

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 6 Issue 11 November 2017, Page No. 23199-23208

Index Copernicus value (2015): 58.10 DOI: 10.18535/ijecs/v6i11.20

M.V.L.N.Venugopal, IJECS Volume 6 Issue 11 November 2017 Page No. 23199-23208 Page 23199

Containerized Microservices architecture
M.V.L.N.Venugopal

Abstract

Microservices are the emerging application platform: It Microservices architecture is not a hype is the architecture that will serve as

the basis for many applications over the next few years. to shorten time to market of a software product by improving productivity

effect through maximizing the automation in all life circle of the product. Promising container technologies, such as Docker, offer

great agility in developing and running applications when combined with microservices-style architecture.

Microservices appreciate approaches emerging technologies like DevOps and continuous delivery in terms of software architecture.

with MSA style, several important deployment technologies, such as container-based virtualization and container orchestration

solutions, have came in to picture. These technologies efficiently exploit cloud platforms, providing a high degree of scalability,

availability, and portability for microservices. Despite enough level of performance, there is still a lack of performance engineering

approaches explicitly taking into account the particularities of microservices.

In this paper, we argue why new solutions to performance engineering for microservices are needed. Furthermore, we identify open

issues and outline possible research directions. This paper thoroughly studies microservices architectural design along with the

various advantages and disadvantages of containerized microservices, architectural advantages, guide lines, goals and the latest

technologies used .

Key words: Micro services, Service oriented architecture, Gate

Way, Docker, Kubernetes

1. Introduction

Large many Enterprise applications in recent times are designed

to facilitate many business requirements. Enterprise architects

always look to elevate IT agility and scalability by breaking

down business functional models into bounded contexts.

Microservices architecture addresses these goals by mapping

bounded contexts with autonomous micro units of software

(i.e., microservices), each focusing on a single business

capability and equipped with well-defined interfaces.

Microservices looks to be next development of service oriented

architectures and their architecture is fine-grained SOA.

Microservices architecture promotes to eliminate ESB as the

central bus Microservices is an architectural style inspired by

service-oriented computing that has recently started gaining

popularity.

Micro services have its impact huge on the recent software

industry. MSA is known for the benefits of Scalability,

flexibility, and portability "Microservices" latest popular buzz-

words in the field of software architecture. Microservices are a

new trend rising fast from the enterprise world. It is hard to

have definite research solutions for architecting microservices.

Monolithic Architecture

In software engineering, a monolithic application describes a

single-tiered software application in which the user interface

and data access code are combined into a single program from a

single platform. A monolithic application is self-contained, and

independent from other computing applications

 In monolithic application a software application hundreds of

functionalities bundled into a single application. For examples,

ERPs, CRMs, and other various software systems are built as a

monolith with several hundreds of functionalities. The Design,

development, maintenance and upgrading of such software

applications becomes very difficult.

Monolithic architecture-Characteristics

 Designed, developed, and deployed as a single unit.

 Difficult to maintain, and enhance.

 Difficult to adopt new technologies and frameworks

like Agile.

 Required to redeploy the entire application, to update a

part of it.

 scaled as a single application and hard to scale with

conflicting resources

 Single unstable service can bring down the whole

application.

http://www.ijecs.in/

M.V.L.N.Venugopal, IJECS Volume 6 Issue 11 November 2017 Page No. 23199-23208 Page 23200

Consider a retail software application with various services as

very good example of a monolithic architecture. All these

services are deployed into the same application runtime.

Service Oriented Architecture:

A service-oriented architecture (SOA) is a style of software

design where services are provided to the other components by

application components, through a communication protocol

over a network. The basic principles of service-oriented

architecture are independent of vendors, products and

technologies. Service Oriented Architecture (SOA) was

designed to overcome some of these limitations. SOA

application is designed as combination of 'coarse-grained'

services, and with broad scope. As per principles of SOA,

Services in SOA are independent from each other, and are

deployed in the same runtime along with all other services. The

very basic goal of SOA is the integration of different software

assets, (different organizations), in order to orchestrate business

processes.

