
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 6 Issue 11 November 2017, Page No. 23219-23223

Index Copernicus value (2015): 58.10 DOI: 10.18535/ijecs/v6i11.22

Maninderjit Singh Khanna, IJECS Volume 6 Issue 11 November 2017 Page No. 23219-23223 Page 23219

Designing Ideal Task Partitioning Scheduling Model In Distributed

Computing Scenario
Maninderjit Singh Khanna, Dr. Jitendra Sheetlani

Dept. of Computer Application,

Chitkara University,

Punjab, India

Dept. of Computer Application,

Sri Satya Sai University of Technology & Medical Science, Sehore, Bhopal (MP) India

Abstract:

This paper represents optimal iterative task partitioning scheduling in distributed heterogeneous environment. The main goal of

the algorithm is to improve the performance of the schedule in the form of iterations. This algorithm first uses b-level computation

to calculate the initial schedule. Main characteristics of our method are optimal scheduling and strong link between partitioning,

scheduling and communication. Some important models for task partitioning have also been discussed in this paper. The proposed

algorithm improves inter process communication between tasks by using recourses of the system in an efficient manner.

Keywords: Task partitioning scheduling; distributed

heterogeneous environment; inter process communication.

Introduction
Parallel computing systems compose task partitioning
strategies in a true multiprocessing manner. Such systems
share the algorithm and processing unit as computing
resources to achieve higher inter process communications
capabilities A large variety of experiments have been
conducted on the proposed algorithm. Goal of computational
models is to provide a realistic representation of the costs of
programming.

Scheduling techniques might be used by an algorithm to
optimize the code that comes out from parallelizing
algorithms. A researcher is always keen to construct a
parallel algorithm that runs in the shortest time. Another use
of these techniques is the designing of high-performance
computing systems. Threads can be used for task migration
dynamically [1]. They are used to increase the efficiency of
the algorithm. Parallel computing systems have been
implemented upon heterogeneous platforms which comprise
different kinds of units, such as CPUs, graphics co-
processors, etc. An algorithm has been constructed to solve
the problem according to the processing capabilities of the
machines [10]. Communication factor is highly important
feature to solve the problem of task partitioning in the
distributed systems. A computer cluster is a group of
computers working together closely in such a manner that it's
treated as a single computer. The cluster is always used to
improve the performance and availability over that of a
single computer. A cluster is used to improve the scientific
calculation capabilities of the distributed system [2]. Task
partitioning has been achieved by linking the computers
closely to each other as a single implicit computer.

Large tasks partitioned into sub tasks by the algorithms to
improve the productivity and adaptability of the systems.
Process division is a function that divides the process into the
number of processes or threads. Thread distribution
distributes threads proportionally among several machines in

the cluster network [15]. A thread is a function which
executes on the different nodes independently, so the
communication cost problem is negligible [3]. Some
important models [4] for task partitioning in a parallel
computing system are: PRAM, BSP etc.

I. PARALLEL RANDOM ACCESS MACHINE (PRAM)

MODEL

It is a robust design paradigm provider. PRAM comprised of

P processors, each with its own un- modifiable program. A

single shared memory composed of a sequence of words,

each of which capable of containing an arbitrary integer [5].

PRAM model is an extension of the familiar RAM model

and it's used in algorithm analysis. It consists of a read-only

input tape and a write-only output tape. Each instruction in

the instruction stream has been carried out by all processors

simultaneously. It requires unit time, reckless of the number

of processors. Parallel Random Access Machine (PRAM)

model of computation consists of a number of processors

operating in lock step [13]. In this model each processor has

a flag that controls whether it is active in the execution of an

instruction or not. Inactive processors do not participate in

the execution of instructions.

Shared Memory

http://www.ijecs.in/

Maninderjit Singh Khanna, IJECS Volume 6 Issue 11 November 2017 Page No. 23219-23223 Page 23220

Figure 1: PRAM model for shared memory.

The processor ID can be used to distinguish processor

behavior while executing the common program.

Synchronous PRAM produces results by multiple processors

to the same location in shared memory. Highest processing

power of this model can be used by using the Concurrent

Read Concurrent Write (CRCW) operation. It's a baseline

model of concurrency and explicit model which specify

operations at each step [11]. It allows both concurrent read

and concurrent write instructions to shared memory

locations. Many algorithms for other models (such as the

network model) can be derived directly from PRAM

algorithms [12].

Classification of the PRAM model is as follows:

1. In the Common CRCW PRAM, all the processors must

write the same value.

