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Abstract:  

Multi-label learning problems have become a key topic in machine learning research in recent years. However, most approaches 

have focused on exploiting the interdependences between labels, whereas the correlations between the original features and each 

group of possible class labels have been rarely examined. The association degree of a selected feature is biased toward each 

discriminate class label. With the aim of addressing the gaps in previous studies, the current paper proposes a novel framework 

called multi-label learning with Relevant fEature for eAch Label. Using this mechanism, a classification model to deal with enron 

and medical data sets is established. The experimental results demonstrate the effectiveness and competitive performance of the 

proposed scheme which outperformed other multi-label classification methods significantly. 
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1. Introduction 

In traditional data mining tasks, single-label classification is 

commonly used. It is known as disjoint multi-class 

classification which assigns an object to exactly one class. An 

instance x is associated with a single label λ from a set of 

mutually exclusive labels L, |L|>1. A single-label data set is 

denoted by 
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classification in modern applications is more general and 

complex. It is known as unrestricted multi-class classification 

which collects simultaneously a set of labels Y L  with each 

instance x. A multi-label data set is denoted by  





















NiYxD ii ...1,, [1]. 

Multi-label learning tasks are originally applied in text 

categorization in which each document may belong to several 

predefined topics, such as government and health, or rock and 

blues [2, 3]. Aside from text categorization, multi-label learning 

tasks are also used widely in other real-world problems. For 

instance, in a classification for natural scenery, each image may 

belong to several image types at the same time, such as sea and 

sunset [4]. In a music-emotion classification, music may 

simultaneously evoke more than one emotion such as relaxed 

and sad [5]. In an automated video annotation, each video clip 

may belong to a number of semantic classes such as urban and 

building [6]. In functional genomics, each gene may be 

associated with a set of functional classes such as metabolism, 

transcription, and protein synthesis [7]. 

Multi-label classification algorithms can be divided into two 

general categories [8] (i) problem transformation methods and 

(ii) algorithm adaptation methods.  

The algorithms in the first group are self-determined. They 

transform multi-label classification tasks into one or more 

single-label classifications, regression, or ranking tasks. Binary 

relevance [9], a straightforward problem transformation 

approach, predicts positively the label sets of an unknown 

instance by N binary classifiers. Independent classifiers are 

commonly individual selection [10, 11] and fusing selection 

[12]. This one-against-all strategy has been criticized to ignore 

the correlations among labels [13]. Label Powerset (LP), a 

ranking problem transformation approach, outputs the 

probability distribution of each label of a new instance. A 

ranking of the labels is produced by a specific threshold (e.g., 

0.5). The independent classifiers are generally individual 

selection. This one-against-one strategy has the advantage of 

taking label correlations into account, but it suffers from a large 

number of label subsets. Majority of the label subsets are 

associated with very few examples. The random k-label sets 

(RAkEL) method avoids the aforementioned problems of LP in 

[14]. It constructs an ensemble of LP classifiers. Each LP 

classifier is trained using a different, small, random subset from 

the set of labels. The ranking of labels is accomplished by 

setting the threshold of the average zero-one decisions of each 

model per considered label.  

The second group includes methods that extend specific 

learning algorithms in order to handle multi-label data directly. 

C 4.5 is an adaptation algorithm in which entropy calculation is 

modified, and multiple labels are allowed [15]. AdaBoost.MH 

and AdaBoost.MR [3] are two decomposing adaptation 

algorithms applied on weak classifiers. BP-MLL [16] 

introduces a new error function that captures the characteristics 

of multiple labels without reducing the trivial time cost of a 

neural network. ML-kNN [17] uses the maximum a posteriori 

principle based on the prior and posterior probabilities for each 

label frequency within the k nearest neighbors. Ranking SVM 

[7] attempts to minimize ranking loss while maintaining a large 

margin. MMAC [18] deals with the construction of 

classification rule sets using association rule mining. The labels 

of each instance are ranked according to the support of the 

corresponding multi-label rule.  

http://www.ijecs.in/
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The general scheme utilized by previous methods is the 

identification of all feature representations of the instances in 

original data sets. The aspect of output space is particularly 

emphasized [19]. The systemic dependence between the 

original features and multiple class labels is taken into account 

effectively. However, the original features are utilized directly 

to predict the class labels from the perspective of input space. 

