
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN: 2319-7242

Volume 6 Issue 2 Feb. 2017, Page No. 20372-20375

Index Copernicus Value (2015): 58.10, DOI: 10.18535/ijecs/v6i2.36

Qadri Syeda Asra Arshia, IJECS Volume 6 Issue 2 Feb., 2017 Page No.20372-20375 Page 20372

 Efficiency Improvement in Data Detection

Qadri Syeda Asra Arshia

PG Scholar, Dept. of CNE, Khurana Sawant Institute of Engineering and Technology, Hingoli,
Maharashtra, India.

Abstract— There are different methods to process duplicate detection in databases, but to process the data quickly at the same time

maintaining the quality of database become difficult. In this paper PB and PSNM algorithms are presented to improve the efficiency of

duplicate data detection in databases keeping the time to a shorter level.

Index Terms — Data Cleaning, Blocking, Data Integrity Process, Duplicate Records.

1. INTRODUCTION

Data are among the most important assets of a company. But

due to data changes and sloppy data entry, errors such as

duplicate entries might occur, making data cleansing and in

particular duplicate detection indispensable. However, the

pure size of today’s datasets renders duplicate detection

processes expensive. Online retailers, for example, offer

huge catalogs comprising a constantly growing set of items

from many different suppliers. As independent persons

change the product portfolio, duplicates arise. Although

there is an obvious need for de duplication, online shops

without downtime cannot afford traditional de duplication.

Progressive duplicate detection identifies most duplicate

pairs early in the detection process. Instead of reducing the

overall time needed to finish the entire process, progressive

approaches try to reduce the average time after which a

duplicate is found. Early termination, in particular, then

yields more completes results on a progressive algorithm

than on any traditional approach.
Databases play an important role in today's IT based

economy. Many industries and systems depend on the

accuracy of databases to carry out operations. Therefore, the

quality of the information stored in the databases, can have

significant cost implications to a system that relies on

information to function and conduct business. In an error-

free system with perfectly clean data, the construction of a

comprehensive view of the data consists of linking --in

relational terms, joining-- two or more tables on their key

fields. Unfortunately, data often lack a unique, global

identifier that would permit such an operation. Furthermore,

the data are neither carefully controlled for quality nor

defined in a consistent way across different data sources.

Thus, data quality is often compromised by many factors,

including data entry errors (e.g.,studet instead of student),

missing integrity constraints (e.g., allowing entries such as

Employee Age=567), and multiple conventions for recording

information.

2. RELATED WORK

Steven Euijong Whang, David Marmaros, [1] Entity

resolution (ER) is the problem of identifying which records

in a database refer to the same entity. In practice, many

applications need to resolve large data sets efficiently, but do

not require the ER result to be exact. For example, people

data from the Web may simply be too large to completely

resolve with a reasonable amount of work. As another

example, real-time applications may not be able to tolerate

any ER processing that takes longer than a certain amount of

time. This paper investigates how we can maximize the

progress of ER with a limited amount of work using “hints,”

which give information on recor ds that are likely to refer to

the same real-world entity. A hint can be represented in

various formats, and ER can use this information as a

guideline for which records to compare first. We introduce a

family of techniques for constructing hints efficiently and

techniques for using the hints to maximize the number of

matching records identified using a limited amount of work.

Using real data sets, we illustrate the potential gains of our

pay-as-you-go approach compared to running ER without

using hints. An ER process is often extremely expensive due

to very large data sets and compute-intensive record

comparisons.

The proposed a pay-as-you-go approach for Entity

Resolution (ER) where given a limit in resources (e.g., work,

runtime) we attempt to make the maximum progress

possible. In [8] the World Wide Web is witnessing an

increase in the amount of structured content – vast

heterogeneous collections of structured data are on the rise

due to the Deep Web, annotation schemes like Flickr, and

sites like Google Base. While this phenomenon is creating an

opportunity for structured data management, dealing with

heterogeneity on the web-scale presents many new

challenges. In this paper, we highlight these challenges in

two scenarios – the Deep Web and Google Base.

We contend that traditional data integration techniques are

no longer valid in the face of such heterogeneity and scale.

