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Abstract:  

Many modern applications generate data streams which are time-ordered, continuous, and unbounded in 

nature and are generated at a rapid rate. Processing these streams requires more memory, the results need to 

be generated faster and the incoming data streams can only be viewed once. Traditional algorithms cannot 

be used for mining streaming data. Therefore, in this project optimizing processing of multiple queries 

(OPMQ) framework is being implemented for simultaneously executing multiple queries according to the 

inherent commonalities within. The input data set is converted into different clusters so that the accessing 

time of the data is reduced thereby improving the performance of the system. The final executable clusters 

are generated using the k-means algorithm which uses Euclidean distance as the heuristic to find the nearest 

cluster centroid. 
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1. Introduction 

The awaited arrival of social networking sites, 

“Internet of Things” (IoT) and many other recent 

technological advancements have led to data 

inundate. The incomprehensibly bigger data 

volumes and new resources are known as Big Data. 

Gathering and storing huge information for analysis 

is ages old. Big data has been in use since 1990s and 

it is a collection of large datasets which are so 

complex that traditional computing techniques 

cannot be used to analyze the data. Nowadays, the 

quantity of data being created and stored is almost 

inconceivable and still it keeps growing. Data sets 

are growing apace because they are progressively 

collected by inexpensive and many information 

detecting IoT devices [1]. It includes information 

from various gadgets and applications. Enormous 

information has gigantic volume, high speed and 

comprises of extensible assortment of information. 

But only a small amount of this huge data is useful 

for analyzing. Big data may be structured, 

unstructured or semi-structured [2]. 

Big data has benefits in the field of marketing, 

medical services, production, education, 

government, banking and retail. It faces many 

challenges such as capturing the huge volume of 

data, organizing and storing it, searching through 

and sharing it, transferring, updating, information 

privacy, analysis and presentation of the huge 

volume [3]. 

Many modern applications generate data streams. 

A data stream is time-ordered, continuous, 

unbounded data generated at a rapid rate. Therefore, 

processing these streams poses the following 

challenges: a data stream can be observed only once, 

limited memory space and the processing results 

should be generated faster [4]. Hence traditional 

algorithms cannot be used for mining streaming 

data. Data streaming and processing of the 

continuous data streams is playing a vital role in 

business and scientific applications. These kinds of 

applications require the data to be transmitted 

to/from the distributed sources efficiently. 

The data sources for the streaming applications 

may be large simulators or observatories which 

generate megabytes of data per second and the data 

aggregated per day amounts to terabytes. This high 

volume of data is then transferred to the resource 

constrained remote processing nodes. Due to the 

storage constraint of these nodes and the huge 

amount of data to be processed, it is not a good 

practice to store all the data in the respective nodes 

before processing it. Therefore, the data streams 

need to be processed as and when they arrive i.e., in 

a real time manner. The data which is not required 

for further analysis is deleted in order to make space 

for the new incoming data streams which induces a 
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strong bind between the networking, storage, and 

computing resources [5]. 

Data stream processing systems are used to handle 

data bursts, with high speed, by scaling in and out 

dynamically. The challenges put forth by these 

systems for auto-scaling techniques are unexpected 

workload, fast changing workload, and decision 

making for individual hosts [6]. The purpose of 

query optimization is to find a way to process a 

given query in minimal time [7]. 

With enhanced database capabilities, a single 

query may include more than one actual query to be 

executed on the database. These multiple queries 

share commonalities. The purpose of multi query 

optimization is to generate an optimal combined 

evaluation plan for the multiple queries by 

exploiting their commonalities and also to reduce 

the system resources required to execute a query. 

Query optimization enables the user to get faster 

result set. It also enables the server to run more 

efficiently i.e., consume less power, use less 

memory etc., by reducing the wear on the hardware 

[8]. 

