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Abstract:   

This paper represents optimal iterative task partitioning scheduling in distributed heterogeneous environment. The main goal of 

the algorithm is to improve the performance of the schedule in the form of iterations. This algorithm first uses b-level computation 

to calculate the initial schedule. Main characteristics of our method are optimal scheduling and strong link between partitioning, 

scheduling and communication. Some important models for task partitioning have also been discussed in this paper. The proposed 

algorithm improves inter process communication between tasks by using recourses of the system in an efficient manner. 
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Introduction 
Parallel computing systems compose task partitioning 
strategies in a true multiprocessing manner. Such systems 
share the algorithm and processing unit as computing 
resources to achieve higher inter process communications 
capabilities A large variety of experiments have been 
conducted on the proposed algorithm. Goal of computational 
models is to provide a realistic representation of the costs of 
programming. 

Scheduling techniques might be used by an algorithm to 
optimize the code that comes out from parallelizing 
algorithms. A researcher is always keen to construct a 
parallel algorithm that runs in the shortest time. Another use 
of these techniques is the designing of high-performance 
computing systems. Threads can be used for task migration 
dynamically [1]. They are used to increase the efficiency of 
the algorithm. Parallel computing systems have been 
implemented upon heterogeneous platforms which comprise 
different kinds of units, such as CPUs, graphics co-
processors, etc. An algorithm has been constructed to solve 
the problem according to the processing capabilities of the 
machines [10]. Communication factor is highly important 
feature to solve the problem of task partitioning in the 
distributed systems. A computer cluster is a group of 
computers working together closely in such a manner that it's 
treated as a single computer. The cluster is always used to 
improve the performance and availability over that of a 
single computer. A cluster is used to improve the scientific 
calculation capabilities of the distributed system [2]. Task 
partitioning has been achieved by linking the computers 
closely to each other as a single implicit computer. 

Large tasks partitioned into sub tasks by the algorithms to 
improve the productivity and adaptability of the systems. 
Process division is a function that divides the process into the 
number of processes or threads. Thread distribution 
distributes threads proportionally among several machines in 

the cluster network [15]. A thread is a function which 
executes on the different nodes independently, so the 
communication cost problem is negligible [3]. Some 
important models [4] for task partitioning in a parallel 
computing system are: PRAM, BSP etc. 

 

I. PARALLEL RANDOM ACCESS MACHINE (PRAM ) 

MODEL 

It is a robust design paradigm provider. PRAM comprised of 

P processors, each with its own un- modifiable program. A 

single shared memory composed of a sequence of words, 

each of which capable of containing an arbitrary integer [5]. 

PRAM model is an extension of the familiar RAM model 

and it's used in algorithm analysis. It consists of a read-only 

input tape and a write-only output tape. Each instruction in 

the instruction stream has been carried out by all processors 

simultaneously. It requires unit time, reckless of the number 

of processors. Parallel Random Access Machine (PRAM) 

model of computation consists of a number of processors 

operating in lock step [13]. In this model each processor has 

a flag that controls whether it is active in the execution of an 

instruction or not. Inactive processors do not participate in 

the execution of instructions. 
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Figure 1: PRAM model for shared memory. 

The processor ID can be used to distinguish processor 

behavior while executing the common program. 

Synchronous PRAM produces results by multiple processors 

to the same location in shared memory. Highest processing 

power of this model can be used by using the Concurrent 

Read Concurrent Write (CRCW) operation. It's a baseline 

model of concurrency and explicit model which specify 

operations at each step [11]. It allows both concurrent read 

and concurrent write instructions to shared memory 

locations. Many algorithms for other models (such as the 

network model) can be derived directly from PRAM 

algorithms [12].  

Classification of the PRAM model is as follows: 

1. In the Common CRCW PRAM, all the processors must 

write the same value. 

2. In the Arbitrary CRCW PRAM, one of the processors 

arbitrarily succeeds in writing. 

3. In the Priority CRCW PRAM, processors have priorities 

associated with them and the highest priority processor 

succeeds in writing. 

III. PROPOSED MODEL FOR TASK PARTITIONING IN 

DISTRIBUTED ENVIRONMENT SCHEDULING: 

Task partitioning strategy in parallel computing system is 

the key factor to decide the efficiency, speedup of the 

parallel computing systems. The process has been 

partitioned into the subtasks where the size of the task is 

determined by the run time performance of each server [9]. 

In this way assign a number of tasks will be proportional to 

the performance of the server participated in the distributed 

computing system. Inter-process communication cost 

amongst tasks is very important factor which is used to 

improve the performance of the system [6]. Inter processes 

communication cost estimation criteria is important for the 

enhancement of speed up and turnaround time [8]. Call 

Procedure (C. P.) is used to dispatch the task according to 

the capability of the machines. In this model server machine 

can be used for large computations. Every processing 

element executes one task at a time and all tasks can be 

assigned to any processing element. In the proposed model, 

subtasks communicate to each other by sharing of data. So 

execution time is reduced due to sharing of data. These 

subtasks assign to the server which dispatch the tasks to the 

different nodes. 