The collection of features, which has a strong association with 

each group of possible class labels, is only a subset of the 

original features. That is, the irrelevance and redundancies of 

the overall feature space may suffer from low prediction 

accuracy. For example, in image classification, sky and desert 

are supposed to be two possible class labels. Specific 

color-based features are preferred in differentiating sky and 

non-sky images, texture-based characteristics are preferred in 

differentiating desert and non-desert images, whereas both 

color- and texture-based features might be useful in 

differentiating other labels [18] In text classification, features 

such as source, open, and kernel may be more associated with 

the class label Linux, whereas attributes such as anonymous, 

reader, and apple may be more related to the class label mobile  

[19] .  

The above-mentioned perspectives imply that each group of 

possible class labels has its own feature subset. In order to 

determine the dependence of features and class labels in 

multi-label learning tasks, a novel framework called multi-label 

learning with Relevant fEature for eAch Label (REAL) is 

proposed. This scheme is carried out by an ensemble of multiple 

kNN classifiers. Prior and posterior probabilities, as well as the 

posteriori maximum principle in [16] , are adopted to determine 

the label sets of the test instance. The feature selection methods 

are combined efficiently in the training and test periods of our 

framework.  

The rest of the current paper is organized as follows. Section 

2 presents the details of the REAL scheme. Section 3 shows the 

experimental results of comparative research. Finally, Section 4 

presents the conclusions and future research directions. 

2. The REAL Approach 

Most traditional multi-label classification approaches in vector 

spaces are used based on the assumption that the instances 

should have a same set of features in the input space for each 

label. But, for specific labels, not all the features have strong 

correlations with those. Therefore, we are look for an approach 

assume that the instances have different set of features in the 

input space for each label hope to Hope to eliminate the 

interference characteristics as far as possible. In the REAL 

algorithm, we extract the best feature subset correlated with a 

certain label as its input space, and then search for the K nearest 

neighbors and calculate the posterior probability combined with 

the ML-KNN algorithm. Fig.1 simply profiles the basic idea of 

our framework. 

REAL algorithm consists of 3 main steps: At the 1st step, 

REAL algorithm extract the best feature subset for each label 

using feature selection methods, such as CMIM [20], MIFS [21], 

MRMR [22], JMI [23], and MIM [24, 25]. At the 2nd step, in 

order to adapt to the assumption that the instances have different 

set of features in the input space for each label, we had 

improved the ML-KNN algorithm. When searching for the K 

nearest neighbors, the distance between two training instances 

for each label is calculated in the corresponding feature 

subspace instead of the whole feature space in witch is adopted 

by the ML-KNN algorithm. Then we could calculate the 

posterior probability with the K nearest neighbors and further 

the confidential threshold value. At the final step, for each test 

instance, search for the K nearest neighbors in corresponding 

feature subspace of a particular label, and identify if the instance 

belong to the label by estimate the posterior probabilities. Take 

the same operation to each label, and determine the label subset 

in which the test instance belongs to. 
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Figure 1: The simplified structures used to encode the 

dependencies of features and class labels. (a) The relevance 

between the original features and multiple class labels is not 

separated; (b) The relevance between each feature subset and its 

corresponding group of possible class labels is separated. 

To evaluate objectively the intersections among feature 

subsets, a Coincidence Degree formula is used: 
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where L is the number of possible class labels, N is the number 

of selected features, and Posj is the position of the specific 

feature in the jth feature subset. fi (k) refers to the kth feature in 

the ith feature subset, and Ai,j (k) refers to the distance between 

Posi and Posj. The maximum coincidence degree is equal to 1 

when the index and position of feature subsets are exactly the 

same.  

Apart from the first-order approaches which break down 

multi-label learning tasks into multiple binary classification 

problems [26], the REAL framework can be applied to other 

multi-label approaches. 