Micro services Architecture

The foundation of microservices architecture (MSA) is in

developing a single application as a suite of small and

independent services that are running in its own process,

developed and deployed independently. In most of the

definitions of microservices architecture, architecture is defined

as the process of segregating the services available in the

monolith into a set of independent services. microservices is a

form of fine-grained service oriented architecture (SOA)

implementation that could be used to build independent,

flexible, scalable, and reusable software applications in a

decoupled manner. . Microservices, pave way for DevOps and

Continuous Deployment pipelines.

The microservices architectural style is an approach to

developing a single application as a suite of small services,

each running in its own process and communicating with

lightweight mechanisms, often an HTTP resource API. These

services are built around business capabilities and

independently deployable by fully automated deployment

machinery. There is a bare minimum of centralized

management of these services, which may be written in different

programming languages and use different data storage

technologies.”- Fowler

The key idea is that by looking at the functionalities offered

from the monolith, we can identify the required business

capabilities. Then those business capabilities can be

implemented as fully independent, fine-grained, and self-

contained (micro)services. They might be implemented on top

of different technology stacks and each service is addressing a

very specific and limited business scope.

Aim of micro services is to improving the development,

delivery, and deployment of the software itself. In Micro

services every service is required to be an autonomous,

independently deployable unit of manageable size and interacts

with other services interfaces such as Restful Web APIs. Micro

services are enablers of Continuous Delivery and DevOps

technologies. Recent technologies container-based

virtualization and infrastructure technologies such as Docker

and Kubernetes are also utilized to meet challenges like

performance testing, Monitoring and Modeling of rapid

delivery Due to their highly distributed nature. These facilitate

operations by such as rolling updates, automated scaling, and

rebalancing in case of node failure. As a consequence, micro

service based deployments are much more dynamic and volatile

than traditional applications, creating challenges for both

monitoring and performance modeling

The same online retail system scenario that already explained

above can be realized with microservices architecture as a suite

of microservices based on the business requirements, there is an

additional microservice created from the original set of services

that are there in the monolith. So, it is quite obvious that using

microservices architecture is something beyond the splitting of

the services in the monolith.

The Principles Of Microservices

1. Modeled Around Business Domain

2. Culture Of Automation

3. Hide Implementation Details

4. Decentralize All The Things

5. Deploy Independently

6. Consumer First

7. Isolate Failure

8. Highly Observable

Eight Key Principles for doing microservices well:

 Model Around Your Business Domain: Domain-

driven design can help you find stable, reusable

boundaries

 Build a Culture of Automation: More moving parts

means automation is key

 Hide Implementation Details: One of the pitfalls that

distributed systems can often fall into is tightly

coupling their services together

 Embrace Decentralization: To achieve autonomy,

push power out of the center, organizationally and

architecturally

 Deploy Independently: Perhaps the most important

characteristic microservices need

 Focus on Consumers First: As the creator of an API,

make your service easy to consume

 Isolate Failure: Microservice architecture doesn’t

automatically make your systems more stable

 Make Them Highly Observable: With many moving

parts, understanding what is happening in your system

can be challenging

Architectural principles of microservices

There are few more architecture styles and design principles

need to be considered while designing microservices. They are:

1.1.1 Single Responsibility Principle (Robert C Martin)

Each microservice must be responsible for a specific feature or

a functionality or aggregation of cohesive functionality.

1.1.2 Domain Driven Design

Domain driven design is an architectural principle in-line with

object oriented approach. It recommends designing systems to

reflect the real world domains. It considers the business

domain, elements and behaviors and interactions between

business domains

Service Oriented Architecture

The Service Oriented Architecture (SOA) is an architecture

style, which enforces certain principles and

philosophies. Following are the principles of SOA to be

adhered while designing microservices for cloud.

Encapsulation

The services must encapsulate the internal implementation

details, so that the external system utilizes the services need not

worry about the internals. Encapsulation reduces the complexity

and enhances the flexibility (adaptability to change) of the

system.