The proposed scheduling algorithm is used to 

compute the execution cost and communication cost of the 

tasks. So the server is assumed by a system (P, [Pij], [Si], 

[Ti] [Gi] [Kij]) as follows: 

a) P = {Pi... Pn}, Where Pi denotes the   processing elements 

on cluster 

b) [Pij], where NxN is processors topology 

c) Si, 1 < i < N, specify the speed of processor Pi 

d) Ti, 1 <i< N, specify the startup cost of initiating message 

on Pi 

e) Gi, 1 < i < N, specify the startup cost of initiating process 

on Pi 

f) Kij is the transmission rate over the link connecting to 

adjacent processors Pi and Pj  

Total (t) Total Task 

DAG(H) DAG Height 

P Number of Processor 

MinCT Minimum Computational Time 

MaxCT Maximum Computational Time 

MinCR Minimum Computational Rate 

MaxCR Maximum Computational Rate 

ψ Speed up 

b-level Bottom Level of DAG 

E Serial execution portion of algorithm 

Table 1: Nomenclature for proposed task partitioning 

model 

 

Figure 2: Proposed dynamic task partitioning model 

This model splits both computation and data into 

small tasks [14].  

The following basic requirements have been 

fulfilled by the proposed model: 

1. There is at least one order of magnitude more 

primitive than processors upon the target machine 

to avoid later design constraints. 

2. Redundant data structure storage and redundant 

computations are minimize which cause to achieve 
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large scalability for high performance 

computations. 

3. Primitive tasks are roughly of the same size to 

maintain the balance work among the processors. 

4. Number of tasks is increasing function of the 

problem size which avoids the constraints. It's 

impossible to see more processors to solve large 

problem instances. 

     The model comprises the existence of an I/O 

(Input/Output) element associated with each processor in 

the-system. Processing time can be calculated with the help 

of the Gantt chart. The connectivity of the processing 

element can be represented by using an undirected graph 

called the scheduler machine graph [7]. Program completion 

cost can be computed as: 

Total Cost = Communication cost + Execution cost 

where, Execution cost = Schedule length, Communication 

cost = the number of node pairs (w, µ) such that (w, µ) € A 

and proc (w) = proc (µ). 

III. THE PROPOSED ALGORITHM FOR INTER-PROCESS 

COMMUNICATION AMONGST TASKS: 

It's an optimal algorithm for scheduling interval ordered 

tasks on (m) processors. The algorithm generates a schedule 

ƒ that maps each task v € V to a processor Pv with a starting 

time tv. Communication time between the processor Pi and 

Pj, may be defined as: 

comm.(i,j) = {O for i =j,  otherwise 1} 

task-ready (µ, i, ƒ): the time when all the messages 

from all task in N(v) have been received by 

processor Pi  in schedule f . 

start time (µ, i, ƒ): the earliest time at which task v 

can start execution on processor Pi in schedule f . 

proc (µ, ƒ): the assigned processor to task µ in 

schedule ƒ . 

start (µ, ƒ): the time in which task µ begins its 

actual execution in schedule ƒ . 

task (µ,Ƭ, ƒ): the task schedule on processor P, at 

time Ƭ in schedule ƒ . If there is no task schedule 

on processor Pi at time Ƭ in schedule ƒ , then 

task(µ,Ƭ, ƒ)  returns  the empty task ɸ. It's assumed 

that n2(ɸ) < n2(µ). 

In this algorithm edge cut gain parameter is considered to 

calculate the communication cost amongst the tasks [9]. 

gain(i,j) = €.gain edge cut + ( 1 - €) 

gain edge cut = edge cut actor / old edge cut 

edge cut factor = old edge cut - new edge cut 

Where € is used to set the percentage of gains from edge-cut 

and workload balance to the total gain. Higher value of € 

contribute total gain of the communication cost. 

V. PSEUDO CODE FOR THE PROPOSED ALGORITHM: 

1. start 

2. task (i, τ, ƒ)←Ф, for all positive integers i, where 

1 < i <P and τ > 0 

3. repeat 

4. Let µ be the unmark task with highest priority 

5. for i = 1 to P do 

6. compute b-level for all tasks 

7. schedule all tasks into non-increasing order of b-

level 

8. compute ALAP, constructs a list of tasks in the 

ascending order of the ALAP time 

9. task_ready (µ, i, ƒ ← max(start(µ, ƒ) + 

comm(proc(µ ,ƒ), i + 1) + gain(i,j) for each µ 

10. start_time(µ, i, ƒ)← min τ, where task(i,τ,ƒ)← 

Ф and t > task_ready (µ,i,ƒ) 

11. endfor 

12. f(µ)  ← (start_time(µ, i, ƒ) if 

13.start_time(µ,i,ƒ)<(start_time(µ,j,ƒ), 1 < j < P, i 

≠ j or 

start_time(µ,i,ƒ)=(start_time(µ,j,ƒ) and 

n2(task(i, (start_time(µ,i,ƒ) - 1), f) ≤ n2(task(j, 

(start_time(µ,i,ƒ) - 1), f) 

1 ≤ j ≤P,  i ≠ j. 

