
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 6 Issue 7 July 2017, Page No. 21916-21921

Index Copernicus value (2015): 58.10 DOI: 10.18535/ijecs/v6i7.05

Alok Kumar, IJECS Volume 6 Issue 7 July 2017 Page No. 21916-21921 Page 21916

Lexical Analysis of Devanagari Hindi Language
Alok Kumar

1
, Saurabh Sharma

2
, Mushahid Raza

3

1Assistant Professor, Department of Computer Science and Engineering

University Institute of Engineering and Technology,

C.S.J.M. University, Kanpur, India

 akumar.uiet@gmail.com
2B.Tech Student, Department of Computer Science and Engineering

University Institute of Engineering and Technology,

C.S.J.M. University, Kanpur, India

 join2saurav3@gmail.com
3B.Tech Student, Department of Computer Science and Engineering

University Institute of Engineering and Technology,

C.S.J.M. University, Kanpur, India

 raza.uiet2k13@gmail.com

Abstract: With recent increase in uses of internet and development of web technologies, proportion of web content in Hindi is

increasing at a lightning impetus. These particulars can play a vital role for researchers and computer science engineers in

devising systems and real-world application for government organisation and private sector which could ease their decision

making process. In this paper, we present a modus operandi to perform lexical analysis on Devanagari Hindi language. This was

done by building a dictionary containing Hindi words using few information retrieval techniques and implementing some error

recovery strategies to recover from lexical errors (if occurred). We achieved an accuracy of approximately 88% while performing

Lexical analysis on different Hindi words. Main advantage of our work is, entire processing of the Lexical analysis phase can be

completed in offline mode (i.e. without any usage of internet).

Keywords: Lexical analysis of Hindi Text, Lexical errors recovery strategies for Hindi Sentences, Tokenization of Hindi, Hindi text editor
with error correction strategies, Natural language processing.

1. Introduction

Natural language processing is the branch of Computer Science

with two basic goals:

i. Understanding grammar and rules to work upon the

specified Natural language.

ii. Build the system that analyze the Natural language from

different aspects and miniaturised the man-machine gap.

Natural language Hindi has more than 500 million native

speakers which are spread across the world and with the

increase in usage of internet these native speakers are actively

playing an important role in increasing the amount of

information in Hindi present in web pages across the internet.

Data from these web pages can be mined for useful insight in

developing various applications. In the field of Natural

Language processing, there is not much work done for Hindi

language and our work is among the first few works that have

used Hindi as an input Natural language.

The main task of Lexical analyzer is to read the sequence of

characters from the source language and produce as output the

meaningful sequence of characters and when we consider

Natural language Hindi, meaningful sequence of characters is

nothing but the meaningful words of Hindi language so our

work mainly focuses upon implementing various strategies and

techniques to cover all the aspects of Lexical analyzer by

taking Hindi as an input Natural language and we have

implemented these strategies in such a way that entire

processing of the Lexical analysis phase can be done offline

(i.e. without any usage of internet). This feature makes our

work stand apart from other works done in the same area. Our

research work contributed in development of dictionary of

Hindi words and then performing Lexical analysis to detect

errors (if any) in the words typed on text editor that was

created by us using Unicode‟s of Hindi. We then used some

error recovery algorithms to find most suitable suggestions that

could be used in place of an erroneous word.

Assumption: We have assumed that dictionary always contains

collection of meaningful words present in Hindi.

Rest of the paper is structured as follows: Section 2 gives

exhaustive view of proposed system along with the detailed

description of the mechanism followed to create dictionary of

Hindi words, approach used to detect the lexical error and

algorithms designed to recover from the lexical errors. Section

3 shows descriptive analysis of the results obtained. Section 4

discusses related work in this area. Section 5 presents the

conclusion along with direction for future works. Section 6

mentions references that gave us direction to finish our work.

2. Proposed System

Entire system proposed by us can be divided into following

phases:

i. Creation of dictionary of meaningful Hindi words.

ii. Developing a Hindi text editor using Unicode‟s of Hindi

language.

iii. Detection of Lexical errors.

iv. Implementing error recovery strategies.

v. Generating a pop-up list showing 10 most probable

suggestions for a word having lexical error.

Overall processing of the above mentioned phases is described

in sub-sections below:

http://www.ijecs.in/
mailto:raza.uiet2k13@gmail.com

DOI: 10.18535/ijecs/v6i7.05

Alok Kumar, IJECS Volume 6 Issue 7 July 2017 Page No. 21916-21921 Page 21917

2.1 Creation of Dictionary

For creating a dictionary of meaningful Hindi words we

extracted information from web pages of the websites (mainly

Hindi newspaper websites) and then accordingly adjusted

information extracted from online sources in such a way that

we got a file containing Hindi words as an end result. The

entire task of creation of dictionary involved four steps; these

were executed in the sequence as described in the figure shown

below.