 

3. Experiments 

In this section, a series of experiments is carried out to evaluate 

the effectiveness of the proposed method. A brief description of 

the two real-world data sets and the evaluation criteria is given. 

The experimental results are then presented and discussed. 

 

3.1 Dataset Description and Configuration  

Two common multi-label text data sets are used in the 

experiment: 

● Enron Data Set. Enron is a subset of the Enron e-mail 

corpus . It is already labeled with a hierarchical set of categories 

developed by the UC Berkeley Enron E-mail Analysis Project2. 

The label categories take the form of a checklist in which there 

is high cardinality. Figure 3 shows the characteristics of a small 

sample of the Enron data set. 

● Medical Data Set. Medical is medical-text data set 

compiled for the Computational Medicine Centers 2007 

Medical Natural Language Processing Challenge3. It is already 

labeled with insurance codes. Each sample document includes a 
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brief free-text summary of patients’ symptom history and their 

prognosis. For example, in radiology reports, ICD-9-CM codes 

serve as indications that a certain procedure will be performed. 

There are official guidelines for radiology ICD-9-CM coding. 

One guideline is that every disease code should have a 

minimum number of digits before reimbursement will occur. A 

definite diagnosis should always be coded whenever possible, 

whereas an uncertain one should never be coded. Symptoms 

must also never be coded unless there is a definite diagnosis 

[27].  

Let |S|, dim(S), L(S) respectively denote the number of 

instances, number of features, number of possible class labels. 

In addition, several other multi-label properties are denoted as:   

(a)  



T

i

iY
T

SLCard
1

1
)( : label cardinality which is used to 

determined the average number of labels per example; 

(b)  
 
)(

)(
SL

SLCard
SLDen  : label density which normalizes 

LCard (S) by the number of possible labels; 

(c)  ( ) { | : ( , ) }DL S Y x x Y S   : distinct label set which counts 

the number of distinct label combinations appeared in the data 

set; 

(d)  
( )

( )
DL S

PDL S
S

 : proportion of distinct label set which 

normalizes DL(S) by the number of examples. 

All statistic characteristics of the two multi-label data sets are 

shown in Table 1. 

 

Table 1: Characteristics of the experimental data sets. 

Data set |S| dim(S) L(S) LCard(S) LDen(S) DL(S) PDL(S) 

enron 1702 1001 53 3.378 0.064 753 0.442 

medical 978 1449 45 1.245 0.028 94 0.096 

 

3.2 Evaluation Measures 

Given a test set {( , ) |1 }i ix Y i m    , the following evaluation 

metrics designed specifically for multi-label learning are used in 

[3]: 

(1) Average precision: evaluates the average fraction of 

labels ranked above a particular label y   Y. The performance 

is perfect when ( ) 1avgprec f  .  
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(2) Coverage: evaluates how far we need to go down a list 

of labels on the average, in order to cover all proper labels of the 

instance. It is related loosely to precision at the level of perfect 

recall.  
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(3) Hamming loss: evaluates how many times 

instance-label pairs are misclassified, i.e., a label not belonging 

to the instance is predicted or a label belonging to the instance is 

not predicted.  
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where   stands for the symmetric difference between two 

sets.  

(4) One-error: evaluates how many times the top-ranked 

label is not in the set of proper labels of the instance. The 

performance is perfect when ( ) 0one error f  . 

  1
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m

m

i i
y Yi

one error f f x y Y


                          (5) 

For any predicate  ,   equals 1 if   holds and 0 

otherwise. Note that for single-label classification problems, the 

one-error is identical to the ordinary classification error. 

(5) Ranking loss: evaluates the average fraction of label pairs 

that are reversely ordered for the instance. The performance is 

perfect when ( ) 0rloss f  . 
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where Y  denotes the complementary set of Yi in Y. 

 

Remarks:  

The higher the value of  favgprec , the better the 

performance. The smaller the values of ( )coverage f , 

( )hloss f , ( )one error f , and ( )rloss f , the better the 

performance. 