Loose Coupling

The changes in one Microsystems should have zero or

minimum impact on other services in the eco-system. This

principle also suggests having a loosely coupled communication

methods between the microservices. As per SOA, ReSTful

APIs are more suitable than Java RMI, where the later enforces

a technology on other microservices.

Separation of Concern

Develop the microservices based on distinct features with zero

overlap with other functions. The main objective is to reduce

the interaction between services so that they are highly cohesive

and loosely coupled. If we separate the functionality across

wrong boundaries will lead tight coupling and increased

complexity between services.

Guidelines for Designing Microservices

 Single Responsibility Principle(SRP): Having a limited

and a focused business scope for a microservices helps

us to meet the agility in development and delivery of

services.

 During the designing phase of the microservices, find

their boundaries and align them with the business

capabilities

 Make sure the microservices design ensures the

agile/independent development and deployment of the

service.

 focus on the scope of the microservices, but not

making the service smaller. The true size required

should be size to facilitate a given business capability.

 microservice should have a very few

operations/functionalities and simple message format.

 Start with relatively broad service boundaries

refactoring to smaller ones (based on business

requirements) as time goes on.

Goals for Designing Microservices

Microservices are essentially implementation components that

communicate with each other using network protocols.

Understanding what they are is helpful, but, to some extent, it

also misses the point. More important is what microservices

enable us to do.

Goals with microservices:

1. Independent deployment of components

2. Independent scaling of components

3. Independent implementation stacks for each

component

4. Easy self-serve deployments of components

5. Repeatable deployments of components (external

configuration management)

6. Deployments without service interruptions

7. Protection of system availability from individual

Instance failure

8. Automatic replacement of component instances

when they fail (self-healing)

9. Easy scaling of components by adjusting a simple

parameter value

10. Canary testing

11. "Red/black" or "blue/green" deployments

12. Instant reversal of new revision deployments

five architectural constraints (principles that drive desired

properties) for the Microservices architectural style. To be a

Microservices, a service must be:

1. Elastic

2. Resilient

3. Compassable

4. Minimal, and;

5. Complete

Handling Messages in Microservices

Microservices architecture, have a simple and lightweight

messaging mechanism.

There are two types of messages

1. Synchronous Messages

2. Asynchronous Messages

Synchronous Messages –

In synchronous messages, client expects a timely response from

the service and waits till it get it. In Microservices

Architecture, ReST is the ultimate choice as it provides a simple

messaging style implemented with HTTP request-response,

based on resource API style. Therefore, most microservices

implementations are using HTTP along with resource API

based styles i.e. every functionality is represented with a

resource and operations carried out on top of those

resources. As an alternative to REST/HTTP synchronous

messaging, The Apache Thrift can be used for interface

definition for microservices and scalable cross-language

services development)

https://en.wikipedia.org/wiki/Robert_Cecil_Martin

M.V.L.N.Venugopal, IJECS Volume 6 Issue 11 November 2017 Page No. 23199-23208 Page 23202

Asynchronous Messaging - AMQP, STOMP, MQTT

asynchronous microservices messaging techniques for which

client doesn't expect a response immediately, or does not accept

a response at all protocols such as AMQP, STOMP are widely

used. Another possible approach is to build interactions among

microservices using asynchronous messaging style, such as

MQTT or Kafka.

Message Formats - JSON, XML, Thrift, ProtoBuf, Avro

In most microservices-based applications, use simple text-based

message formats such as JSON and XML on top of HTTP

resource API style. In case of binary message formats

microservices can leverage binary message formats such as

binary Thrift, ProtoBuf (Google's data interchange format)

or Avro (Apache Avro™ is a data serialization system.).

Service Registry

Service Registry holds the microservices instances and their

locations. Microservices instances are registered with the service

registry on startup and deregistered on shutdown. The consumers

can find the available microservices and their locations through

service registry.

