pvt Ltd.Mumbai, India.

akshay_mendki@hotmail.com

ABSTRACT

Design patterns are one of the most efficient ways of application development. Many developers are still reluctant to the use of

design patterns and development is carried out with not enough attention paid to the reusability and extensibility of the code.

Patterns are not to be restricted in the building of integrated development environments and language libraries.

Proposed work presents a model which use combination of multiple design patterns for application development in object

oriented programming. The model suggested in this proposed work uses hierarchical abstraction of objects created using factory

pattern. Façade pattern is also used which makes functional encapsulation possible. Proposed work also presents the scenarios in

which use of patterns is likely to improve the code efficiency and reusability. Along with the factory pattern, singleton pattern may

also to be used together in the proposed model for their respective benefits.

Keywords:-Index Terms— design pattern, façade pattern, singleton pattern, factory pattern,

INTRODUCTION

The application development is evolved over the period of

time remarkably. The coding used to be done in ‗spaghetti‘

manner in the earlier times. The word spaghetti suggests the

linear flow of coding which seldom reused codes previously

written and entire focus was given to instantaneous problem

solving. [1]

When personal computers were still in their infant phase,

functional coding bloomed by means of languages which

supported routines to be written and called whenever needed.

This considerably reduced the rewriting of same logic in the

code and L.O.C was strongly improved. Later structural and

object oriented programming came into the picture by which

independent coding was actually possible. Writing different

objects and then coupling them together is now well accepted

way of modular coding.

Application development in object oriented environment is

always hard. Moreover if code is to be written in order to keep

a way to reuse it later then coding becomes even harder.

Solution designs need not be started from scratch by use of

design patterns in which we map our problem to the one

previously faced and try to reuse the similar solution partially

or completely. [2]

I. ELEMENTS OF DESIGN PATTERN

i. Pattern Name – Handle to refer and describe pattern.

ii. Problem – Describes context in which pattern is to be

applied.

iii. Solution – Elements that make up the design and their

inter-relationships.

iv. Consequences – Results which can be used to evaluate

the benefits and cost of applying design pattern.

II. TYPES OF DESIGN PATTERN

i. Creational Patterns - abstract the instantiation

process

ii. Structural Patterns - concerned with how classes and

objects are composed

iii. Behavioral Pattern – Describes pattern and the

pattern of communication between them. [1]

FACTORY PATTERN

In factory pattern concrete classes are not specified, instead

of that, families of dependent or similar objects are created.

That makes it a creational pattern. In object oriented

languages, non-concrete objects could be interfaces.

Inheritance can be used to get structure and methods of those

interfaces into real concrete objects.[3]

III. ABSTRACT FACTORY PATTERN

Abstract factory pattern takes the concept of factory to the

next level and has one or more factories which we can call

‗parent factories‘, these factory objects create multiple

factories, which later on create concrete objects for the

application.[3]

IV. FAÇADE PATTERN.

It can be seen as a higher class, or more aptly, a ‗client‘

class will try to get its work done using some few classes

only. These few ‗façade‘ classes may then use many more

DOI: 10.18535/Ijecs/v4i12.3

Gaurav Pradip Pande ,IJECS Volume 04 Issue 12 December, 2015 Page No.15114-15116 Page 15115

classes which have different functionalities, as per the

requirement.[4]

Facade pattern hides the complexities of the system and

provides an interface to the client using which the client can

access the system. This type of design pattern comes under

structural pattern as this pattern adds an interface to existing

system to hide its complexities.

V. PROPOSED WORK

Design patterns have come a long way since the serious

research was spawned by Erich Gamma‘s research paper in

1994. The use of design patterns is mainly done in the

framework development or integrated development

environments. Typical combinations of the patterns are

repeatedly used. Small scale applications, especially mobile

applications avoid using of design patterns in the development

due to their apparent complexity in the implementation.

Our research focused on the use of creational, structural

and behavioral design patterns to develop a real life

application using integrated development environment.

Factory pattern is to be used for hierarchical development

structure to support scalability. Singleton pattern to be used for

unique control and façade pattern is to be used to simplify the

development. Design patterns provide discipline to the coding

by means of naming consistency.

The research presents combination of multiple design

patterns. The application is suggested to be developed with

hierarchical abstraction structure using factory pattern. The

Research also presents the scenarios in which use of patterns is

likely to improve the code efficiency and reusability.[5] Along

with the factory pattern, singleton pattern and façade pattern

are also to be used together for their respective benefits like,

better coupling and code reuse, single instance of creation ,

modular coding.

A. MODEL

Suggested Model

B. MODEL DESCRIPTION

Tier 1

 Whenever an application is developed eyeing

traditional MVC pattern in which application logic is in the

model part, user interface is in the view part and both these

parts are controlled by means of a controller, we need to

ensure that model and view will interact with each other only

by means of the controller and there will be only one instance

of the controller.

 To ensure that only one controller exists, singleton

pattern is used. By this, the suggested model will allow only

one controller object to be created and thus data integrity will

be maintained. Implementation of such single object creation

is a crucial task. As this research focuses on the object

oriented programming, it would be beneficial to make use of

the salient object oriented features of instantiation like,

constructors.

Tier 2

 Façade objects are the one which hide internal

working of the application from the user.

In our model level 2 will create abstract façade objects which

will simplify the object creation of concrete objects in the next

level, in level 2 we would create abstract objects which will

divide application in according to different functionalities.

For example, abstract objects are to be created like,

text, web and graphic in level 2. Now these objects can be

used for different purposes in different scenarios. User need

not be concerned with how different conditions are handles

and which concrete objects are to be used. From user‘s point

of view, the interface is made simpler.

Tier 3

 Concrete objects are the one which are to be actually

used for the work logic. These concrete objects will be using

both façade and factory pattern for their implementation.

Creation or instantiation of the objects will be done using

factory pattern. The task assignment and getting work done by

those objects will be done by means of façade pattern.

 E.g. Text object can create ‗text editor‘, ‗text

messenger‘ etc. using factory pattern.

But this ‗text editor‘ will be used like a façade object. The

editor will work for multiple coding languages or for multiple

text formats according to the requirements. Creation and

method calling of objects like, xyz font, abc layout will be

done by this text editor object itself. Internally it will make use

of the different classes made for each of them; without giving

a notion to the user.

VI. ACKNOWLEDGMENT

We thank Prof. Umesh Kulkarni for his active guidance and

support in this research.

VII. REFERENCES

1. Erich Gamma, Richard Helm, Ralph Johnson, John

Vlissides

―Design Patterns: Elements of Reusable Object

Oriented Software‖. Addison-Wesley Second ISE

reprint edition 1999

2. Rachel Cardell-Oliver. ―Evaluating the application

and understanding of elementary programming

pattern‖ 22
nd

 Australian conference on software

engineering, pp 61-66, 2013.

3. DesignPatterns

http://www.tutorialspoint/design_patterns.

DOI: 10.18535/Ijecs/v4i12.3

Gaurav Pradip Pande ,IJECS Volume 04 Issue 12 December, 2015 Page No.15114-15116 Page 15116

4. Freeman, Eric T; Elisabeth Robson; Bert Bates;

Kathy Sierra (2004). ―Head First Design Pattern,

Second Edition, Oct 2004”

A Xiaoyue Wang, Bin Xu, Rui Gu, ―The application of

code reuse tec

