
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 6 Issue 10 October 2017, Page No. 22806-22812

Index Copernicus value (2015): 58.10 DOI: 10.18535/ijecs/v6i10.17

Shilpa M. Hanchinal, IJECS Volume 6 Issue 10 October 2017 Page No. 22806-22812 Page 22806

Optimizing Processing of Multiple Queries

Shilpa M. Hanchinal
1
, Rashmi R. Rachh

2

1Visvesvaraya Technological University, Department of Computer Science and Engineering,

Jnana Sangam, Belagavi, India
2 Visvesvaraya Technological University, Department of Computer Science and Engineering,

Jnana Sangam, Belagavi, India

Abstract:

Many modern applications generate data streams which are time-ordered, continuous, and unbounded in

nature and are generated at a rapid rate. Processing these streams requires more memory, the results need to

be generated faster and the incoming data streams can only be viewed once. Traditional algorithms cannot

be used for mining streaming data. Therefore, in this project optimizing processing of multiple queries

(OPMQ) framework is being implemented for simultaneously executing multiple queries according to the

inherent commonalities within. The input data set is converted into different clusters so that the accessing

time of the data is reduced thereby improving the performance of the system. The final executable clusters

are generated using the k-means algorithm which uses Euclidean distance as the heuristic to find the nearest

cluster centroid.

Keywords: Data streams processing, Optimization, Multiple queries

1. Introduction

The awaited arrival of social networking sites,

“Internet of Things” (IoT) and many other recent

technological advancements have led to data

inundate. The incomprehensibly bigger data

volumes and new resources are known as Big Data.

Gathering and storing huge information for analysis

is ages old. Big data has been in use since 1990s and

it is a collection of large datasets which are so

complex that traditional computing techniques

cannot be used to analyze the data. Nowadays, the

quantity of data being created and stored is almost

inconceivable and still it keeps growing. Data sets

are growing apace because they are progressively

collected by inexpensive and many information

detecting IoT devices [1]. It includes information

from various gadgets and applications. Enormous

information has gigantic volume, high speed and

comprises of extensible assortment of information.

But only a small amount of this huge data is useful

for analyzing. Big data may be structured,

unstructured or semi-structured [2].

Big data has benefits in the field of marketing,

medical services, production, education,

government, banking and retail. It faces many

challenges such as capturing the huge volume of

data, organizing and storing it, searching through

and sharing it, transferring, updating, information

privacy, analysis and presentation of the huge

volume [3].

Many modern applications generate data streams.

A data stream is time-ordered, continuous,

unbounded data generated at a rapid rate. Therefore,

processing these streams poses the following

challenges: a data stream can be observed only once,

limited memory space and the processing results

should be generated faster [4]. Hence traditional

algorithms cannot be used for mining streaming

data. Data streaming and processing of the

continuous data streams is playing a vital role in

business and scientific applications. These kinds of

applications require the data to be transmitted

to/from the distributed sources efficiently.

The data sources for the streaming applications

may be large simulators or observatories which

generate megabytes of data per second and the data

aggregated per day amounts to terabytes. This high

volume of data is then transferred to the resource

constrained remote processing nodes. Due to the

storage constraint of these nodes and the huge

amount of data to be processed, it is not a good

practice to store all the data in the respective nodes

before processing it. Therefore, the data streams

need to be processed as and when they arrive i.e., in

a real time manner. The data which is not required

for further analysis is deleted in order to make space

for the new incoming data streams which induces a

http://www.ijecs.in/

DOI: 10.18535/ijecs/v6i10.17

Shilpa M. Hanchinal, IJECS Volume 6 Issue 10 October 2017 Page No. 22806-22812 Page 22807

strong bind between the networking, storage, and

computing resources [5].

Data stream processing systems are used to handle

data bursts, with high speed, by scaling in and out

dynamically. The challenges put forth by these

systems for auto-scaling techniques are unexpected

workload, fast changing workload, and decision

making for individual hosts [6]. The purpose of

query optimization is to find a way to process a

given query in minimal time [7].