Service Contracts

As microservices are built on top of REST architectural

microservices use the standard REST API definition languages

such as Swagger and RAML to define the service contracts. For

other microservices implementation which are not based on

HTTP/REST (such as Thrift), the protocol level 'Interface

Definition Languages (IDL can be used e.g.: Thrift interface

description language (Thrift IDL)

Inter-service/process Communication in Microservices

As software applications are built as a suite of independent

services, in order to realize a business use case, it is required to

have inter-process communication between different

microservices/processes. Microservices architecture promotes to

eliminate ESB and move the 'smart-ness' or business logic to the

services and client (known as 'Smart Endpoints'). Since

microservices use standard protocols such as HTTP, JSON, etc.

the requirement of integrating with a disparate protocol is

minimal when it comes to the communication among

microservices. Another alternative approach in Microservices

communication is to use a lightweight message bus

or gateway with minimal routing capabilities and just acting as

a 'dumb pipe' with no business logic implemented on gateway.

Based on these styles there are several communication patterns

that have emerged in microservices architecture.

1. Point-to-point

2. API-Gateway

Point-to-point Style

In point to point style, the entirety of the message routing logic

resides on each endpoint and the services can communicate

directly. Each microservices exposes a REST APIs and a given

microservices or an external client can invoke another

microservices through its REST API. Point-to-point Style

model works for relatively simple microservices-based

applications but as the number of services increases, this will

become very complex.

Disadvantages with point-to-pointcommunication.

 The non-functional requirements such as end-user

authentication, throttling, monitoring, etc. have to be

implemented at each and every microservices level.

 As a result of duplicating common functionalities, each

microservices implementation can become complex.

 There is no control at all of the communication

between the services and clients (even for monitoring,

tracing, or filtering)

 Often the direct communication style is considered as

a microservices anti-pattern for large scale

microservices implementations.

API-Gateway Style

For complex Microservices, a lightweight central messaging

bus which can provide an abstraction layer for the

Microservices can be used to implement various non-functional

capabilities and the style is termed as API Gateway style. The

Objective behind the API Gateway style is, using a lightweight

message gateway as the main entry point for all the

clients/consumers and implements the common non-functional

requirements at the Gateway level. In general, an API Gateway

allows to consume a managed API over REST/HTTP.

Therefore, business functionalities can be exposed to be

implemented as microservices, through the API-GW, as

managed APIs. In fact, this is a combination of Microservices

architecture and API-Management which give you the best of

both worlds. The API-GW style could well be the most widely

used pattern in most microservice implementations.

In our retail business scenario, as depicted in figure 5, all the

microservices are exposed through an API-GW and that is the

single entry point for all the clients. If a microservices wants to

consume another microservices that also needs to be done

through the API-GW.

Advantages of Gateway (API-GW) of communication

 Ability to provide the required abstractions at the

gateway level for the existing microservices.

For example, rather than provide a one-size-fits-all

style API, the API gateway can expose a different API

for each client.

 Lightweight message routing/transformations at

gateway level.

 Central place to apply non-functional capabilities such

as security, monitoring and throttling.

 With the use of API-GW pattern, the microservices

becomes even more lightweight as all the non-

functional requirements are implemented at the

Gateway level.

Message Broker style

The microservices can be integrated with an asynchronous

messaging scenario such as one-way requests and publish-

subscribe messaging using queues or topics. A given

microservices can be the message producer and it can

asynchronously send messages to a queue or topic. Then the

consuming microservices can consume messages from the

queue or topic. This style decouples message producers from

message consumers and the intermediate message broker will

buffer messages until the consumer is able to process them.

Producer microservices are completely unaware of the

consumer microservices.

The communication between the consumers/producers is

facilitated through a message broker which is based on

asynchronous messaging standards such as AMQP, MQTT,

etc.

Decentralized Data Management

In monolithic architecture, the application stores data in single

and centralized databases to implement various

functionalities/capabilities of the application. microservices and,

if we use the same centralized database, then the microservices

will no longer be independent from each other (for instance, if

the database schema has changed from a given microservices,

that will break several other services). Therefore, each

microservices has to have its own database.