We propose new data integration architecture, PAYGO,

which is inspired by the concept of data spaces and

emphasizes pay-as-you-go data management as means for

achieving web-scale data integration.

[10] Similarity join is a useful primitive operation underlying

many applications, such as near duplicate Web page

detection, data integration, and pattern recognition.

Traditional similarity joins require a user to specify a

http://www.ijecs.in/

DOI: 10.18535/ijecs/v6i2.36

Qadri Syeda Asra Arshia, IJECS Volume 6 Issue 2 Feb., 2017 Page No.20372-20375 Page 20373

similarity threshold. In this paper, we study a variant of the

similarity join, termed top-k set similarity join. It returns the

top-k pairs of records ranked by their similarities, thus

eliminating the guess work users have to perform when the

similarity threshold is unknown. An algorithm, top k-join, is

proposed to answer top-k similarity join efficiently. It is

based on the prefix filtering principle and employs tight

upper bounding of similarity values of unseen pairs.

Experimental results demonstrate the efficiency of the

proposed algorithm on large-scale real datasets. Given a

similarity function, a similarity join between two sets of

records returns pairs of records from two sets such that their

similarities are no less than a given threshold. In this paper,

we study the problem of answering similarity join queries to

retrieve top-k pairs of records ranked by their similarities.

Existing approaches for the traditional similarity joins with a

given threshold will have to make guesses on the similarity

threshold and incur much redundant calculation. We propose

an efficient algorithm that computes the answers in a

progressive manner.

[2] Ahmed K. Elmagarmid, Panagiotis G.Ipeirotis, Vassilios

S.Verykios often, in the real world, entities have two or more

representations in databases. Duplicate records do not share a

common key and/or they contain errors that make duplicate

matching a difficult task. Errors are introduced as the result

of transcription errors, incomplete information, lack of

standard formats, or any combination of these factors. In this

paper, we present a thorough analysis of the literature on

duplicate record detection. We cover similarity metrics that

are commonly used to detect similar field entries, and we

present an extensive set of duplicate detection algorithms

that can detect approximately duplicate records in a database.

We also cover multiple techniques for improving the

efficiency and scalability of approximate duplicate detection

algorithms. We conclude with coverage of existing tools and

with a brief discussion of the big open problems in the area.

The problem that we study has been known for more than

five decades as the record linkage or the record matching

problem in the statistics community. The goal of record

matching is to identify records in the same or different

databases that refer to the same real-world entity, even if the

records are not identical.

In paper [9] Duplicate detection is the task of identifying all

groups of records within a data set that represent the same

real-world entity, respectively.

This task is difficult, because (i) representations might differ

slightly, so some similarity measure must be defined to

compare pairs of records and (ii) data sets might have a high

volume making a pair-wise comparison of all records

infeasible. To tackle the second problem, many algorithms

have been suggested that partition the data set and compare

all record pairs only within each partition. One well-known

such approach is the Sorted Neighborhood Method (SNM),

which sorts the data according to some key and then

advances a window over the data comparing only records

that appear within the same window.

3. PSNM ALGORITHM

Algorithm 1 depicts our implementation of PSNM. The

algorithm takes five input parameters: D is a reference to the

data, which has not been loaded from disk yet. The sorting

key K defines the attribute or attribute combination that

should be used in the sorting step. W specifies the maximum

window size, which corresponds to the window size of the

traditional sorted neighborhood method. When using early

termination, this parameter can be set to an optimistically

high default value.

Parameter I defines the enlargement interval for the

progressive iterations. For now, assume it has the default

value 1. The last parameter N specifies the number of records

in the data-set. This number can be gleaned in the sorting

step, but we list it as a parameter for presentation purposes.

