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Abstract— There are different methods to process duplicate detection in databases, but to process the data quickly at the same time 

maintaining the quality of database become difficult. In this paper PB and PSNM algorithms are presented to improve the efficiency of 

duplicate data detection in databases keeping the time to a shorter level.   
 
Index Terms — Data Cleaning, Blocking, Data Integrity Process, Duplicate Records. 

 
1. INTRODUCTION 
 
Data are among the most important assets of a company. But 

due to data changes and sloppy data entry, errors such as 

duplicate entries might occur, making data cleansing and in 

particular duplicate detection indispensable. However, the 

pure size of today’s datasets renders duplicate detection 

processes expensive. Online retailers, for example, offer 

huge catalogs comprising a constantly growing set of items 

from many different suppliers. As independent persons 

change the product portfolio, duplicates arise. Although 

there is an obvious need for de duplication, online shops 

without downtime cannot afford traditional de duplication. 

Progressive duplicate detection identifies most duplicate 

pairs early in the detection process. Instead of reducing the 

overall time needed to finish the entire process, progressive 

approaches try to reduce the average time after which a 

duplicate is found. Early termination, in particular, then 

yields more completes results on a progressive algorithm 

than on any traditional approach. 
Databases play an important role in today's IT based 

economy. Many industries and systems depend on the 

accuracy of databases to carry out operations. Therefore, the 

quality of the information stored in the databases, can have 

significant cost implications to a system that relies on 

information to function and conduct business. In an error-

free system with perfectly clean data, the construction of a 

comprehensive view of the data consists of linking --in 

relational terms, joining-- two or more tables on their key 

fields. Unfortunately, data often lack a unique, global 

identifier that would permit such an operation. Furthermore, 

the data are neither carefully controlled for quality nor 

defined in a consistent way across different data sources. 

Thus, data quality is often compromised by many factors, 

including data entry errors (e.g.,studet instead of student), 

missing integrity constraints (e.g., allowing entries such as 

Employee Age=567), and multiple conventions for recording 

information.  

 

2. RELATED WORK 

 

Steven Euijong Whang, David Marmaros, [1] Entity 

resolution (ER) is the problem of identifying which records 

in a database refer to the same entity. In practice, many 

applications need to resolve large data sets efficiently, but do 

not require the ER result to be exact. For example, people 

data from the Web may simply be too large to completely 

resolve with a reasonable amount of work. As another 

example, real-time applications may not be able to tolerate 

any ER processing that takes longer than a certain amount of 

time. This paper investigates how we can maximize the 

progress of ER with a limited amount of work using “hints,” 

which give information on recor ds that are likely to refer to 

the same real-world entity. A hint can be represented in 

various formats, and ER can use this information as a 

guideline for which records to compare first. We introduce a 

family of techniques for constructing hints efficiently and 

techniques for using the hints to maximize the number of 

matching records identified using a limited amount of work. 

Using real data sets, we illustrate the potential gains of our 

pay-as-you-go approach compared to running ER without 

using hints. An ER process is often extremely expensive due 

to very large data sets and compute-intensive record 

comparisons. 

The proposed a pay-as-you-go approach for Entity 

Resolution (ER) where given a limit in resources (e.g., work, 

runtime) we attempt to make the maximum progress 

possible. In [8] the World Wide Web is witnessing an 

increase in the amount of structured content – vast 

heterogeneous collections of structured data are on the rise 

due to the Deep Web, annotation schemes like Flickr, and 

sites like Google Base. While this phenomenon is creating an 

opportunity for structured data management, dealing with 

heterogeneity on the web-scale presents many new 

challenges. In this paper, we highlight these challenges in 

two scenarios – the Deep Web and Google Base.  

 

We contend that traditional data integration techniques are 

no longer valid in the face of such heterogeneity and scale. 

We propose new data integration architecture, PAYGO, 

which is inspired by the concept of data spaces and 

emphasizes pay-as-you-go data management as means for 

achieving web-scale data integration. 

[10] Similarity join is a useful primitive operation underlying 

many applications, such as near duplicate Web page 

detection, data integration, and pattern recognition. 

Traditional similarity joins require a user to specify a 
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similarity threshold. In this paper, we study a variant of the 

similarity join, termed top-k set similarity join. It returns the 

top-k pairs of records ranked by their similarities, thus 

eliminating the guess work users have to perform when the 

similarity threshold is unknown. An algorithm, top k-join, is 

proposed to answer top-k similarity join efficiently. It is 

based on the prefix filtering principle and employs tight 

upper bounding of similarity values of unseen pairs. 