2.1.1 Crawling & Scrapping Website

We designed an algorithm for crawling websites and scrapping

Hindi content from it. Steps of algorithm are described below:

i. A website address that contains Hindi text is passed as an

input, our algorithm looks for the HTML source/script of

the home page of specified website and then it searches for

head reference tags (<href>).

ii. After finding head reference tag, algorithm copies its value

(as value of head reference tag is link to next webpage of

the website) on a separate file (say FILE_1).

iii. Repeat Step ii for all head reference tags present in

homepage of the website.

iv. Take a unique link as input from FILE_1 (file containing

links to next web pages from homepage).

v. Open HTML source/script of the webpage link taken as

input and then search for head reference tags (<href>).

vi. When a head reference tag is found, copy its value if it is

not present in FILE_1.

vii. Repeat Step vi for all head reference tags present in the link

taken as input in step iv.

viii. If there are some links present in FILE_1 that have not been

opened yet then goto step iv else goto step ix

ix. Take pointer to starting index of FILE_1 and open the

HTML source of the link present at start index.

x. Search for paragraph tags (<p>) and copy value of

paragraph tag (as value of paragraph tag is all the text

written on the webpage) on a separate file (say FILE_2).

xi. Repeat Step x for all paragraph tags present in the link

whose HTML source has been opened.

xii. Move pointer to next index of FILE_1, open its HTML

source and Repeat Step x and Step xi until EOF for FILE_1

is encountered.

After completion of these steps we got a file (i.e.FILE_2)

containing raw Hindi data.

2.1.2 Breaking Of Raw Hindi Text Into Words

Raw Hindi data obtained after completion of algorithm

described in section 2.1.1 was broken into individual words of

Hindi Language by following a very simple algorithm

described below:

i. Read line by line the entire file obtained after successful

execution of algorithm described in section 2.1.1 until EOF

is encountered.

ii. Split the line read into words by finding white spaces

between the sequences of characters present in that line.

iii. Store all such sequences obtained after splitting in a

separate file (say FILE_3).

After successful execution of these steps we got a file

containing Hindi words (i.e.FILE_3).

2.1.3 Cleaning Of Hindi Words

Hindi words obtained after execution of algorithms described

section 2.1.2 contained unwanted suffixes and prefixes. For ex-

Words “.. ” , “23 ”, “ ef” contain unwanted prefix “..”

in “ ” and “23” in “ ” respectively and unwanted suffix

“ef” in “ ”.

These kind of unwanted suffixes and prefixes lead to

meaningless word formation so we removed these kind of

unwanted suffixes and prefixes by designing an algorithm

described below:

i. Read line by line the entire file(FILE_3)obtained after

successful execution of algorithm described in section 2.1.2

until EOF is encountered.

ii. Use regular expression to eliminate any unwanted symbol

from the line/string read and Store the resultant string

obtained in a separate file (say FILE_4).

Line read in Step i of above mentioned algorithm was a string,

storing a Hindi word that had possibility of having unwanted

suffixes and prefixes symbols (Unwanted symbols can be

symbols like: „;‟, „.‟, „/‟,a-z,A-Z,0-9 etc.).

2.1.4 Evalutating Probability Of Occurrence Of Words

FILE_4 obtained in section 2.1.3 gave us clean Hindi words

and in order to generate a pop list showing 10 most probable

suggestions (as described in section 2.5), we evaluated

frequency of each word present in FILE_4 and then divided

DOI: 10.18535/ijecs/v6i7.05

Alok Kumar, IJECS Volume 6 Issue 7 July 2017 Page No. 21916-21921 Page 21918

frequency value of each word with total number of unique

words present in FILE_4. This evaluation gave us probability

of occurrence of each word. Then probability values computed

and frequency of occurrence of each word were also stored

along with corresponding word in FILE_4.We then sorted this

file in an order (from all the words starting with „अ‟ to all the

words starting from ’). Sorting was essential because we

used binary search (which requires data to be in sorted order)

to search suggestion words from dictionary for an erroneous

word. Binary search reduced time taken to search possible

suggestions from dictionary in case of Lexical errors. We call

this file (FILE_4) obtained after sorting as dictionary of Hindi

words.