A fie important aspects of implementing decentralized data

management

M.V.L.N.Venugopal, IJECS Volume 6 Issue 11 November 2017 Page No. 23199-23208 Page 23204

 Each microservice can have a private database to

persist the data that requires implementing the business

functionality offered from it.

 A given microservices can only access the dedicated

private database but not the databases of other

microservices.

 In some business scenarios, you might have to update

several database for a single transaction. In such

scenarios, the databases of other microservices should

be updated through its service API only (not allowed

to access the database directly)

De-centralized data management

The de-centralized data management gives you the fully

decoupled microservices and the liberty of choosing disparate

data management techniques (SQL or NoSQL etc., different

database management systems for each service). However, for

complex transactional use cases that involve multiple

microservices, the transactional behavior has to be implemented

using the APIs offered from each service and the logic resides

either at the client or intermediary (GW) level.

Decentralized Governance

Microservices architecture favors decentralized governance. In

microservices architecture, the microservices are built as fully

independent and decoupled services with the variety of

technologies and platforms.

Decentralized governance capabilities of Microservices

 In microservices architecture, there is no requirement

to have centralized design-time governance.

 Microservices can make their own decisions about its

design and implementation.

 Microservices architecture fosters the sharing of

common/reusable services.

 Some of the run-time governances aspects such as

SLAs, throttling, monitoring, common security

requirements and service discovery may be

implemented at API-GW level.

Service Registry and Service Discovery

In Microservices architecture, the number of Microservices is

quite high. And also, their locations change dynamically owing

to the rapid and agile development/deployment nature of

microservices. Therefore, it is required to find the location of

microservices during the runtime. The solution to this problem

is to use a Service Registry.

Service Discovery

To find the available microservices and their location, There are

two types of service discovery mechanisms,

1. Client-side Discovery

2. Server-side Discovery.

Client-side Discovery — In this approach, the client or the API-

GW obtains the location of a service instance by querying a

Service Registry.

Here the client/API-GW has to implement the service discovery

logic by calling the Service-Registry component.

Server-side Discovery — With this approach, clients/API-GW

sends the request to a component (such as a Load balancer) that

runs on a well-known location. That component calls the

service registry and determines the absolute location of the

Deployment Of Microservices

 The deployment of microservices plays a critical role and has

the following key requirements:

 Ability to deploy/un-deploy independently of other

microservices.

 Must be able to scale at each microservices level (a

given service may get more traffic than other

services).

 Building and deploying microservices quickly.

 Failure in one microservices must not affect any of the

other services.

Docker (an open source engine)provides a great way to deploy

microservices addressing the above requirements.

The key steps involved are as follows:

 Package the microservices as a (Docker) container

image.

 Deploy each service instance as a container.

 Scaling is done based on changing the number of

container instances.

 Building, deploying, and starting microservices will be

much faster as we are using Docker containers (which

is much faster than a regular VM)

Kubernetes is an open-source system for automating

deployment, scaling, and management of containerized

applications. It extends capabilities of Docker Hence using

Kubernetes (on top of Docker) for microservices deployment

has become an extremely powerful approach, especially for

large scale microservices deployments.

In figure 11, it shows an overview of the deployment of the

microservices of the retail application. Each microservice

instance is deployed as a container and there are two containers

per each host. You can arbitrarily change the number of

containers that you run on a given host.

Security

In real world scenarios Securing microservices is very

imp[requirement

we can leverage the widely used API-Security standards such as

OAuth2 and OpenID

.

 OAuth2 - Is an access delegation protocol.

 OpenID Connect behaves similarly to OAuth, but, in

addition to the Access token, the authorization server

issues an ID token which contains information about

the user.

As shown in figure 12, these are the

Implementing microservices security

 key steps involved in implementing microservices security:

 Leave authentication to OAuth and the OpenID

Connect server(Authorization Server), so that

microservices successfully provide access given

someone has the right to use the data.

