
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN: 2319-7242

Volume 6 Issue 2 Feb. 2017, Page No. 20383-20387

Index Copernicus Value (2015): 58.10, DOI: 10.18535/ijecs/v6i2.39

Kumudavalli.N, IJECS Volume 6 Issue 2 Feb., 2017 Page No.20383-20387 Page 20383

An Approach for Composing Web Services through OWL
Kumudavalli.N

Mtech Software Engineering
kumudavalli.n@gmail.com

ABSTRACT

The semantic web promises to bring automation to the areas of web service discovery, composition and

invocation. It purports to take the Web to unexplored efficiencies and provide a flexible approach for promoting

all types of activities in tomorrow’s Web. In this paper, we had proposed an ontology-based framework for

composition of Web services. The model is also based on an iterative and incremental scheme meant to better

capture requirements in accordance with service consumers’ needs. OWL-S markup vocabularies and associated

inference mechanism are used and extended as a means to bring semantics to service requests. This framework is

used for exploring interesting Compositions of existing Web services. In this approach we look for similarities

between Web services and this method is followed if we are unaware of specific goal for services. The

framework first screens web services for composition leads based on their service operations.
Index Terms: Semantic Web, Web services,
Service recognition, Service composition,
Ontology, OWL

1. INTRODUCTION

The current trend in software architecture is to build
platform-independent software
Components, called Web services that are available

in the distributed environment of the Internet. The

Web is currently going through a transformation

from a data-centric Web to a Semantic Web

consisting of both self-describable data and Web

services, which are a new type of first class object.

The Web service deployment of previously isolated

applications allows such an application to be

described and published by one organization (i.e.,

service provider), and discovered and invoked later

by other independently developed applications (i.e.,

service Consumers) [1], essentially making these

applications interoperable on the Web. Nowadays,

an increasing amount of companies and

organizations only implement their core business

and outsource other application services over

Internet. Thus, the ability to efficiently and

effectively select and integrate inter-organizational

and Heterogeneous services on the Web at runtime is

an important step towards the development of the

Web service applications. This un-precedent ease of

application integration contributed to the increasing

popularity of Web service composition, which aims

at providing value-added services through

composing existing services. A key characteristics

distinguishing this from traditional Web service

composition approaches as governed by standards

such as WSFLWSFL, XLANG, BPEL4WS,

DAML-S and OWL-S is that it is driven by the

desire to find any unanticipated and

Interesting compositions of existing Web services.

Traditional compositions approaches are usually

goal driven that contain a fixed set of criteria. It then

uses these criteria to search for matching component

Web services. Since the goal provided by the user

already implies what type of compositions the user

anticipates, the evaluation of interested composition

is not a major concern in these approaches. If we

don’t know specific goal then we need to address

how to determine interesting and suitable service

compositions. The simplest approach following this

strategy would be an exhaustive search for

compensability between all Web services. In this

approach we look for similarities between Web

services.