3.1 Algorithm:

Progressive Sorted Neighborhood Require: dataset reference

D, sorting key K, window size W, enlargement interval size

I, number of records N

Step 1: procedure PSNM(D, K, W, I, N)

Step 2: pSize calcPartitionSize(D)

Step 3: pNum  [N/pSize-W + 1)]

Step 4: array order size N as Integer

Step 5: array recs size pSize as Record

Step 6: order sortProgressive(D, K, I, pSize, pNum)

Step 7: for currentI 2 todW=Iedo

Step 8: for currentP  1 to pNum do

Step 9: recs loadPartition(D, currentP)

Step 10: for dist belongs to range(currentI, I, W) do

Step 11: for i  0 to |recs|_ dist do

Step 12: pair <recs[i], recs[i + dist]>

Step 13: if compare(pair) then

Step 14: emit(pair)

Step 15: lookAhead(pair)

In many practical scenarios, the entire dataset will not fit in

main memory. To address this, PSNM operates on a partition
of the dataset at a time.

The PSNM algorithm calculates an appropriate partition size

pSize, i.e., the maximum number of records that fit in
memory, using the pessimistic sampling function

calcPartitionSize(D) in Line 2: If the data is read from a
database, the function can calculate the size of a record from

the data types and match this to the available main memory.
Otherwise, it takes a sample of records and estimates the size

of a record with the largest values for each field. In Line 3,

the algorithm calculates the number of necessary partitions
pNum, while considering a partition overlap of W _ 1

records to slide the window across their boundaries. Line 4
defines the order-array, which stores the order of records

with regard to the given key K. By storing only record IDs in

this array, we assume that it can be kept in memory. To hold
the actual records of a current partition, PSNM declares the

recs-array in Line 5.

In Line 6, PSNM sorts the dataset D by key K. The sorting is

done by applying our progressive sorting algorithm Magpie,

which we explain in Section 3.2. After-wards, PSNM

linearly increases the window size from 2 to the maximum

window size W in steps of I (Line 7). In this way, promising

close neighbors are selected first and less promising far-away

neighbors later on. For each of these progressive iterations,

PSNM reads the entire dataset once. Since the load process is

done partition-wise, PSNM sequentially iterates (Line 8) and

loads (Line 9) all partitions. To process a loaded partition,

DOI: 10.18535/ijecs/v6i2.36

Qadri Syeda Asra Arshia, IJECS Volume 6 Issue 2 Feb., 2017 Page No.20372-20375 Page 20374

PSNM first iterates overall record rank-distances dist that are

within the current window interval currentI. For I ¼ 1 this is

only one distance, namely the record rank-distance of the

cur-rent main-iteration. In Line 11, PSNM then iterates all

records in the current partition to compare them to their dist

neighbor. The comparison is executed using the com-

pare(pair) function in Line 13. If this function returns “true”,

a duplicate has been found and can be emitted. Furthermore,

PSNM evokes the lookAhead(pair) method, which we

explain later, to progressively search for more duplicates in

the current neighborhood. If not terminated early by the user,

PSNM finishes when all intervals have been processed and

the maximum window size W has been reached.

4. PROGRESSIVE BLOCKING ALGORITHM

Progressive blocking is a novel approach that builds upon an

equidistant blocking technique and the successive

enlargement of blocks. Like PSNM, it also pre-sorts the

records to use their rank-distance in this sorting for similarity

estimation. Based on the sorting, PB first creates and then

progressively extends a fine-grained blocking. These block

extensions are specifically executed on neighborhoods

around already identified duplicates, which enables PB to

expose clusters earlier than PSNM.

The algorithm accepts five input parameters: The dataset

reference D specifies the dataset to be cleaned and the key

attribute or key attribute combination K defines the sorting.

The parameter R limits the maximum block range, which is

the maxi-mum rank-distance of two blocks in a block pair,

and S specifies the size of the blocks.

We discuss appropriate values for R and S in the next

section. Finally, N is the size of the input dataset.