 Use the API-GW style, in which there is a single entry

point for all the client request.

 Client connects to authorization server and obtains the

Access Token (by-reference token). Then send the

access token to the API-GW along with the request.

 Token Translation at the Gateway - API-GW extracts

the access token and sends it to the authorization

server to retrieve the JWT (by value-token).

 Then GW passes this JWT along with the request to

the microservices layer.

 JWTs contain the necessary information to help in

storing user sessions, etc. If each service can

understand a JSON web token, then you have

distributed your identity mechanism which is allowing

you to transport identity throughout your system.

 At each microservices layer, we can have a component

that processes the JWT, which is a quite trivial

implementation.

Microservices - Support for Transactions

The microservices architecture encourages the transaction-less

coordination between services. Distributed transactions across

multiple microservices are an exceptionally complex task. The

idea is that a given service is fully self-contained and based on

the single responsibility principle. The need to have distributed

transactions across multiple microservices is often a symptom

of a design flaw in microservice architecture and usually can be

sorted out by refactoring the scopes of

microservices. However, if there is a mandatory requirement to

have distributed transactions across multiple services, then such

scenarios can be realized with the introduction of 'compensating

operations' at each microservices level. The key idea is, a given

microservices is based on the single responsibility principle and

if a given microservices failed to execute a given operation, we

can consider that as a failure of that entire microservices. Then

M.V.L.N.Venugopal, IJECS Volume 6 Issue 11 November 2017 Page No. 23199-23208 Page 23206

all the other (upstream) operations have to be undone by

invoking the respective compensating operation of those

microservices.

Design of Micro services Using patterns

Microservices architecture introduces a dispersed set of services

and, compared to monolithic design, that increases the

possibility of having failures at each service level.

Microservices can fail due to network issues, unavailability of

the underlying resources, etc. Unavailable or unresponsive

microservices should not fail microservices-based application

down. Thus, micro services should be fault tolerant, be able to

recover whenever is possible, and the client has to handle it

gracefully.

since services can fail at any time, it's important to be able to

detect (real-time monitoring) the failures quickly and, if

possible, automatically restore the services.

In addition, Gateway can be used as the central point that we

can obtain the status and monitor of each microservices as each

microservices is invoked through the Gateway.

Commonly used patterns in Microservices

Circuit Breaker

This pattern is quite useful to avoid unnecessary resource

consumption, request delay due to timeouts, and also gives us to

chance to monitor the system (based on the active open circuit’s

states).

Bulkhead

Bulkhead pattern is about isolating different parts of your

application so that a failure of a service in such part of the

application does not affect any of the other services.

Timeout

The timeout pattern is a mechanism allow to stop waiting for a

response from the micro service, the time interval

Most of these patterns are applicable at the Gateway level.

When the microservices are not available or not responding, at

the Gateway level we can decide whether to send the request to

the microservices using circuit breakers or timeout pattern.

Also, it's quite important to have patterns such as bulkhead

implemented at the Gateway level, as it's the single entry point

for all the client requests, so a failure in a give service should

not affect the invocation of the other microservices. Gateway

can be used as the central point that we can be used obtain the

status and monitor of each microservices

1.2 Microservices in Modern Enterprise Architecture

MSA removes a lot of complexity from the service layer (when

it comes to design, development and deployment), the

complexity that's removed from the service layer has to be

fulfilled by some other component/layer. All tasks done by an

ESB, such as service orchestration, routing, and integration with

disparate systems must be done by other components, including

microservices themselves as ESB is no more.MSA encourages

the enterprise to build all of its IT solutions as microservices it

need to have is a mix of MSA along with conventional

architecture of existing systems.

Figure 13: The modern enterprise architecture with

microservices, enterprise integration, and API management

Figure 13 illustrates a high level enterprise IT architecture. Here

we’ve used a hybrid architecture that comprises both

microservices and existing systems. There are key design

decisions that you need to take when you introduce MSA to

your organization.