14. mark task µ until all tasks marked 

15.endif 

VI. LOW COMMUNICATION OVERHEAD PHASE: 

Optimality of the algorithm over the target machine can be 

achieved due to the following reasons: 

Fact(l):  comm(i, T1,j,T2) where 1 ≤ i,j ≤ P 

Swapping of the task by the task schedule on processor node 

(nj) at time (Ƭ1) with the task schedule on node (nj) at time 

(Ƭ2). When the swapping of the task amongst the different 

processor then 

Fact (2):  total comm(i,j, Ƭ) where 1 ≤ i,j ≤P 

The effect of the above operation is to swap all the task 

schedule on node (ni) at time T1 with the task schedule node 

(nj) at time T2, where T2 ≥ T1. 

The following operation is equivalent to the more than one 

swap operations: 

Fact (3):  total comm(i,j,Ƭ) ~ comm(I, T1, j, T2) Ɐ TI,T2 ≥ 

T 
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VII. PRIORITY ASSIGNMENT AND START TIME 

COMPUTING PHASE:  

Computation of the b-level of DAG is used for the initial 

scheduling. The following instructions have been used to 

compute the initial scheduling cost of the task graph: 

1. Construct a list of nodes in reverse order(Li) 

2. for each node ai Ɛ LI do 

3. max = 0 

4. for each child ac of ai  do 

5. lf c{ai, ac) + b-level(ac) >M then 

6. M = c{ai, ac) + b-level(ac) 

7. endif 

8. endfor 

9. b-level(ai) = weight(ai) + M 

10. endfor 

In the scheduling process b-level is usually constant until the 

node has been scheduled. Procedure computes b-level and 

schedules a list in descending order. The quantitative 

behavior of the proposed strategy depends upon the 

topology used on the target system. This observation might 

lead to the conclusion that b-level perform best results for 

all experiments. The algorithm employs the attribute ALAP 

(As Late as Possible) start time which measure that how far 

the node's start time can be delayed without increasing 

schedule length. 

VIII. PROCEDURE FOR COMPUTING THE ALAP IS AS 

FOLLOWS: 

1. construct ready list in reverse topological order 

(Mi) 

2. for each node aj Ɛ Mj  do 

3. min = k , where k is call procedure(C.P.) length 

4. for each predecessor ac of ai do 

5. if alap(ac) - c(ac, ai) < k then 

6. k = alap(ac) - c(ac, a,) 

7. endif 

8. endfor 

9. alap(ai) = k - wgt (a,) 

10. endfor 

___________________________________________ 

According to priority of nodes, tasks allocated on the 

processors in distributed computing environment. The 

ALAP time is computed and then constructs a list of tasks in 

ascending order of ALAP time. Ties have been broken by 

considering ALAP time of predecessors of tasks. 

The following results from the above facts prove the 

optimality of the proposed model: 

1. The operation comm(i, τi, j, τ2) on the schedule f 

of the tasks preserves the feasibility of the schedule 

of any task (w)  

f(w) = (p, τi) where p є {i,j} and τi = τ-1 

2. Feasibility of the schedule f in the proposed model 

increased for any task schedule 

f(w) = (p, τi) where p є {i,j] and Ɐ τi 

3. The operation conim(i, τi, j, τ2) and n2(total 

comm(i,j,τ)) > n2(task(i, j, τ)) shows optimality on 

the schedule of any task(w)  

f(w) = (p, τ3) where p≠ [i,j} and Ɐ T3 

4. The operation comm(i,,j,τ) preserves feasibility of 

the schedule of any task(w)  

f(w) = (p, τi) where p Ɛ [i,j] and τi ≤ τ -l 

5. The operation conim(i,j,τ) also shows optimality of 

the schedule of any task(w) 

f(w) = (p, τi) where p≠ [i,j} and Ɐτi 

In this paper, we proposed a new model for the estimation of 

communication cost amongst various nodes at the time of 

the execution. The improvement ratio of iterations has also 

been discussed. Our contribution gives cut edge inter-

process communication factor which is a highly important 

factor to assign the task to the heterogeneous systems 

according to the processing capabilities of the processors on 

the network. The model can also adapt the changing 

hardware constraints. 
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