With enhanced database capabilities, a single

query may include more than one actual query to be

executed on the database. These multiple queries

share commonalities. The purpose of multi query

optimization is to generate an optimal combined

evaluation plan for the multiple queries by

exploiting their commonalities and also to reduce

the system resources required to execute a query.

Query optimization enables the user to get faster

result set. It also enables the server to run more

efficiently i.e., consume less power, use less

memory etc., by reducing the wear on the hardware

[8].

The rest of the report is organized as follows; the

related work of the multiple queries optimization is

discussed in chapter 2. Chapter 3 presents the design

aspects and requirements of the intended optimizing

processing of multiple queries framework. Chapter 4

provides the implementation details of the

Optimizing Processing of Multiple Queries (OPMQ)

model. Chapter 5 contains the snapshots

representing the results.

2. Literature review

This chapter provides a survey on the existing

systems for multiple queries optimization.

T. Heinze et al. [6] have used a set of four

requirements, namely, workload independence,

adaptivity, configurability, computational feasibility

to select the available auto-scaling methods to be

used in elastic data streaming system. The look-up

table is created when a host is allocated and it is

deleted when the host is released. The reinforcement

learning is modified to take feedback as a negative

penalty to reduce the reward of the action taken. The

prior decisions are learnt using the utilization after

the grace period.

J. Cao et al. [9] have implemented a virtualized

environment for data streaming applications in order

to avoid the limitations of redundancy. A dynamic

resource control method consisting of fuzzy logic

controller and iterative bandwidth allocation is used

for co-scheduling and co-allocating the networking

and computing resources.

Fatma Mohamed et al. [10] have proposed an

optimized query mesh for data streams processing.

In this mesh framework, data streams are processed

over multiple query plans. Each query plan is

suitable for a subset of data with the identical

characteristics.

L. Ding et al. [11] have implemented a semantic

query optimization (SQO) method for dynamically

exploiting the metadata of the incoming substream

in order to determine the best query plan. A load

distribution strategy robust (RLD) to data stream

variations has been proposed by C. Lei et al. [14].

RLD exhibits optimal performance under load

fluctuations.

A. Dou et al. [12] have proposed a suite of

algorithms and index structures that support

different historical online queries on flash-equipped

sensor devices: pattern matching queries, temporally

constrained aggregate queries-aggregate queries

with time restrictions and historical online sampling

queries.

H. Gyu Kim [13] has implemented a different

hash table organization. A hash table is allocated for

a set of incoming data stream tuples arriving for a

window slide interval, instead of the stream source.

Tao Chen et al. [14] have discussed different cases

of sharing amongst the multiple top-k queries. This

sharing is based on the maximum frequency of each

top-k query.

2.1 Issues in existing systems

The issues identified in the existing data stream

processing systems are that these systems depend on

a single plan for executing continuous, unbounded

data which is not reliable with the changing data

streams. Multiple continuous queries are executed

separately without exploiting the commonalities

shared by them ultimately resulting in poor

performance in terms of access time. Non-optimized

environments are used for data streams processing.

2.2 Problem statement

This project aims at providing an integrated

solution for the problems identified in the existing

data streams processing systems through the

Optimizing Processing of Multiple Queries (OPMQ)

model. This model generates multiple query plans

for each query in the multiple queries. It executes

multiple continuous queries simultaneously by

exploiting the commonalities between them. Hadoop

mapreduce programming model is used for efficient

utilization of the available resources.

DOI: 10.18535/ijecs/v6i10.17

Shilpa M. Hanchinal, IJECS Volume 6 Issue 10 October 2017 Page No. 22806-22812 Page 22808

3. System Configuration and Design

3.1 System architecture

Fig. 3.1 shows the architecture diagram of the

Optimizing Processing of Multiple Queries (OPMQ)

framework. It consists of two phases.