Why enterprises introduce MSA.

 MSA build solutions to gain the full power that MSA

brings in.

 Enterprise integration is still required; As going for a

hybrid approach, still need to integrate all internal

systems and services with the use ESB.

 the new microservices may need to call monolithic

systems to facilitate the various business requirements. In

this case, the underlying integration software/ ESB is still

useful and the microservices can call the integration

server to connect to old systems.

 An organization should look for lightweight, high-

performance, and scalable integration software instead of

heavyweight integration frameworks.

 API management: Microservices can be exposed via

the gateway and all API management techniques can be

applied at that layer.

 security, throttling, caching, monetization, and

monitoring has to be done at the gateway layer.

 the non-microservices based services (traditional SOA)

can also be exposed through the API gateway.

1.3 14. Integrating Microservices

MSA aims to build a microservices with limited and a focused

business scope. Therefore, when it comes to building IT

solutions on top of MSA, it is inevitable to use existing

microservices. The interaction between microservices can be

done in a conventional point-to-point style; As it becomes

complex best practices of integrating microservices are

followed that eliminate the drawbacks of point-to-point style

interactions.

 Use a gateway to front all your microservices and all

consumers use the microservices through the gateway

only.

 No direct calls among microservices: Microservices all

calls must go through the gateway.

 Micro-integration has to be done via an integration

server.

Now let's have a look at the techniques related to the interaction

between microservices.

1.3.1 14.1 Orchestration at the Microservices Layer

When multiple microservices has to be called ,to support a

given business requirement another micro service built (which

probably have limited business scope) that will orchestrate the

service calls to the required microservices and aggregate the

final response and send that back to the original consumer.

All invocation of microservices are done through the gateway.

If microservice E has to be scaled independently, that can be

done by scaling microservice E, A, and C as required.

Figure 14: Service orchestration implemented at the

microservices level

1.3.2 14.2 Orchestration at the Gateway Layer

The other possible approach is to implement the same

orchestration scenario by bringing in the orchestration logic to

the gateway level. In this case, no need to new microservices,

but a virtual service layer hosted in the gateway will take care

of the orchestration.

For example, as shown in Figure 15, the service calls to

microservices A and C can be implemented inside the gateway

layer (most microservices gateway implementations support this

feature).

When it comes to scaling the newly introduced business

functionality, the gateway, has to be scaled and microservices

A and C. With this, the gateway will become somewhat

monolithic because it's also responsible to route all other

microservices requests.

Figure Service orchestration implemented at gateway level

1.3.3 14.3 Micro-Integration

When we have to build integration solutions, often it is an

overhead to use a centralized server that contains the integration

logic. The concept of micro-integration envisions a lightweight

integration framework that can be used to build integration

solutions; it can integrate micro servers and/or other

services/systems (on-premise or SaaS). We only run that

integration scenario per each runtime of the integration engine.

This must be a runtime that’s extremely lightweight (starts

within a couple of seconds, and has a low memory footprint).

We can then scale this runtime as required. This is a major

difference from the conventional central integration server

approach where you can’t scale only a selected integration

scenario, but rather you have to scale the monolithic runtime

along with all the deployed integration scenarios.

1.3.4 14.4 Choreography Style

In this case, there is no central component that will take care of

service interactions. Various services can do pub-sub based

messaging using messaging protocols.

1.4 15. WSO2 Microservices Framework for Java (WSO2

MSF4J)

There are quite a few libraries and frameworks to build

microservices, but most of them don’t really adhere to the core

principles of microservices, such as being lightweight or

container friendly.WSO2 offers a microservices framework

that’s lightweight, fast, and is container friendly. WSO2

Microservices Framework for Java (WSO2 MSF4J) offers the

best option to create Microservices in Java with container-based

deployment in mind. Microservices developed using WSO2

MSF4J can boot in just a few milliseconds in a Docker

container and can easily be added to a Docker image definition.