2. In the Arbitrary CRCW PRAM, one of the processors

arbitrarily succeeds in writing.

3. In the Priority CRCW PRAM, processors have priorities

associated with them and the highest priority processor

succeeds in writing.

III. PROPOSED MODEL FOR TASK PARTITIONING IN

DISTRIBUTED ENVIRONMENT SCHEDULING:

Task partitioning strategy in parallel computing system is

the key factor to decide the efficiency, speedup of the

parallel computing systems. The process has been

partitioned into the subtasks where the size of the task is

determined by the run time performance of each server [9].

In this way assign a number of tasks will be proportional to

the performance of the server participated in the distributed

computing system. Inter-process communication cost

amongst tasks is very important factor which is used to

improve the performance of the system [6]. Inter processes

communication cost estimation criteria is important for the

enhancement of speed up and turnaround time [8]. Call

Procedure (C. P.) is used to dispatch the task according to

the capability of the machines. In this model server machine

can be used for large computations. Every processing

element executes one task at a time and all tasks can be

assigned to any processing element. In the proposed model,

subtasks communicate to each other by sharing of data. So

execution time is reduced due to sharing of data. These

subtasks assign to the server which dispatch the tasks to the

different nodes.

The proposed scheduling algorithm is used to

compute the execution cost and communication cost of the

tasks. So the server is assumed by a system (P, [Pij], [Si],

[Ti] [Gi] [Kij]) as follows:

a) P = {Pi... Pn}, Where Pi denotes the processing elements

on cluster

b) [Pij], where NxN is processors topology

c) Si, 1 < i < N, specify the speed of processor Pi

d) Ti, 1 <i< N, specify the startup cost of initiating message

on Pi

e) Gi, 1 < i < N, specify the startup cost of initiating process

on Pi

f) Kij is the transmission rate over the link connecting to

adjacent processors Pi and Pj

Total (t) Total Task

DAG(H) DAG Height

P Number of Processor

MinCT Minimum Computational Time

MaxCT Maximum Computational Time

MinCR Minimum Computational Rate

MaxCR Maximum Computational Rate

ψ Speed up

b-level Bottom Level of DAG

E Serial execution portion of algorithm

Table 1: Nomenclature for proposed task partitioning

model

Figure 2: Proposed dynamic task partitioning model

This model splits both computation and data into

small tasks [14].

The following basic requirements have been

fulfilled by the proposed model:

1. There is at least one order of magnitude more

primitive than processors upon the target machine

to avoid later design constraints.

2. Redundant data structure storage and redundant

computations are minimize which cause to achieve

Maninderjit Singh Khanna, IJECS Volume 6 Issue 11 November 2017 Page No. 23219-23223 Page 23221

large scalability for high performance

computations.

3. Primitive tasks are roughly of the same size to

maintain the balance work among the processors.

4. Number of tasks is increasing function of the

problem size which avoids the constraints. It's

impossible to see more processors to solve large

problem instances.

 The model comprises the existence of an I/O

(Input/Output) element associated with each processor in

the-system. Processing time can be calculated with the help

of the Gantt chart. The connectivity of the processing

element can be represented by using an undirected graph

called the scheduler machine graph [7]. Program completion

cost can be computed as:

Total Cost = Communication cost + Execution cost

where, Execution cost = Schedule length, Communication

cost = the number of node pairs (w, µ) such that (w, µ) € A

and proc (w) = proc (µ).

III. THE PROPOSED ALGORITHM FOR INTER-PROCESS

COMMUNICATION AMONGST TASKS:

It's an optimal algorithm for scheduling interval ordered

tasks on (m) processors. The algorithm generates a schedule

ƒ that maps each task v € V to a processor Pv with a starting

time tv. Communication time between the processor Pi and

Pj, may be defined as:

comm.(i,j) = {O for i =j, otherwise 1}

task-ready (µ, i, ƒ): the time when all the messages

from all task in N(v) have been received by

processor Pi in schedule f .

start time (µ, i, ƒ): the earliest time at which task v

can start execution on processor Pi in schedule f .

proc (µ, ƒ): the assigned processor to task µ in

schedule ƒ .

start (µ, ƒ): the time in which task µ begins its

actual execution in schedule ƒ .

task (µ,Ƭ, ƒ): the task schedule on processor P, at

time Ƭ in schedule ƒ . If there is no task schedule

on processor Pi at time Ƭ in schedule ƒ , then

task(µ,Ƭ, ƒ) returns the empty task ɸ. It's assumed

that n2(ɸ) < n2(µ).