The rest of the report is organized as follows; the 

related work of the multiple queries optimization is 

discussed in chapter 2. Chapter 3 presents the design 

aspects and requirements of the intended optimizing 

processing of multiple queries framework. Chapter 4 

provides the implementation details of the 

Optimizing Processing of Multiple Queries (OPMQ) 

model. Chapter 5 contains the snapshots 

representing the results. 

2.  Literature review 

This chapter provides a survey on the existing 

systems for multiple queries optimization. 

T. Heinze et al. [6] have used a set of four 

requirements, namely, workload independence, 

adaptivity, configurability, computational feasibility 

to select the available auto-scaling methods to be 

used in elastic data streaming system. The look-up 

table is created when a host is allocated and it is 

deleted when the host is released. The reinforcement 

learning is modified to take feedback as a negative 

penalty to reduce the reward of the action taken. The 

prior decisions are learnt using the utilization after 

the grace period. 

J. Cao et al. [9] have implemented a virtualized 

environment for data streaming applications in order 

to avoid the limitations of redundancy. A dynamic 

resource control method consisting of fuzzy logic 

controller and iterative bandwidth allocation is used 

for co-scheduling and co-allocating the networking 

and computing resources. 

Fatma Mohamed et al. [10] have proposed an 

optimized query mesh for data streams processing. 

In this mesh framework, data streams are processed 

over multiple query plans. Each query plan is 

suitable for a subset of data with the identical 

characteristics. 

L. Ding et al. [11] have implemented a semantic 

query optimization (SQO) method for dynamically 

exploiting the metadata of the incoming substream 

in order to determine the best query plan. A load 

distribution strategy robust (RLD) to data stream 

variations has been proposed by C. Lei et al. [14]. 

RLD exhibits optimal performance under load 

fluctuations.  

A. Dou et al. [12] have proposed a suite of 

algorithms and index structures that support 

different historical online queries on flash-equipped 

sensor devices: pattern matching queries, temporally 

constrained aggregate queries-aggregate queries 

with time restrictions and historical online sampling 

queries.  

H. Gyu Kim [13] has implemented a different 

hash table organization. A hash table is allocated for 

a set of incoming data stream tuples arriving for a 

window slide interval, instead of the stream source. 

Tao Chen et al. [14] have discussed different cases 

of sharing amongst the multiple top-k queries. This 

sharing is based on the maximum frequency of each 

top-k query. 

2.1 Issues in existing systems 

The issues identified in the existing data stream 

processing systems are that these systems depend on 

a single plan for executing continuous, unbounded 

data which is not reliable with the changing data 

streams. Multiple continuous queries are executed 

separately without exploiting the commonalities 

shared by them ultimately resulting in poor 

performance in terms of access time. Non-optimized 

environments are used for data streams processing. 

2.2 Problem statement 

This project aims at providing an integrated 

solution for the problems identified in the existing 

data streams processing systems through the 

Optimizing Processing of Multiple Queries (OPMQ) 

model. This model generates multiple query plans 

for each query in the multiple queries. It executes 

multiple continuous queries simultaneously by 

exploiting the commonalities between them. Hadoop 

mapreduce programming model is used for efficient 

utilization of the available resources. 



DOI: 10.18535/ijecs/v6i10.17 
 

Shilpa M. Hanchinal, IJECS Volume 6 Issue 10 October 2017 Page No. 22806-22812 Page 22808 

3. System Configuration and Design 

3.1 System architecture 

Fig. 3.1 shows the architecture diagram of the 

Optimizing Processing of Multiple Queries (OPMQ) 

framework. It consists of two phases.  

 

 
Fig. 3.1 Optimizing Processing of Multiple Queries 

(OPMQ) framework 

 

    The multiple continuous queries optimization 

represents the first phase. In this phase, a set of 

training data and many continuous queries are used 

as inputs to generate the best segments of the 

training data and a global query plan for the input 

queries. This phase includes four blocks. They are: 

 

Training tuples partitioning: 

 It first produces the initial clusters of the training 

data. It generates query plan for each training tuple 

and groups them according to their query plans 

resulting in the initial clusters. Each initial cluster 

consists of the tuples with the same query plan. It 

then generates the best clusters using the initial 

clusters where each best cluster includes tuples with 

the nearest properties. 