By taking any Hindi newspaper website as an input, we got

approximately 15000 meaningful Hindi words by following the

procedure described in Section 2.1. After creating dictionary,

internet connection was no longer required and entire Lexical

analysis was done without it.

2.2 Developing Hindi Text Editor

We developed a Hindi text editor by using Unicode‟s of

characters of Hindi language as keys. This text editor acted as

front end of our entire Lexical processing. It contained all basic

functionality of cut, copy, paste, edit, save etc. that any text

editor possesses. It contained an additional key named “LEX”

that detected erroneous word present in text area of text editor.

2.3 Detection of Lexical Errors

Once we got dictionary containing Hindi words Lexical error

were detected by the algorithm described below:

i. Read the entire sentence typed by user on the text editor‟s

text area.

ii. Split the sentence into individual words (by looking at

white spaces).

iii. Take a word from splatted sentence and perform binary

search to find matching word in the dictionary (i.e.FILE_4).

iv. If match is found for the word then, leave the word as it and

increase its frequency of occurrence by one in dictionary

and accordingly compute its new probability value else

underline it.

Thus our work successfully detected invalid tokens (i.e.

basically meaningless words in context with the Hindi

language) by underlining words for which possible match had

not been found.

After detection of the Lexical errors next step was to recover

from such errors this was done by implementing error recovery

strategies only on underlined words as described in the next

section.

2.4 Implementation Of Error Recovery Strategies

Error recovery strategies found possible suggestion words for a

word having lexical errors (underlined word).

Error recovery strategies used by us can be divided into four

sections:

i. Recovery by swapping

ii. Recovery by deletion

iii. Recovery by insertion

iv. Recovery by replacement

Each of these algorithm uses of a file buffer named

FILE_BUFFER 1 to store possible suggestion words.

2.4.1 Recovery By Swapping

Basic idea behind Recovery by swapping is, some characters of

word might have been swapped.

We implemented recovery by swapping by designing an

algorithm described below:

i. Swap two adjacent characters from the end of the word that

has Lexical error.

ii. Perform binary search to find possible match of the word

formed after swapping in the dictionary.

iii. If the possible match is found then, store it along with its

probability value in a FILE_BUFFER 1 else swap next two

adjacent characters and goto Step ii. Step iii terminates

after starting two characters had been swapped and binary

search had been performed for the resulting word.

For ex-Instead of word “अजगर” user typed word “जअगर”

which is meaningless. Our algorithm can find correct word

after three iteration as described below:

2.4.2 Recovery By Deletion

Basic idea behind recovery by deletion is, some extra

characters might be present in erroneous word.

We designed an algorithm for recovery by deletion in such a

way that it executes in two phases as described below:

PHASE 1:

i. Delete a character from end of the word that has lexical

error.

Figure 2: Screenshot of our text editor.

DOI: 10.18535/ijecs/v6i7.05

Alok Kumar, IJECS Volume 6 Issue 7 July 2017 Page No. 21916-21921 Page 21919

ii. Perform binary search in the dictionary to find possible

match of the word formed after deleting character from the

end.

iii. If match is found then, store word along with its probability

value in FILE_BUFFER 1 else delete the next character

from end of remaining word and repeat Step ii. Deletion of

the characters in step iii continues until remaining word is

left with two characters.

PHASE 2:

i. Delete a character from start of the word that has lexical

error.

ii. Perform binary search in the dictionary to find possible

match of the word formed after deleting character from the

start.

iii. If match is found then, store word along with its probability

value in FILE_BUFFER 1else delete the next character

from start of remaining word and repeat Step ii. Deletion of

the characters in step iii continues until remaining word is

left with two characters.

2.4.3 Recovery By Insertion

Basic idea behind recovery by insertion is, a character might be

missing from erroneous word.

Algorithm designed by us for recovery by insertion makes use

of regular expressions to find possible matches for erroneous

word.

Algorithm involves following steps:

Global Boolean variable: check

i. Initialize check  FALSE

ii. Take pointer to beginning of erroneous word.

iii. Insert a character of Hindi at current pointer position.

iv. Perform binary search in dictionary to search for all

possible matches of a word formed after insertion of

character and store results along with corresponding

probabilities in FILE_BUFFER 1.

v. Move pointer by one position on right hand side.

vi. If pointer is at not at end of word then goto Step ii else goto

Step vii.

vii. If check = FALSE then assign check  TRUE and goto

Step ii else terminate algorithm.