In this algorithm edge cut gain parameter is considered to

calculate the communication cost amongst the tasks [9].

gain(i,j) = €.gain edge cut + (1 - €)

gain edge cut = edge cut actor / old edge cut

edge cut factor = old edge cut - new edge cut

Where € is used to set the percentage of gains from edge-cut

and workload balance to the total gain. Higher value of €

contribute total gain of the communication cost.

V. PSEUDO CODE FOR THE PROPOSED ALGORITHM:

1. start

2. task (i, τ, ƒ)←Ф, for all positive integers i, where

1 < i <P and τ > 0

3. repeat

4. Let µ be the unmark task with highest priority

5. for i = 1 to P do

6. compute b-level for all tasks

7. schedule all tasks into non-increasing order of b-

level

8. compute ALAP, constructs a list of tasks in the

ascending order of the ALAP time

9. task_ready (µ, i, ƒ ← max(start(µ, ƒ) +

comm(proc(µ ,ƒ), i + 1) + gain(i,j) for each µ

10. start_time(µ, i, ƒ)← min τ, where task(i,τ,ƒ)←

Ф and t > task_ready (µ,i,ƒ)

11. endfor

12. f(µ) ← (start_time(µ, i, ƒ) if

13.start_time(µ,i,ƒ)<(start_time(µ,j,ƒ), 1 < j < P, i

≠ j or

start_time(µ,i,ƒ)=(start_time(µ,j,ƒ) and

n2(task(i, (start_time(µ,i,ƒ) - 1), f) ≤ n2(task(j,

(start_time(µ,i,ƒ) - 1), f)

1 ≤ j ≤P, i ≠ j.

14. mark task µ until all tasks marked

15.endif

VI. LOW COMMUNICATION OVERHEAD PHASE:

Optimality of the algorithm over the target machine can be

achieved due to the following reasons:

Fact(l): comm(i, T1,j,T2) where 1 ≤ i,j ≤ P

Swapping of the task by the task schedule on processor node

(nj) at time (Ƭ1) with the task schedule on node (nj) at time

(Ƭ2). When the swapping of the task amongst the different

processor then

Fact (2): total comm(i,j, Ƭ) where 1 ≤ i,j ≤P

The effect of the above operation is to swap all the task

schedule on node (ni) at time T1 with the task schedule node

(nj) at time T2, where T2 ≥ T1.

The following operation is equivalent to the more than one

swap operations:

Fact (3): total comm(i,j,Ƭ) ~ comm(I, T1, j, T2) Ɐ TI,T2 ≥

T

Maninderjit Singh Khanna, IJECS Volume 6 Issue 11 November 2017 Page No. 23219-23223 Page 23222

VII. PRIORITY ASSIGNMENT AND START TIME

COMPUTING PHASE:

Computation of the b-level of DAG is used for the initial

scheduling. The following instructions have been used to

compute the initial scheduling cost of the task graph:

1. Construct a list of nodes in reverse order(Li)

2. for each node ai Ɛ LI do

3. max = 0

4. for each child ac of ai do

5. lf c{ai, ac) + b-level(ac) >M then

6. M = c{ai, ac) + b-level(ac)

7. endif

8. endfor

9. b-level(ai) = weight(ai) + M

10. endfor

In the scheduling process b-level is usually constant until the

node has been scheduled. Procedure computes b-level and

schedules a list in descending order. The quantitative

behavior of the proposed strategy depends upon the

topology used on the target system. This observation might

lead to the conclusion that b-level perform best results for

all experiments. The algorithm employs the attribute ALAP

(As Late as Possible) start time which measure that how far

the node's start time can be delayed without increasing

schedule length.

VIII. PROCEDURE FOR COMPUTING THE ALAP IS AS

FOLLOWS:

1. construct ready list in reverse topological order

(Mi)

2. for each node aj Ɛ Mj do

3. min = k , where k is call procedure(C.P.) length

4. for each predecessor ac of ai do

5. if alap(ac) - c(ac, ai) < k then

6. k = alap(ac) - c(ac, a,)

7. endif

8. endfor

9. alap(ai) = k - wgt (a,)

10. endfor

According to priority of nodes, tasks allocated on the

processors in distributed computing environment. The

ALAP time is computed and then constructs a list of tasks in

ascending order of ALAP time. Ties have been broken by

considering ALAP time of predecessors of tasks.