Key aspects in determining to incorporate an MSA in modern

enterprise IT environment,

 Microservices is not a panacea - it won’t solve all your

enterprise IT needs, so we need to use it with other

existing architectures

 It's pretty much SOA done right

 Most enterprises won't be able to convert their entire

enterprise IT systems to microservices. Instead, they will

use microservices to address some business use cases

where they can leverage the power of MSA

 Enterprise integration will never go away - that means

you need to have integration software, such as an ESB, to

cater to all your enterprise integration needs

 All business functions should be exposed as APIs by

leveraging API management techniques

 Interaction between microservices should be supported

via a gateway

 Service orchestration between microservices may be

required for some business use cases and that could be

implemented inside another microservice or gateway

layer that can do the orchestration

1.5 16. Conclusion

Though implementing MSA in the modern enterprise IT

landscape is not a total solution. But there are quite a lot of

M.V.L.N.Venugopal, IJECS Volume 6 Issue 11 November 2017 Page No. 23199-23208 Page 23208

advantages of microservices architecture or microservices.

ideally, a hybrid approach of Microservices and other enterprise

architectural concepts such as Integration would be more

realistic.

Acknowledgments

Insert acknowledgment, if any.

References

1. http://www.ieice.org/eng/shiori/mokuji.html

2. https://www.nginx.com/resources/library/designing-

deploying-microservices/

3. https://opensource.com/resources/what-docker

4. http://microservices.io/patterns/microservices.html

5. https://dzone.com/articles/microservices-design-principles

6. https://medium.com/@WSO2/guidelines-for-designing-

microservices-71ee1997776c

7. https://apigee.com/about/blog/developer/12-goals-

microservices

8. https://dzone.com/articles/why-container-based-

deployment-is-preferred-for-mi

9. https://dzone.com/articles/microservices-in-practice-1

10. http://wso2.com/whitepapers/microservices-in-practice-

key-architectural-concepts-of-an-msa/

11. https://blogs.sourceallies.com/2015/12/microservices-in-

practice-challenges/

12. https://medium.com/@WSO2/microservices-in-practice-

c56f4760e00

BOOKS:

1. Microservice Architecture

Building microservices with JBoss EAP 7 Babak Mozaffari

Version 1.0, June 2016

M.V.L.N. Venugopal received the M.Tech..in comp[uter

science Engineerin from J..N.T.U. During

1990-1992and. M.Sc. in Electronics from

O.U., respectively. During 1985-1987, he

worked in TATA Info Tech Ltd. As a Sr Lead

System Analyst. He has around 25 He worked

in many domains including Telecom Domain.

He now with PCI Private Limited

http://www.ieice.org/eng/shiori/mokuji.html
https://www.nginx.com/resources/library/designing-deploying-microservices/
https://www.nginx.com/resources/library/designing-deploying-microservices/
https://opensource.com/resources/what-docker
http://microservices.io/patterns/microservices.html
https://dzone.com/articles/microservices-design-principles
https://medium.com/@WSO2/guidelines-for-designing-microservices-71ee1997776c
https://medium.com/@WSO2/guidelines-for-designing-microservices-71ee1997776c
https://apigee.com/about/blog/developer/12-goals-microservices
https://apigee.com/about/blog/developer/12-goals-microservices
https://dzone.com/articles/why-container-based-deployment-is-preferred-for-mi
https://dzone.com/articles/why-container-based-deployment-is-preferred-for-mi
https://dzone.com/articles/microservices-in-practice-1
http://wso2.com/whitepapers/microservices-in-practice-key-architectural-concepts-of-an-msa/
http://wso2.com/whitepapers/microservices-in-practice-key-architectural-concepts-of-an-msa/
https://blogs.sourceallies.com/2015/12/microservices-in-practice-challenges/
https://blogs.sourceallies.com/2015/12/microservices-in-practice-challenges/
https://medium.com/@WSO2/microservices-in-practice-c56f4760e00
https://medium.com/@WSO2/microservices-in-practice-c56f4760e00