Basic concepts of web services are Web

Services Definition language (WSDL) is an XML-

based language, which specifies a Web service by

defining messages that provide an abstract definition

of the data being transmitted and operations that a

Web service provides to transmit the messages. Four

types of communication are defined involving a

service's operation (endpoint): the endpoint receives

a message (one-way), sends a message the endpoint

receives a message and sends a correlated message

(request-response), and it sends a message and

http://www.ijecs.in/
mailto:kumudavalli.n@gmail.com

DOI: 10.18535/ijecs/v6i2.39

Kumudavalli.N, IJECS Volume 6 Issue 2 Feb., 2017 Page No.20383-20387 Page 20384

receives a correlated message (solicit-

response).Operations are grouped into port types,

which describe abstract end points of a Web service

such as a logical address under which an operation

can be invoked. A WSDL message element defines

the data elements of an operation. XML Schema

syntax is used to define platform independent data

types which messages can use. Each message can

consist of one or more parts. The parts can be

compared to the parameters of a function call in a

traditional programming language. The semantics of

Web services is crucial to enabling automatic service

composition. It is
Important to insure that selected services for

composition offer the “right” features. Such features

may be syntactic (e.g., number of parameters

included in a message sent or received by a

service).They may also be semantic (e.g., the

business functionality offered by a service operation

or the domain of interest of the service).To help

capture Web services’ semantic features; we use the

concept of ontology. An ontology is a shared

conceptualization based on the semantic proximity

of terms in a specific domain of interest[3].Ontology

are increasingly seen as key to enabling semantics-

driven data access and processing .The y are

expected
to play a central role in the Semantic Web, extending

syntactic service interoperability to semantic

interoperability. Issues to be considered while

composing web services are:Composability model

for Web services: A major issue in the composition

of Web services is whether those services are
composable [5]. Composability refers to the process

of checking if Web services to be composed can

actually interact with each other. We propose a

composability model for comparing syntactic and
semantic features of Web services.

Automatic generation of composite services is a

technique to generate composite service descriptions

while preserving the aforementioned composability

rules. The proposed technique uses as input a high-

level specification of the desired composition. This

specification contains the list of operations to be

performed through composition without referring to

any component service.WSDL (Web Services

Description Language) .WSDL is being standardized

within the W3C consortium. Major industry leaders

are supporting and participating in WSDL

development. Hence WSDL will likely gain

considerable momentum as the language for Web

service description. However, WSDL provides little

or no support for semantic description ofthat

describe Web services from a syntactic point of

view. To cater to Semantic Web-enabled Web

services, we extend WSDL with semantic

capabilities. This would lay the groundwork for the

automatic selection and composition of Web

services.
DAML+OIL adopts an object-oriented approach,

describing ontology in terms of classes, properties

and axioms.DAML+OIL builds on earlier Web

ontology standards such as RDF and RDF Schema

and extends those languages with richer modeling

primitives (e.g., cardinality).Other Web ontology

languages such as OWL [3] may also be used to

specify the Web services. It mainly includes

constructs proposed ontology. We model the

proposed ontology using a directed graph. Nodes

represent the ontology’s concepts. Unfilled nodes

refer to WSDL concepts (e.g., name, binding, input).

Gray nodes refer to extended features introduced to

augment WSDL descriptions with semantic

capabilities Edges represent relationships between

the ontology’s concepts. They are labeled with the

cardinality of the corresponding relationship. For

example, the edge service → operation states that a

service has one or more operations. The edge

operation→input states that an operation has at most

one input message. A Web service is defined by

instantiating each ontology concept. We consider

three types of participants in our approach:

providers, composers, and consumers. Providers are

the entities (e.g., credit reporting agency) that offer

simple Web services (e.g., Credit History

service).The provider is responsible for describing

its Web service by assigning a value to each

ontology concept services. Once generated,

composite service descriptions are advertised in a

service registry so that they can be discovered.
2.1 Web Service Ontology
We rely on OWL-S to define our Web services with
WSDL grounding. We refer to
the applicability contained in the OWL-S service
profile as locale in this paper.
To recognize the fact that certain services (e.g.,

payment) may be involved in multiple OWL-S
categories of services (e.g., travel, Healthcare,
legal), we use the concept of domain to group
relevant operations, or more appropriately, operation
interfaces.

Fig. 1 GROUNDING OF OWL WITH WSDL

DOI: 10.18535/ijecs/v6i2.39

Kumudavalli.N, IJECS Volume 6 Issue 2 Feb., 2017 Page No.20383-20387 Page 20385

An operation interface specifies a shared

functionality implemented by operations from

different Web services. A Web service’s

involvement with a domain is reflected by whether it

supplies or consumes an implementation of an

operation interface in such a domain. We assemble a

hierarchy of indices (FIG 1) to existing domain

anthologies to unambiguously categorize the type of

operation inputs and outputs. Requirements for

ontology languages Ontology languages allow users

to write explicit, formal conceptualizations of

domains models. The main requirements are:

1. A well-defined syntax
2. A well-defined semantics
3. Efficient reasoning support
4. Sufficient expressive power
5. Convenience of expression.
The importance of a well-defined syntax is clear and
known from the area of languages it is a necessary
condition for machine-processing of information. All
the languages we have presented so far have a well-
defined syntax. DAML+OIL and OWL build upon
RDF and RDFS and have the same kind of syntax. In
this paper we are selecting OWL for semantic
description of service.