 

Best plans per a query generator: 

 It yields best multiple plans for each query in the 

continuous queries. One plan among the multiple 

plans is the best strategy for one cluster in the best 

clusters and also the most desirable one for all the 

tuples in that cluster. 

 

Queries commonalities extractor: 

 It extracts commonalities or common sub-queries 

among all the plans generated for the multiple 

continuous queries. 

 

Global plan generator: 

    It uses the observed commonalities of all the 

plans to produce the global plan. And this global 

plan can be used to execute multiple queries 

simultaneously. 

    Executable streams clusters preparation sub-

system represents the second phase. In this phase, a 

sub-global plan is assigned for each incoming tuple 

and then these tuples are grouped together according 

to their assigned sub-global plan. This phase 

consists of two blocks. They are: 

 

Tuple’s best plans assigner: 

    A nearest best cluster from the best clusters is 

assigned for each of the incoming tuple where the 

center of the assigned cluster is the nearest center to 

this tuple. Each plan in the nearest cluster is the 

most suitable plan for one of the multiple queries. 

Therefore, each tuple is assigned its most suited plan 

using the plans in the nearest cluster. 

 

Global plan’s executable clusters generation: 

It generates the final clusters of the incoming 

tuples according to the sub-global plans assigned, in 

order to execute the global plan of all the multiple 

continuous queries. 

3.2 System requirements 

The minimum system requirements for the OPMQ 

framework are: a Core I3 processor with minimum 

2.2GHZ, a minimum of 4GB RAM and 10GB 

memory, Hadoop file system, Java JDK 1.6 or 

above, Linux (Ubuntu, Redhat, Fedora) operating 

system. 

3.3 Counters used in Hadoop MapReduce 

A counter in MapReduce is utilized for gathering 

statistical data about each of the MapReduce jobs. 

These counters are characterized in a program (Map 

or Reduce). Some of the Hadoop counters are: 

 
MAP_INPUT_RECORDS: It represents the total 
input records used by all the map tasks in the jobs. 

MAP_INPUT_BYTES: It stores the total bytes of 
decompressed inputs consumed by all map tasks in 
the job. It is increased every time a record is read. 

MAP_OUTPUT_MATERIALIZED_BYTES: It 
represents the total map output bytes written to disk 
(when compression is enabled). 

SPILLED_RECORDS: The total records spilled to 
disk by the map and reduce tasks in a job. 

MAP_OUTPUT_BYTES: Total number of records 
produced by all the maps in a job. 

CPU_MILLISECONDS: Represents cumulative 
CPU time for all tasks (ms). 
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SPLIT_RAW_BYTES: Amount of data consumed 
for metadata representation during splits. 

REDUCE_INPUT_RECORDS: It represents the 
total input records of all the reducers in the job.  

REDUCE_INPUT_GROUPS: Total number of 
unique keys. Represents the discrete keys processed 
by all reducers. 

COMBINE_OUTPUT_RECORDS: It stores the total 
number of records generated by combiners. 

PHYSICAL_MEMORY_BYTES: Total physical 
memory used by all tasks including spilled data 
(bytes). 

REDUCE_OUTPUT_RECORDS: Total number of 
records returned by all reducers. 

VIRTUAL_MEMORY_BYTES: Total virtual 
memory used by all tasks. 

MAP_OUTPUT_RECORDS: Total number of 
outputs                 generated by all mappers and is 
updated when  record is passed to output collector. 

FILE_BYTES_READ: Amount of data read from 

local storage. 

 

HDFS_BYTES_READ: Amount of data read from 

HDFS. 

 

FILE_BYTES_WRITTEN: Amount of data written 

to local storage. 

 

HDFS_BYTES_WRITTEN: Amount of data written 

to HDFS. 