Fig. 3.1 Optimizing Processing of Multiple Queries

(OPMQ) framework

 The multiple continuous queries optimization

represents the first phase. In this phase, a set of

training data and many continuous queries are used

as inputs to generate the best segments of the

training data and a global query plan for the input

queries. This phase includes four blocks. They are:

Training tuples partitioning:

 It first produces the initial clusters of the training

data. It generates query plan for each training tuple

and groups them according to their query plans

resulting in the initial clusters. Each initial cluster

consists of the tuples with the same query plan. It

then generates the best clusters using the initial

clusters where each best cluster includes tuples with

the nearest properties.

Best plans per a query generator:

 It yields best multiple plans for each query in the

continuous queries. One plan among the multiple

plans is the best strategy for one cluster in the best

clusters and also the most desirable one for all the

tuples in that cluster.

Queries commonalities extractor:

 It extracts commonalities or common sub-queries

among all the plans generated for the multiple

continuous queries.

Global plan generator:

 It uses the observed commonalities of all the

plans to produce the global plan. And this global

plan can be used to execute multiple queries

simultaneously.

 Executable streams clusters preparation sub-

system represents the second phase. In this phase, a

sub-global plan is assigned for each incoming tuple

and then these tuples are grouped together according

to their assigned sub-global plan. This phase

consists of two blocks. They are:

Tuple’s best plans assigner:

 A nearest best cluster from the best clusters is

assigned for each of the incoming tuple where the

center of the assigned cluster is the nearest center to

this tuple. Each plan in the nearest cluster is the

most suitable plan for one of the multiple queries.

Therefore, each tuple is assigned its most suited plan

using the plans in the nearest cluster.

Global plan’s executable clusters generation:

It generates the final clusters of the incoming

tuples according to the sub-global plans assigned, in

order to execute the global plan of all the multiple

continuous queries.

3.2 System requirements

The minimum system requirements for the OPMQ

framework are: a Core I3 processor with minimum

2.2GHZ, a minimum of 4GB RAM and 10GB

memory, Hadoop file system, Java JDK 1.6 or

above, Linux (Ubuntu, Redhat, Fedora) operating

system.

3.3 Counters used in Hadoop MapReduce

A counter in MapReduce is utilized for gathering

statistical data about each of the MapReduce jobs.

These counters are characterized in a program (Map

or Reduce). Some of the Hadoop counters are:

MAP_INPUT_RECORDS: It represents the total
input records used by all the map tasks in the jobs.

MAP_INPUT_BYTES: It stores the total bytes of
decompressed inputs consumed by all map tasks in
the job. It is increased every time a record is read.

MAP_OUTPUT_MATERIALIZED_BYTES: It
represents the total map output bytes written to disk
(when compression is enabled).

SPILLED_RECORDS: The total records spilled to
disk by the map and reduce tasks in a job.

MAP_OUTPUT_BYTES: Total number of records
produced by all the maps in a job.

CPU_MILLISECONDS: Represents cumulative
CPU time for all tasks (ms).

DOI: 10.18535/ijecs/v6i10.17

Shilpa M. Hanchinal, IJECS Volume 6 Issue 10 October 2017 Page No. 22806-22812 Page 22809

SPLIT_RAW_BYTES: Amount of data consumed
for metadata representation during splits.

REDUCE_INPUT_RECORDS: It represents the
total input records of all the reducers in the job.

REDUCE_INPUT_GROUPS: Total number of
unique keys. Represents the discrete keys processed
by all reducers.

COMBINE_OUTPUT_RECORDS: It stores the total
number of records generated by combiners.

PHYSICAL_MEMORY_BYTES: Total physical
memory used by all tasks including spilled data
(bytes).

REDUCE_OUTPUT_RECORDS: Total number of
records returned by all reducers.

VIRTUAL_MEMORY_BYTES: Total virtual
memory used by all tasks.

MAP_OUTPUT_RECORDS: Total number of
outputs generated by all mappers and is
updated when record is passed to output collector.

FILE_BYTES_READ: Amount of data read from

local storage.