2.1.1 The OWL Language

All this as lead to a set of requirements that may

seem incompatible: efficient reasoning support and

convenience of expression for a language as

powerful as a combination of RDF Schema with a

full logic. Indeed, these requirements have prompted

W3C's Web Ontology Working Group to define

OWL as three different sublanguages, each of which

is geared towards fulfilling different aspects of these

incompatible full set of requirement 1) OWL Full:

The entire language is called OWL Full, and uses all

the OWL languages primitives (which we will

discuss later in this chapter). It also allows

combining these primitives in arbitrary ways with

RDF and RDF Schema. This includes the possibility

(also present in RDF) to change the meaning of the

pre-defined (RDF or OWL) primitives, by applying

the language primitives to each other. For example,

in OWL Full we could impose a cardinality

constraint on the class of all classes, essentially

limiting the number of classes that can be described

in any ontology.

2) OWL DL: In order to regain computational

efficiency, OWL DL (short for: Description Logic)

is a sublanguage of OWL Full which restricts the

way in which the constructors from OWL and RDF

can be used The disadvantage is that we lose full

compatibility with RDF: RDF document will in

general have to be extended in some ways and
restricted in others before it is a legal OWL DL

document. Conversely, every legal OWL DL

document is still a legal RDF document.
3) OWL Lite: An ever further restriction limits
OWL DL to a subset of the language constructors.
For example, OWL Lite excludes enumerated
classes, disjointness statements and arbitrary
cardinality (among others).The advantage of this is a
language that is both easier to grasp (for users)
and easier to implement (for tool builders). The
disadvantage is of course a restricted expressivity.

Ontology developers adopting OWL should

consider which sublanguage best suits their needs.

The choice between OWL Lite and OWL DL

depends on the extent to which users require the

more-expressive constructs provided by OWL DL

and OWL Full. The choice between OWL DL and

OWL Full mainly depends on the extent to which

users require the meta-modeling facilities of RDF

Schema When using OWL Full as compared to

OWL DL, reasoning support is less predictable since

complete OWL Full implementations will be

impossible. OWL syntax is based on XML it

consists of Header, class elements, property

elements, and property restrictions etc which are

used for analysing and composing web services.

Sample owl schema is:
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-
syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf -
schema#"
xmlns:owl
="http://www.w3.org/2010/07/owl#"
xmlns="http://www.mydomain.org/african"
>
<owl:Ontology rdf:about="">
<owl:VersionInfo>
My example version 1.2, 17 October 2010
</owl:VersionInfo>
</owl:Ontology> <owl:Class
rdf:ID="animal">
<rdfs:comment>Animals form a
class</rdfs:comment>
</owl:Class>
<owl:Class rdf:ID="plant">

DOI: 10.18535/ijecs/v6i2.39

Kumudavalli.N, IJECS Volume 6 Issue 2 Feb., 2017 Page No.20383-20387 Page 20386

<rdfs:comment>
Plants form a class disjoint from animals
</rdfs:comment>
<owl:disjointWith="#animal"/> </owl:Class>
<owl:Class rdf:ID="tree"> <rdfs:comment>Trees
are a type of plants</rdfs:comment>
<rdfs:subClassOf rdf:resource="#plant"/>
</owl:Class>
Here class represent classes and class of represents
sub classes and operation represents operations of
services.