The following results from the above facts prove the

optimality of the proposed model:

1. The operation comm(i, τi, j, τ2) on the schedule f

of the tasks preserves the feasibility of the schedule

of any task (w)

f(w) = (p, τi) where p є {i,j} and τi = τ-1

2. Feasibility of the schedule f in the proposed model

increased for any task schedule

f(w) = (p, τi) where p є {i,j] and Ɐ τi

3. The operation conim(i, τi, j, τ2) and n2(total

comm(i,j,τ)) > n2(task(i, j, τ)) shows optimality on

the schedule of any task(w)

f(w) = (p, τ3) where p≠ [i,j} and Ɐ T3

4. The operation comm(i,,j,τ) preserves feasibility of

the schedule of any task(w)

f(w) = (p, τi) where p Ɛ [i,j] and τi ≤ τ -l

5. The operation conim(i,j,τ) also shows optimality of

the schedule of any task(w)

f(w) = (p, τi) where p≠ [i,j} and Ɐτi

In this paper, we proposed a new model for the estimation of

communication cost amongst various nodes at the time of

the execution. The improvement ratio of iterations has also

been discussed. Our contribution gives cut edge inter-

process communication factor which is a highly important

factor to assign the task to the heterogeneous systems

according to the processing capabilities of the processors on

the network. The model can also adapt the changing

hardware constraints.

IX. REFERENCES:

1. N. Islam, A. Prodromidis and M. S. Squillante,

"Dynamic Partitioning in Different Distributed

Memory Environments," Proceedings of the 2nd

Workshop on Job Scheduling Strategies for Parallel

Processing, (1996), 155-170.

2. D. J. Lilja, "Experiments with a Task Partitioning

Model for Heterogeneous Computing," University

of Minnesota AHPCRC Preprint no. 92-142,

Minneapolis, MN, (1992), 15-19.

3. L. G. Valiant, "A Bridging Model for Parallel

Computation," Communications of the ACM,

33(8), (1990), 103-111.

4. B. H. Juurlink and H. A. G. Wijshoff,

"Communication primitives for BSP Computers,"

Information Processing Letters, 58, (1996), 303-

310.

Maninderjit Singh Khanna, IJECS Volume 6 Issue 11 November 2017 Page No. 23219-23223 Page 23223

5. H. EI-Rewini and H. Ali, "The Scheduling Problem

with Communication," Technical Report,

University Of Nebraska at Omaha, (1993), 78-89.

6. D. Menasce and V. Almeida, "Cost-Performance

Analysis of Heterogeneity in Supercomputer

Architectures," Proc. Supercomputing, (1990), 169-

177.

7. T. L. Adam, K. M. Chandy and J. R. Dickson, "A

Comparison of List Schedules for Parallel

Processing Systems," Comm. ACM, 17, (1974),

685- 689.

8. L. G. Valiant, "A Bridging Model for Parallel

Computation," Communications of the ACM,

33(8), (1990), 103-111.

9. El-Rewini, T. G. Lewis, H. Ali, "Task Scheduling

in Parallel and Distributed Systems," Prentice Hall

Series in Innovative Technology, (1994), 48-50.

10. M. D. Ercegovac, "Heterogeneity in

Supercomputer Architectures," Parallel Computing,

(7), (1987), 367-372.

11. P. B. Gibbons, "A More Practical PRAM Model,"

In Proceedings of the 1989 Symposium on Parallel

Algorithms and Architectures, Santa Fe,

NM,(1989), 158-168.

12. Y. Aumann and M. O. Rabin, "Clock Construction

in Fully Asynchronous Parallel Systems and

PRAM Simulation," In Proc. 33rd IEEE Symp. On

Foundations of Computer Science, (1992), 147-

156.

13. R. M. Karp and V. Ramachandran, "Parallel

Algorithms for Shared-Memory Machines," In J.

van Leeuwen, editor. Handbook of Theoretical

Computer Science, (1990), 869-941.

14. H. Topcuoglu, S. Hariri and M. Y. Wu,

"Performance-Effective and Low-Complexity Task

Scheduling for Heterogeneous Computing," IEEE

Trans. Parallel and Distributed Systems, 13(3),

(2002), 250-271.

15. J. Ali and R. Z. Khan, "Dynamic Task Partitioning

Model in Parallel Computing Systems," Proceeding

First International conference on Advanced

Information Technology (ICAIT), Coimbatore,

Tamil Nadu, (2012), 7-10.