HDFS_BYTES_READ: Amount of data read from

HDFS.

FILE_BYTES_WRITTEN: Amount of data written

to local storage.

HDFS_BYTES_WRITTEN: Amount of data written

to HDFS.

SLOTS_MILLIS_MAPS: It gives total time

consumed by all map tasks in occupied slots (ms).

SLOTS_MILLIS_REDUCES: It stores the time

spent by all reduce tasks in occupied slots (ms).:

BYTES_READ: Amount of data read by every tasks

for every file system.

BYTES_WRITTEN: Amount of data written by

every tasks for every file system.

4. Implementation

The optimization of processing of multiple queries

is implemented using Hadoop, MapReduce, and K-

means algorithm for the sample input data. Hadoop

distributes the large data set across many different

servers which are cost effective and can be executed

in parallel.

K-means clustering is a data-partitioning

algorithm that iteratively assigns the input

observations to exactly one of the k clusters defined

initially. The algorithm outputs k clusters of the

input data points and the centroids of these k

clusters. The centroids can then be used for labeling

the new data. Each centroid is a collection of feature

values which define the resulting groups.

K-means clustering takes as input the data set and

k-the number of clusters. The data set is a collection

of data points. The algorithm starts with the initial

values for the k centroids and then iteratively refines

these values to obtain the final centroid values. The

initial centroids may be generated randomly or

selected from the data set randomly. K-means

iterates between the two steps:

1) Assignment

Each cluster is defined by its centroid. Based on

the Euclidean distance, each data point is allocated

to its nearest centroid. A centroid with minimum

Euclidean distance is the nearest centroid.

2) Update

This step includes refinement of the centroid

values. It is done by taking the mean of all the data

points allocated to the centroids.

The algorithm recomputes the centroid values by

iterating between the above two steps till a

terminating condition is reached. The stopping

measure is the minimized sum of the distances. It

reduces the entire input space into disjoint sub-

spaces.

DOI: 10.18535/ijecs/v6i10.17

Shilpa M. Hanchinal, IJECS Volume 6 Issue 10 October 2017 Page No. 22806-22812 Page 22810

Fig. 4.1 Flow chart of K-means algorithm

The algorithm starts by randomly selecting k.

The sample input data which is in the text format

is first copied from the local storage to the

distributed file system using Hadoop. An output

directory is created to store the results. The map

function computes the Euclidean distance

between the data points and the cluster centroids.

The combine function groups the data points with

identical cluster id. Reduce function groups all

the results together.

The k-means algorithm divides the input data

set into different categories and then these

categories are passed on to the Hadoop. And then

Hadoop mapreduce is used to convert these

categories into clusters where each category is

responsible for maintaining the respective

category that the k-means algorithm optimized.

The final clusters can then be used to segregate

the incoming data into different categories so that

accessing particular data from the big data

becomes easy by only referring to the respective

category instead of searching the entire input

space. Data access time can be reduced by

clustering which leads to enhanced performance

of the system. An execution plan for a job

consists of the following: the map output key for

each job, partitioning of the jobs into distinct

groups and a technique for processing the jobs in

each group.

5. Results

This chapter contains the results of the presented

optimizing processing of multiple queries model in

the form of snapshots.

Fig. 5.1 Status of job one tasks

Fig. 5.2(a) Counters used by the first job

Fig. 5.2(b) Counters used by the first job

DOI: 10.18535/ijecs/v6i10.17

Shilpa M. Hanchinal, IJECS Volume 6 Issue 10 October 2017 Page No. 22806-22812 Page 22811

Fig. 5.3(a) Output showing the examples and

associated clusters

Fig. 5.3(b) Output showing the examples and

associated clusters

Conclusion

In this project, optimizing processing of multiple

queries (OPMQ) framework has been implemented

for simultaneously executing multiple queries

according to the inherent commonalities within. The

input data set is converted into different clusters so

that the accessing time of the data is reduced thereby

improving the performance of the system. The final

executable clusters are generated using the k-means

algorithm which uses Euclidean distance as the

heuristic to find the nearest cluster centroid. In

future, this framework can be integrated with

website applications to provide real-time services

for multiple queries optimization.