Experimental results demonstrate the efficiency of the 

proposed algorithm on large-scale real datasets. Given a 

similarity function, a similarity join between two sets of 

records returns pairs of records from two sets such that their 

similarities are no less than a given threshold. In this paper, 

we study the problem of answering similarity join queries to 

retrieve top-k pairs of records ranked by their similarities. 

Existing approaches for the traditional similarity joins with a 

given threshold will have to make guesses on the similarity 

threshold and incur much redundant calculation. We propose 

an efficient algorithm that computes the answers in a 

progressive manner. 

[2] Ahmed K. Elmagarmid, Panagiotis G.Ipeirotis, Vassilios 

S.Verykios often, in the real world, entities have two or more 

representations in databases. Duplicate records do not share a 

common key and/or they contain errors that make duplicate 

matching a difficult task. Errors are introduced as the result 

of transcription errors, incomplete information, lack of 

standard formats, or any combination of these factors. In this 

paper, we present a thorough analysis of the literature on 

duplicate record detection. We cover similarity metrics that 

are commonly used to detect similar field entries, and we 

present an extensive set of duplicate detection algorithms 

that can detect approximately duplicate records in a database. 

We also cover multiple techniques for improving the 

efficiency and scalability of approximate duplicate detection 

algorithms. We conclude with coverage of existing tools and 

with a brief discussion of the big open problems in the area. 

The problem that we study has been known for more than 

five decades as the record linkage or the record matching 

problem in the statistics community. The goal of record 

matching is to identify records in the same or different 

databases that refer to the same real-world entity, even if the 

records are not identical. 

In paper [9] Duplicate detection is the task of identifying all 

groups of records within a data set that represent the same 

real-world entity, respectively.  

This task is difficult, because (i) representations might differ 

slightly, so some similarity measure must be defined to 

compare pairs of records and (ii) data sets might have a high 

volume making a pair-wise comparison of all records 

infeasible. To tackle the second problem, many algorithms 

have been suggested that partition the data set and compare 

all record pairs only within each partition. One well-known 

such approach is the Sorted Neighborhood Method (SNM), 

which sorts the data according to some key and then 

advances a window over the data comparing only records 

that appear within the same window. 

 

3. PSNM ALGORITHM 

 

Algorithm 1 depicts our implementation of PSNM. The 

algorithm takes five input parameters: D is a reference to the 

data, which has not been loaded from disk yet. The sorting 

key K defines the attribute or attribute combination that 

should be used in the sorting step. W specifies the maximum 

window size, which corresponds to the window size of the 

traditional sorted neighborhood method. When using early 

termination, this parameter can be set to an optimistically 

high default value.  

Parameter I defines the enlargement interval for the 

progressive iterations. For now, assume it has the default 

value 1. The last parameter N specifies the number of records 

in the data-set. This number can be gleaned in the sorting 

step, but we list it as a parameter for presentation purposes. 

 

3.1 Algorithm: 

 

Progressive Sorted Neighborhood Require: dataset reference 

D, sorting key K, window size W, enlargement interval size 

I, number of records N  

 

Step 1: procedure PSNM(D, K, W, I, N)  

Step 2: pSize calcPartitionSize(D)  

Step 3: pNum  [N/pSize-W + 1)]  

Step 4: array order size N as Integer  

Step 5: array recs size pSize as Record  

Step 6: order sortProgressive(D, K, I, pSize, pNum)  

Step 7: for currentI  2 todW=Iedo  

Step 8: for currentP  1 to pNum do  

Step 9: recs  loadPartition(D, currentP) 

Step 10: for dist belongs to range(currentI, I, W) do  

Step 11: for i  0 to |recs|_ dist do 

Step 12: pair <recs[i], recs[i + dist]> 

Step 13: if compare(pair) then  

Step 14: emit(pair)  

Step 15: lookAhead(pair) 

 

In many practical scenarios, the entire dataset will not fit in 

main memory. To address this, PSNM operates on a partition 
of the dataset at a time.  