 

3.3 Comparison and Analysis 

Based on the REAL scheme, the top n features relevant to each 

group of possible class labels are selected using CMIM, where n 

= [5, 10, 50, 100, 500] is divided to enron and medical data sets. 

Table 2 shows the comparative results. 

In the experiments, the symbol “↓” indicates “the smaller the 

better,” whereas “↑” indicates “the higher the better.” The best 

results are represented in bold. Ten-fold cross-validation is 

employed on both data sets to ensure a reliable prediction. As 

shown in Table 2, the accuracy is reduced with the development 

of the dimensionality of features in each feature subset. The 

highest level of accuracy is achieved when the number n for the 

enron data set is approximately equal to 50, and that for the 

medical data set is equal to 5. The main features relevant to the 

target group of possible class labels can better predict unknown 

instances.  

Furthermore, when L = 53 and N = 50, CDFSenron = 0.068; 

when L = 45 and N = 5, CDFSmedical = 0.017. The result reveals 

that the intersection of selected features in each feature subset is 

weak. Dividing the original features into a specific feature 

subset according to the number of possible class labels is crucial 

to the success of the framework.  

Based on the optimal dimension of features in each feature 

subset, the data sets are evaluated further using different filter 

selection mechanisms. Table 3 reports the experimental results 

in detail.  

There are not that many differences in the results of using 

various filter selection mechanisms except for the MIFS 

method. This finding indicates the robustness of our REAL 

algorithm. The configurable parameter β, which is only set 

randomly, may have caused the fluctuations in the results of the 

MIFS method.  

Finally, to verify the superiority of our framework, it is 

compared with four other popular multi-label learning 

algorithms: ML-kNN, BSVM, RAkEL, and ECC. For REAL 

approach, the experimental results of enron and medical data 

sets are based on 50 features and 5 features selected with CMIM 

criterion, respectively. For REAL and ML-kNN, the number of 

nearest neighbors is fixed at 10 in [16]. For BSVM, the models 

are obtained through cross-training strategy in [4]. For RAkEL, 

the parameter of the random subset of size k is incremented 

from 2 (the minimum value), the threshold is set to 0.5, and the 
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ensemble iterations are set to 10  [28]. For ECC, the kernel type 

is chosen for Linear in LIBSVM  [29], and ensemble iterations 

are set to 10 in [1]. Table 4 shows the experimental results in 

detail.     

From the enron data set, REAL ranks first place in terms of 

average precision, coverage, hamming loss, and ranking loss. 

However, it ranks second in the one-error criterion. For the 

medical data set, REAL ranks first place in terms of average 

precision, coverage, and ranking loss. However, it ranks second 

in the hamming loss and one-error criteria. The inferior ranks of 

the REAL scheme did not appear in the comparative 

experiment. These results indicate that our approach 

outperforms other multi-label learning schemes. 

 

Table 2: Experimental results of REAL on the enron/ medical data set (mean±std). 

Evaluation 

criterion 
Data set 

Dimension of features in each feature subset 

n=5 n=10 n=50 n=100 n=500 

Average Precision↑ 
enron 0.680±0.022 0.693±0.018 0.694±0.021 0.690±0.023 0.652±0.026 

medical 0.886±0.018 0.875±0.039 0.856±0.021 0.833±0.019 0.805±0.018 

Coverage↓ 
enron 0.213±0.016 0.208±0.013 0.211±0.019 0.214±0.019 0.233±0.015 

medical 0.041±0.007 0.050±0.017 0.059±0.019 0.063±0.017 0.064±0.018 

Hamming Loss↓ 
enron 0.050±0.003 0.050±0.002 0.047±0.002 0.048±0.002 0.050±0.003 

medical 0.012±0.001 0.013±0.002 0.017±0.002 0.022±0.001 0.025±0.009 

One-error↓ 
enron 0.249±0.025 0.237±0.035 0.253±0.034 0.247±0.035 0.282±0.049 

medical 0.150±0.035 0.166±0.058 0.170±0.030 0.198±0.021 0.246±0.033 

Ranking Loss↓ 
enron 0.074±0.008 0.071±0.006 0.072±0.008 0.074±0.008 0.085±0.009 

medical 0.028±0.005 0.032±0.015 0.041±0.012 0.044±0.011 0.045±0.013 

 

Table 3: The experimental results of REAL using different filter selection approaches (mean±std) on the enron/ medical data set (50 

features for enron / 5 features for medical). 