3 Recognition and Composition
Much like molecules in the natural world where they
can recognize each other and form bonds in between
[2], Web services and operations can also recognize
each other through both syntax and semantics.
Consequently, they can compose and bring about
potentially interesting behaviours.
We identify two types of recognition are Operation
recognition: direct and indirect recognition
Service recognition: promotion, inhibition. Direct

Recognition: A direct recognition is established
between operations opa and opb, if opa consumes an
operation interface opintf , which is implemented by
opb. In addition, opa and opb must be mode, binding

and message compostable [5].
Indirect Recognition: A target operation opts

indirectly recognizes a source operation ops, if ops

generate some or all input parameters of opt. There

is a potential need to relay parts of the output

message from ops to parts of the input message to

opt at the composition level. A bond is established

between ops and opts for each input parameter opt

can receive from ops. We denote the set of bonds

between ops and opt as B(ops → opt). If we refer to

the set of all operations that opt recognizes as

OPs(→ opt), then Promotion When operation op1 of

service sa produces an entity (i.e., output parameter)

that in turn provides service sb, we say that sa : op1

promotes sb. Inhibition Similarly, when operation

op1 of service sa consumes
an entity (i.e., input parameter) that in turn provides
service sb, we say that sa : op1 inhibits sb
• Exact match: na = nb
• Is-a: na is a child of nb
•Has-a: na has a component nb
We assume that the above relationships among

parameter types are already declared in domain

anthologies and thus can be automatically detected.

Various measures [3] have been proposed to

determine whether two operations are compostable

at both syntactic and semantic levels. These

measures can be used to determine whether a direct

recognition-based composition is actually valid. For

promotion and inhibition based compositions, they

are valid because the entities of interest provide the

corresponding services by declaration. In this

section, we focus on how the validity of an indirect

recognition based composition can be determined in

the verification phase. We denote comp(OPs, opt) as

an operation composition involving a set of source

operations Ops providing input parameters to target

operation opt, where

OPs ⊂ OPs(→ opt). In order for comp(OPs, opt) to be valid. Base on these concepts
we identify similarity between objects.

4 Evaluations:

Not all service compositions discovered during
the earlier phase are necessarily interesting and
useful. The purpose of post screening analysis and

evaluation is to identify those that are truly
interesting and useful. For this we identify
operation similarities and propose new service
compositions from existing this is done by giving

weights to the services. By parsing OWL schema
we do all these things.

5 Conclusions:
In this paper, we proposed a frame work to discover
interesting compositions of existing Web services.
This automatically screen for Web service
compositions. We also presented the concept of
interestingness of these compositions and proposed
objective measures to evaluate it. This is useful to
beginners who wanted to which particular services
come under their requests.

6 REFERENCES

[1] Web Services Architecture—W3C Working
Group Note, http:// www.w3.org/TR/2004/NOTE-
ws-arch-20040211/, Feb. 2004.
[2] Web Service Modeling Ontology,
http://www.wsmo.org/, 2009.
[3]OWL-S: Semantic Markup for Web Services—
W3C Member Submission,
http://www.w3.org/Submission/OWL-S/, Nov.2004
[4] B. Medjahed, A. Bouguettaya, and A.K.
Elmagarmid, “Composing Web Services on the

DOI: 10.18535/ijecs/v6i2.39

Kumudavalli.N, IJECS Volume 6 Issue 2 Feb., 2017 Page No.20383-20387 Page 20387

Semantic Web,” VLDB J., Sept. 2003.
[5]. T. Andrews et al. Business Process Execution
Language for Web Services (BPEL4WS) 1.1.
Online: http://www-106.ibm.com/developer
works/webservices/library/ws-bpel,May 2003.

[6]. W. Abramowicz, K. Haniewicz, M.
Kaczmarek and D. Zyskowski “Architecture for
Web services Filtering and Clustering”, Internet
and Web Applications and Services, (ICIW
'07),May 13-19, 2007, Le Morne, Mauratius.