 

SLOTS_MILLIS_MAPS: It gives total time 

consumed by all map tasks in occupied slots (ms). 

 

SLOTS_MILLIS_REDUCES: It stores the time 

spent by all reduce tasks in occupied slots (ms).: 

 

BYTES_READ: Amount of data read by every tasks 

for every file system. 

 

BYTES_WRITTEN: Amount of data written by 

every tasks for every file system. 

4. Implementation 

The optimization of processing of multiple queries 

is implemented using Hadoop, MapReduce, and K-

means algorithm for the sample input data. Hadoop 

distributes the large data set across many different 

servers which are cost effective and can be executed 

in parallel. 

K-means clustering is a data-partitioning 

algorithm that iteratively assigns the input 

observations to exactly one of the k clusters defined 

initially. The algorithm outputs k clusters of the 

input data points and the centroids of these k 

clusters. The centroids can then be used for labeling 

the new data. Each centroid is a collection of feature 

values which define the resulting groups. 

 

K-means clustering takes as input the data set and 

k-the number of clusters. The data set is a collection 

of data points. The algorithm starts with the initial 

values for the k centroids and then iteratively refines 

these values to obtain the final centroid values. The 

initial centroids may be generated randomly or 

selected from the data set randomly. K-means 

iterates between the two steps: 

1) Assignment 

Each cluster is defined by its centroid. Based on 

the Euclidean distance, each data point is allocated 

to its nearest centroid. A centroid with minimum 

Euclidean distance is the nearest centroid. 

 

2) Update 

This step includes refinement of the centroid 

values. It is done by taking the mean of all the data 

points allocated to the centroids. 

The algorithm recomputes the centroid values by 

iterating between the above two steps till a 

terminating condition is reached. The stopping 

measure is the minimized sum of the distances. It 

reduces the entire input space into disjoint sub-

spaces. 
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Fig. 4.1 Flow chart of K-means algorithm 

 

The algorithm starts by randomly selecting k. 

The sample input data which is in the text format 

is first copied from the local storage to the 

distributed file system using Hadoop. An output 

directory is created to store the results. The map 

function computes the Euclidean distance 

between the data points and the cluster centroids. 

The combine function groups the data points with 

identical cluster id. Reduce function groups all 

the results together. 

 

The k-means algorithm divides the input data 

set into different categories and then these 

categories are passed on to the Hadoop. And then 

Hadoop mapreduce is used to convert these 

categories into clusters where each category is 

responsible for maintaining the respective 

category that the k-means algorithm optimized. 

The final clusters can then be used to segregate 

the incoming data into different categories so that 

accessing particular data from the big data 

becomes easy by only referring to the respective 

category instead of searching the entire input 

space. Data access time can be reduced by 

clustering which leads to enhanced performance 

of the system. An execution plan for a job 

consists of the following: the map output key for 

each job, partitioning of the jobs into distinct 

groups and a technique for processing the jobs in 

each group.  

5. Results 

This chapter contains the results of the presented 

optimizing processing of multiple queries model in 

the form of snapshots. 

 

 
Fig. 5.1 Status of job one tasks 

 

 

 
Fig. 5.2(a) Counters used by the first job 

 

 

 
Fig. 5.2(b) Counters used by the first job 
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Fig. 5.3(a) Output showing the examples and 

associated clusters 

 

 
Fig. 5.3(b) Output showing the examples and 

associated clusters 

Conclusion 

In this project, optimizing processing of multiple 

queries (OPMQ) framework has been implemented 

for simultaneously executing multiple queries 

according to the inherent commonalities within. The 

input data set is converted into different clusters so 

that the accessing time of the data is reduced thereby 

improving the performance of the system. The final 

executable clusters are generated using the k-means 

algorithm which uses Euclidean distance as the 

heuristic to find the nearest cluster centroid. In 

future, this framework can be integrated with 

website applications to provide real-time services 

for multiple queries optimization. 
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