The PSNM algorithm calculates an appropriate partition size 

pSize, i.e., the maximum number of records that fit in 
memory, using the pessimistic sampling function 

calcPartitionSize(D) in Line 2: If the data is read from a 
database, the function can calculate the size of a record from 

the data types and match this to the available main memory. 
Otherwise, it takes a sample of records and estimates the size 

of a record with the largest values for each field. In Line 3, 

the algorithm calculates the number of necessary partitions 
pNum, while considering a partition overlap of W _ 1 

records to slide the window across their boundaries. Line 4 
defines the order-array, which stores the order of records 

with regard to the given key K. By storing only record IDs in 

this array, we assume that it can be kept in memory. To hold 
the actual records of a current partition, PSNM declares the 

recs-array in Line 5. 

In Line 6, PSNM sorts the dataset D by key K. The sorting is 

done by applying our progressive sorting algorithm Magpie, 

which we explain in Section 3.2. After-wards, PSNM 

linearly increases the window size from 2 to the maximum 

window size W in steps of I (Line 7). In this way, promising 

close neighbors are selected first and less promising far-away 

neighbors later on. For each of these progressive iterations, 

PSNM reads the entire dataset once. Since the load process is 

done partition-wise, PSNM sequentially iterates (Line 8) and 

loads (Line 9) all partitions. To process a loaded partition, 
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PSNM first iterates overall record rank-distances dist that are 

within the current window interval currentI. For I ¼ 1 this is 

only one distance, namely the record rank-distance of the 

cur-rent main-iteration. In Line 11, PSNM then iterates all 

records in the current partition to compare them to their dist 

neighbor. The comparison is executed using the com-

pare(pair) function in Line 13. If this function returns “true”, 

a duplicate has been found and can be emitted. Furthermore, 

PSNM evokes the lookAhead(pair) method, which we 

explain later, to progressively search for more duplicates in 

the current neighborhood. If not terminated early by the user, 

PSNM finishes when all intervals have been processed and 

the maximum window size W has been reached. 

 

4. PROGRESSIVE BLOCKING ALGORITHM 

 

Progressive blocking is a novel approach that builds upon an 

equidistant blocking technique and the successive 

enlargement of blocks. Like PSNM, it also pre-sorts the 

records to use their rank-distance in this sorting for similarity 

estimation. Based on the sorting, PB first creates and then 

progressively extends a fine-grained blocking. These block 

extensions are specifically executed on neighborhoods 

around already identified duplicates, which enables PB to 

expose clusters earlier than PSNM. 

The algorithm accepts five input parameters: The dataset 

reference D specifies the dataset to be cleaned and the key 

attribute or key attribute combination K defines the sorting. 

The parameter R limits the maximum block range, which is 

the maxi-mum rank-distance of two blocks in a block pair, 

and S specifies the size of the blocks.  

We discuss appropriate values for R and S in the next 

section. Finally, N is the size of the input dataset. 

 

4.1 PB Algorithm: 

 

Progressive Blocking Require: dataset reference D, key 
attribute K, maximum block range R, block size S and record 
number N 
 

Step 1: procedure PB(D, K, R, S, N) 
Step 2: pSize  calcPartitionSize(D) 

Step 3: bPerP  [pSize/S] 

Step 4: bNum  [N/S] 

Step 5: pNum  [bNum/bPerP] 

Step 6: array order size N as Integer 
Step 7: array blocks size bPerP as <Integer; Record[]> 
Step 8: priority queue bPairs as <Integer; Integer; Integer> 
Step 9: bPairs {<1,1,->, . . . ,<bNum, bNum,->} 
Step 10: order sortProgressive(D, K, S, bPerP, bPairs) 
Step 11: for i 0 to pNum - 1 do 

Step 12: pBPs  get(bPairs, i . bPerP, (i+1) . bPerP) 

Step 13: blocks  loadBlocks(pBPs, S, order) 

Step 14: compare(blocks, pBPs, order) 
Step 15: while bPairs is not empty do 
Step 16: pBPs {} 

Step 17: bestBPs takeBest([bPerP/4], bPairs, R) 

Step 18: for bestBP belongs to bestBPs do 
Step 19: if bestBP[1] _ bestBP[0] < R then 
 Step 20: pBPs pBPs U extend(bestBP) 

Step 21: blocks loadBlocks(pBPs, S, order) 

Step 22: compare(blocks, pBPs, order) 
Step 23: bPairs bPairs U pBPs 

 Step 24: procedure compare(blocks, pBPs, order) 
Step 25: for pBP belongs to pBPs do 
 Step 26: <dPairs,cNum> comp(pBP, blocks, order) 
Step 27: emit(dPairs) 
Step 28: pBP[2] |dPairs|/ cNum 

 

At first, PB calculates the number of records per partition 

pSize by using a pessimistic sampling function in Line 2. 