For ex- Instead of word “असफल” user typed “अफल” which is

meaningless then above mentioned algorithm will try to insert

each character of Hindi in between every character of

erroneous word and also at start and end positions respectively

but for simplicity, let us consider case of insertion only for

Hindi language character “स”.

2.4.4 Recovery by Replacement

Basic idea behind recovery by replacement is, neighboring key

from the keyboard might have been pressed instead of correct

key while typing the word that is showing error. We

implemented recovery by replacement by designing an

algorithm described below:

Assumption: Neighboring keys are keys positioned at

immediate left, right, top, bottom of a key in keyboard.

i. In each pass iterate a loop that searches in dictionary for all

possible matches of a word formed after replacing a

character at i
th

 position of erroneous word with a character

corresponding to its neighbouring key. Results for possible

matches along with their probability values are stored in

FILE_BUFFER 1. (Initially i= 0)

ii. If number of pass is less than or equal to number of character

then increase value of „i‟ by one (ii+1) else terminate

algorithm.

For ex- Let‟s say portion of text editor‟s keyboard looks as

shown in Figure 4 and user typed “जगथ” instead of “जगत”
then Pass 1, Pass 2, Pass 3 will replace characters „ज’, ’ग’ and
 थ’ respectively . Let us see iterations of pass 3 (i.e. pass of

replacing „थ’):

DOI: 10.18535/ijecs/v6i7.05

Alok Kumar, IJECS Volume 6 Issue 7 July 2017 Page No. 21916-21921 Page 21920

2.5 GENERATION OF POPUP LIST

Popup list contained two things:

i. List of 10 most probable suggestions

ii. Option to add erroneous word into dictionary

2.5.1 LIST OF 10 MOST PROBABLE SUGGESTIONS

As error recovery algorithms described in section 2.4 were

storing all possible words/suggestion in FILE_BUFFER 1, we

selected 10 most probable suggestions by an algorithm having

following steps:

i. Sort in descending order all words present in

FILE_BUFFER 1 with respect to their probability values.

ii. Select top 10 words from FILE_BUFFER 1 and add them

to popup list.

iii. Add option of “add to dictionary” at the end of popup list.

iv. Display popup list on text editor.

v. Once user chooses a suggestion from popup list, increase

frequency value of corresponding word in dictionary by

one and compute its new probability value accordingly.

Popup list gave flexibility to user to choose any word shown

on the list in place of word for which Lexical error had been

detected.

2.5.2 Option To Add Errorneous Word Into Dictionary

Detection of Lexical error as described in section 2.3 involves

matching of words present in text area of text editor with

words present in dictionary but since dictionary was created by

retrieving words present in websites therefore it only contains

words that are frequently used by native Hindi speakers. As

exact amount of words present in Hindi language is

incalculable so their might be a situation that word typed by

user was correct but due to its absence in dictionary it had been

underlined (i.e. lexical error detected) thus option of “add to

dictionary” for such words gave us flexibility to add a newly

encountered words into our dictionary. This flexibility makes

the system designed by us more and more powerful with each

time of its use. Our system automatically learns new words that

are being added hence it keeps on increasing accuracy of

detecting lexical errors. Once option of add word into

dictionary from popup list is chosen, we designed a small

algorithm that performed two things:

i. Remove underline from erroneous word.

ii. Add word at proper place in dictionary along with

frequency value =1 and probability calculated by dividing

frequency value (i.e. 1) with total number of words present

in dictionary.

3. Result Anaysis

Our method of Lexical analysis correctly detected lexical error

1769 times when we tested it with 2000 Hindi words, showing

an accuracy of approximately 88%.Further, Table 1 shows

number of words that error recovery algorithms described in

section 2.4 were able to correct when we took a sample size of

500 Hindi words for each case. Results shown in Table 1

highlights the fact that error recovery algorithms described by

us gave uneven results and we cannot point that particular

algorithm of error recovery is best since it totally depends on

the user‟s habit of typing words in the text editor and the type

of mistakes person usually commits.

Table 1

The most crucial advantage of the system proposed by us is

that percentage of accuracy of system to detect Lexical errors

and recover from them is not constrained to a fixed value and

as our system keeps on learning new Hindi words (By using

system again and again) percentage of accuracy keeps on

increasing.

Error recovery

strategy

Number of Hindi

words tested

Number of times

error recovery

strategy found

correct word

Recovery by

swapping

 500 447

Recovery by

deletion

 500 376

Recovery by

insertion

 500 423

Recovery by

replacement

 500 434

DOI: 10.18535/ijecs/v6i7.05

Alok Kumar, IJECS Volume 6 Issue 7 July 2017 Page No. 21916-21921 Page 21921

Our only assumption throughout the process was, we

considered dictionary as the collection of meaningful/correct

Hindi words.