References

1. Dedic, N.; Stanier, C. (2017). "Towards

Differentiating Business Intelligence, Big

Data, Data Analytics and Knowledge

Discovery". 285. Berlin; Heidelberg:

Springer International

Publishing. ISSN 1865-

1356. OCLC 909580101.

2. Snijders, C.; Matzat, U.; Reips, U.-D. "'Big

Data': Big gaps of knowledge in the field of

Internet". International Journal of Internet

Science, 2012.

3. Fatma M. Najib, Rasha M. Ismail, et. al,

“Multiple Queries Optimization for Data

Streams on Cloud Computing”, in

proceedings of IEEE conference, pp. 28-33,

2015.

4. J. Cao, W. Zhang and W. Tan, “Dynamic

control of data streaming and processing in a

virtualized environment”, IEEE Transactions

on Automation Science and Engineering,

vol.9, pp. 365 – 376, 2012.

5. T. Heinze, V. Pappalardo, Z. Jerzak and

C.Fetzer, “Auto-scaling techniques for

elastic data stream processing”, in

proceedings of ACM International

Conference on Distributed Event-Based

Systems, pp.318-321, 2014.

6. https://en.wikipedia.org/wiki/Query_optimizat

ion

7. http://www.geeksforgeeks.org/query-

optimization

8. J. Cao, W. Zhang and W. Tan, “Dynamic

control of data streaming and processing in a

virtualized environment”, IEEE Transactions

on Automation Science and Engineering,

vol.9, pp. 365 – 376, 2012.

9. Fatma Mohamed, Rasha Ismail, Nagwa Badr,

Mohamed Fahmy Tolba, “Efficient

optimized query mesh for data streams”, in

Proceedings of the 9th IEEE International

Conference on Computer Engineering &

Systems (ICCES), pp. 157 – 163, 2014.

10. L. Ding, K. Works and E. A. Rundensteine,

“Semantic stream query optimization

exploiting dynamic metadata”, in

Proceedings of IEEE Conference on Data

Engineering (ICDE), pp. 111 – 122, 2011.

11. A. Dou, S. Lin, V. Kalogerak and D.

Gunopulos, “Supporting historic queries in

sensor networks with flash storage”, Journal

of Information Systems, vol. 39, pp. 217-232,

2014. https://en.wikipedia.org/wiki/Big_data

https://en.wikipedia.org/wiki/International_Standard_Serial_Number
https://www.worldcat.org/issn/1865-1356
https://www.worldcat.org/issn/1865-1356
https://en.wikipedia.org/wiki/OCLC
https://www.worldcat.org/oclc/909580101
http://www.ijis.net/ijis7_1/ijis7_1_editorial.html
http://www.ijis.net/ijis7_1/ijis7_1_editorial.html
http://www.ijis.net/ijis7_1/ijis7_1_editorial.html
https://en.wikipedia.org/wiki/Query_optimization
https://en.wikipedia.org/wiki/Query_optimization
http://www.geeksforgeeks.org/query-optimization
http://www.geeksforgeeks.org/query-optimization
https://en.wikipedia.org/wiki/Big_data

DOI: 10.18535/ijecs/v6i10.17

Shilpa M. Hanchinal, IJECS Volume 6 Issue 10 October 2017 Page No. 22806-22812 Page 22812

12. H. Gyu Kim, “A Structure for sliding

window equijoins in data stream

processing”, in Proceedings of IEEE

International Conference on Computational

Science and Engineering (CSE), pp. 100 –

103, 2013.

13. Tao Chen, Lei Chen , M.Tamer O¨zsu,

Fellow, Nong Xiao, “Optimizing multi-top-k

Queries over uncertain data streams”, IEEE

Transactions on Knowledge and Data

Engineering (TKDE) , vol. 25, no. 8, 20