The algorithm also calculates the number of loadable blocks 

per partition bPerP, the total number of blocks bNum, and 

the total number of partitions pNum. In the Lines 6 to 8, PB 

then defines the three main data structures: the order-array, 

which stores the ordered list of record IDs, the blocks-array, 

which holds the current partition of blocked records, and the 

bPairs-list, which stores all recently evaluated block pairs. 

Thereby, a block pair is represented as a triple of hblockNr1; 

blockNr2; duplicatesPerComparisoni. We implemented the 

bPairs-list as a priority queue, because the algorithm 

frequently reads the top elements from this list.  

In the following Line 10, the PB algorithm sorts the dataset 

using the progressive MagpieSort algorithm. Afterwards, the 

Lines 11 to 14 load all blocks partition-wise from disk to 

execute the comparisons within each block. After the 

preprocessing, the PB algorithm starts progressively 

extending the most promising block pairs (Lines 15 to 23). In 

each loop, PB first takes those block pairs bestBPs from the 

bPairs list that reported the highest duplicate density. 

Thereby, at most bPerP=4 block pairs can be taken, because 

the algorithm needs to load two blocks per bestBP and each 

extension of a bestBP delivers two partition block pairs pBPs 

in Line 20. However, if such an extension exceeds the 

maximum block range R, the last bestBP is discarded. 

Having successfully defined the most promising block pairs, 

Line 21 loads the corresponding blocks from disk to compare 

the pBPs in Line 22. The compare(blocks, pBPs, order)-

procedure is listed in Lines 24 to 28. For all partition block 

pairs pBP, the procedure compares each record of the first 

block to all records of the second block. The identified 

duplicate pairs dPairs are then emitted in Line 27. 

Furthermore, Line 28 assigns the duplicate pairs to the 

current pBP to later rank the duplicate density of this block 

pair with the density in other block pairs. Thereby, the 

amount of duplicates is normalized by the number of 

comparisons, because the last block is usually smaller than 

all other blocks. In Line 23, the algorithm adds the 

previously compared pBPs to the bPairs-list to use them in 

the next progressive iteration. If the PB algorithm is not 

terminated prematurely, it automatically finishes when the 

list of bPairs is empty, e.g., no new block pairs within the 

maximum block range R can be found. 

 

5. EXPERIMENTAL RESULTS: 

 

We consider restaurant information from an internal 

operational data warehouse an d introduce errors. Because 

we start from real data all characteristics of real data: 

variations in the lengths of strings, numbers of tokens in and 
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frequencies of attribute values, co-occurrence patterns, etc. 

are preserved. Since, we know the duplicate tuples and their 

correct counterparts in the erroneous dataset; we can evaluate 

duplicate elimination algorithms. The execution bottleneck 

for duplicate detection is commonly the attribute correlation 

with likeness measures between the record sets which is 

quite expensive one. To dodge this restrictively expensive 

analysis of all sets of records, a basic method is to precisely 

segment the records into smaller subsets and quest for copies 

just inside of these allotments. Two contending 

methodologies are regularly referred to: Blocking techniques 

allotment records into disjoint subsets, for occurrence 

utilizing zip code as apportioning key. Sorted-neighborhood 

based strategies that sort the information as per some key, for 

example, last name, and afterward slide a window of altered 

size over the sorted information and look at sets just inside of 

the window. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Based on the effectiveness metric for our proposed 

work with existing work. 

 

6. CONCLUSION 

 

This paper introduced the progressive sorted neighborhood 
method and progressive blocking. Both algorithms increase 
the efficiency of duplicate detection for situations with 
limited execution time; they dynamically change the ranking 
of comparison candidates based on intermediate results to 
execute promising comparisons first and less promising 
comparisons later. To determine the performance gain of our 
algorithms, we proposed a novel quality measure for 
progressiveness that integrates seamlessly with existing 
measures. Using this measure, experiments showed that our 
approaches outperform the traditional SNM by up to 100 
percent and related work by up to 30 percent. 
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