4. Related Research Works

Pradipta Ranjan Ray, Harish V., Sudeshna Sarkar and Anupam

Basu[1] designed an algorithm for local word grouping to

extricate fixed word order dependencies in Hindi sentences.

Local word grouping in their algorithm was achieved by

defining regular expressions for the word.

Seema Mahato and Dr. Ani Thomasproposed[2] proposed an

automated essay grading system to overcome the issues

involved evaluating grammatical and semantic error and to

overcome influence of local and regional languages in Hindi

essays.

K.Panchapagesan, Partha Pratim Talukdar, N. Sridhar Krishna,

Kalika Bali and A.G. Ramakrishnan [3] reported an ongoing

effort on Hindi Text Normalization by using novel approach

where tokenization and initial token classification were

performed using a lexical analyzer that was derived from

various token definitions in the form of regular expressions.

Akshat Bakliwal, PiyushArora andVasudeva[4] presented a

graph based Word Net expansion method to generate adjective

and adverbs lexicon by using synonyms and antonyms relation

to expand the initial Hindi lexicon.

Veena Dixit, Satish Dethe and Rushikesh K. Joshi[5] designed

a spellchecker for Marathi (an Indian Language) by rules of

morphology of Marathi.

Muhammad Humayoun and Aarne Ranta[6] developed Punjabi

Morphology, Corpus and Lexicon by using GF (Grammatical

Framework, Ranta 2004). It is a framework for developing

multilingual grammar applications which provides a built-in

morphological analyzer and generator for the input languages.

5. Conclusion and Future Works

Lexical analysis of Hindi language is first task involved in

building artificially intelligent and robust machines that take

Hindi as input natural language. Correctness of these machines

is measured on the basis of proportion of ambiguities that

machine is able to resolve and this entirely depends on number

of errors successfully detected and corrected by all phases of

processing Hindi language. Since Lexical analysis is a starting

step in the process therefore it becomes very important task to

detect and recover from as many errors as possible in this

starting phase itself. We can proudly say that our system is

capable of detecting such lexical errors with high accuracy.

In order to have faster processing we used Binary search and

since after a significant period of time, amount of words

present in Hindi dictionary would adversely increase therefore

work can be done to implement other methods of searching

like hashing, B-tree traversal etc. in order to save time spent by

error recovery algorithms in searching possible suggestions

from dictionary. Once a sentence typed in the text area of our

text editor completes Lexical analysis, work can be done to

implement strategies that would suggest best possible parse

tree for the given sentence(i.e. work can be done in syntax

processing stage) moreover sentence‟s semantically

correctness can also be checked provided it is syntactically

correct.

6. References
[1] Pradipta Ranjan Ray, Harish V., Sudeshna Sarkar,

Anupam Basu. Part of Speech Tagging and Local Word

Grouping Techniques for Natural Language Parsing in

Hindi.

[2] Seema Mahato, Dr. (Mrs.) Ani Thomas. Lexico-Semantic

analysis of essays in Hindi language.

[3] K. Panchapagesan, Partha Pratim Talukdar, N. Sridhar

Krishna, Kalika Bali, A.G.Ramakrishnan. Hindi Text

Normalization.

[4] Akshat Bakliwal, Piyush Arora, VasudevaVarma. Hindi

Subjective Lexicon: A Lexical Resource for Hindi

Polarity Classification.

[5] Veena Dixit, Satish Dethe, Rushikesh K. Joshi. Design

and Implementation of a Morphology-based Spellchecker

for Marathi, an Indian Language.

[6] Muhammad Humayoun, Aarne Ranta.Developing Punjabi

Morphology, Corpus and Lexicon.

[7] Niladri Dash, Pushpak Bhattacharyya, Jyoti Pawar (eds.),

Wordnets of Indian Languages, Springer, ISBN 978-981-

10-1909-8, 2016.

[8] Richard Sproat, AlanBlack, Stanley Chen, Shankar

Kumar, Mari O stendorfand, Christopher Richards.

Normalization of Non-Standard Words.

[9] Kapadia Utkarsh N., Desai Apurva A.Morphological Rule

Set and Lexicon of Gujarati Grammar:A Linguistics

Approach.

[10] Christopher Olston and Marc Najork. 2010.Web

Crawling.

[11] Mini Singh Ahuja, Dr Jatinder Singh Bal, Varnica.

2014.Web Crawler: Extracting the Web Data.