Evaluation 

criterion 
Data set 

Filter selection approaches in REAL 

CMIM MIM MRMR MIFS JMI 

Average Precision↑ 
enron 0.694±0.021 0.686±0.022 0.677±0.021 0.648±0.026 0.694±0.013 

medical 0.886±0.018 0.880±0.021 0.884±0.027 0.899±0.031 0.885±0.017 

Coverage↓ 
enron 0.211±0.019 0.214±0.014 0.233±0.027 0.249±0.019 0.213±0.018 

medical 0.041±0.007 0.042±0.010 0.046±0.013 0.045±0.013 0.040±0.009 

Hamming Loss↓ 
enron 0.047±0.002 0.049±0.002 0.049±0.003 0.051±0.002 0.049±0.002 

medical 0.012±0.001 0.012±0.001 0.012±0.001 0.012±0.002 0.012±0.001 

One-error↓ 
enron 0.253±0.034 0.240±0.045 0.254±0.040 0.287±0.037 0.246±0.028 

medical 0.150±0.035 0.162±0.035 0.151±0.045 0.128±0.049 0.153±0.030 

Ranking Loss↓ 
enron 0.072±0.008 0.074±0.007 0.082±0.010 0.090±0.009 0.073±0.007 

medical 0.028±0.005 0.028±0.006 0.030±0.008 0.029±0.010 0.027±0.006 

 

Table 4: The experimental results of each multi-label learning algorithm (mean±std) on the enron/ medical data set. 

Evaluation 

criterion 
Data set 

Algorithm 

REAL ML-kNN BSVM RAkEL ECC 

Average Precision↑ 
enron 0.694±0.021 0.631±0.015 0.591±0.018 0.616±0.028 0.638±0.023 

medical 0.886±0.018 0.806±0.033 0.865±0.042 0.769±0.031 0.872±0.032 

Coverage↓ 
enron 0.211±0.019 0.248±0.014 0.428±0.025 0.474±0.025 0.388±0.023 

medical 0.041±0.007 0.046±0.008 0.046±0.016 0.066±0.016 0.070±0.019 

Hamming Loss↓ 
enron 0.047±0.002 0.052±0.002 0.060±0.002 0.097±0.069 0.056±0.004 

medical 0.012±0.001 0.022±0.001 0.011±0.002 0.036±0.026 0.010±0.002 

One-error↓ 
enron 0.253±0.034 0.305±0.028 0.302±0.037 0.282±0.054 0.226±0.031 

medical 0.150±0.035 0.178±0.026 0.155±0.046 0.307±0.053 0.098±0.031 

Ranking Loss↓ 
enron 0.072±0.008 0.092±0.009 0.180±0.011 0.201±0.016 0.242±0.021 

medical 0.028±0.005 0.038±0.018 0.031±0.013 0.047±0.010 0.099±0.031 

4. Conclusions 

In the present work, feature filters for single-label classifiers 

have been integrated into multi-label learning tasks. The goal is 

to address the bias introduced by the interleaving of original 

features to each group of possible class labels. The novel REAL 

framework, which takes into account the correlations between 

the feature subset and the target class labels, presents a new way 

of handling multi-label learning tasks. The extensive 

comparative results confirm the effectiveness of our scheme.  

However, our proposed mechanism may not be exactly 

suitable for some data sets in which the coincidence degrees are 

high in original features. Except for exploiting the inferred 

correlations, further research on the incorporation of inter-label 

dependences into the REAL framework is needed. In addition, 

we will attempt to mine a rule that can be used to determine the 

optimal number of features in the feature subset corresponding 

to each group of possible class labels. 
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