4.1 PB Algorithm:

Progressive Blocking Require: dataset reference D, key
attribute K, maximum block range R, block size S and record
number N

Step 1: procedure PB(D, K, R, S, N)
Step 2: pSize  calcPartitionSize(D)

Step 3: bPerP  [pSize/S]

Step 4: bNum  [N/S]

Step 5: pNum  [bNum/bPerP]

Step 6: array order size N as Integer
Step 7: array blocks size bPerP as <Integer; Record[]>
Step 8: priority queue bPairs as <Integer; Integer; Integer>
Step 9: bPairs {<1,1,->, . . . ,<bNum, bNum,->}
Step 10: order sortProgressive(D, K, S, bPerP, bPairs)
Step 11: for i 0 to pNum - 1 do

Step 12: pBPs  get(bPairs, i . bPerP, (i+1) . bPerP)

Step 13: blocks  loadBlocks(pBPs, S, order)

Step 14: compare(blocks, pBPs, order)
Step 15: while bPairs is not empty do
Step 16: pBPs {}

Step 17: bestBPs takeBest([bPerP/4], bPairs, R)

Step 18: for bestBP belongs to bestBPs do
Step 19: if bestBP[1] _ bestBP[0] < R then
 Step 20: pBPs pBPs U extend(bestBP)

Step 21: blocks loadBlocks(pBPs, S, order)

Step 22: compare(blocks, pBPs, order)
Step 23: bPairs bPairs U pBPs

 Step 24: procedure compare(blocks, pBPs, order)
Step 25: for pBP belongs to pBPs do
 Step 26: <dPairs,cNum> comp(pBP, blocks, order)
Step 27: emit(dPairs)
Step 28: pBP[2] |dPairs|/ cNum

At first, PB calculates the number of records per partition

pSize by using a pessimistic sampling function in Line 2.

The algorithm also calculates the number of loadable blocks

per partition bPerP, the total number of blocks bNum, and

the total number of partitions pNum. In the Lines 6 to 8, PB

then defines the three main data structures: the order-array,

which stores the ordered list of record IDs, the blocks-array,

which holds the current partition of blocked records, and the

bPairs-list, which stores all recently evaluated block pairs.

Thereby, a block pair is represented as a triple of hblockNr1;

blockNr2; duplicatesPerComparisoni. We implemented the

bPairs-list as a priority queue, because the algorithm

frequently reads the top elements from this list.

In the following Line 10, the PB algorithm sorts the dataset

using the progressive MagpieSort algorithm. Afterwards, the

Lines 11 to 14 load all blocks partition-wise from disk to

execute the comparisons within each block. After the

preprocessing, the PB algorithm starts progressively

extending the most promising block pairs (Lines 15 to 23). In

each loop, PB first takes those block pairs bestBPs from the

bPairs list that reported the highest duplicate density.

Thereby, at most bPerP=4 block pairs can be taken, because

the algorithm needs to load two blocks per bestBP and each

extension of a bestBP delivers two partition block pairs pBPs

in Line 20. However, if such an extension exceeds the

maximum block range R, the last bestBP is discarded.

Having successfully defined the most promising block pairs,

Line 21 loads the corresponding blocks from disk to compare

the pBPs in Line 22. The compare(blocks, pBPs, order)-

procedure is listed in Lines 24 to 28. For all partition block

pairs pBP, the procedure compares each record of the first

block to all records of the second block. The identified

duplicate pairs dPairs are then emitted in Line 27.

Furthermore, Line 28 assigns the duplicate pairs to the

current pBP to later rank the duplicate density of this block

pair with the density in other block pairs. Thereby, the

amount of duplicates is normalized by the number of

comparisons, because the last block is usually smaller than

all other blocks. In Line 23, the algorithm adds the

previously compared pBPs to the bPairs-list to use them in

the next progressive iteration. If the PB algorithm is not

terminated prematurely, it automatically finishes when the

list of bPairs is empty, e.g., no new block pairs within the

maximum block range R can be found.

5. EXPERIMENTAL RESULTS:

We consider restaurant information from an internal

operational data warehouse an d introduce errors. Because

we start from real data all characteristics of real data:

variations in the lengths of strings, numbers of tokens in and

DOI: 10.18535/ijecs/v6i2.36

Qadri Syeda Asra Arshia, IJECS Volume 6 Issue 2 Feb., 2017 Page No.20372-20375 Page 20375

frequencies of attribute values, co-occurrence patterns, etc.

are preserved. Since, we know the duplicate tuples and their

correct counterparts in the erroneous dataset; we can evaluate

duplicate elimination algorithms. The execution bottleneck

for duplicate detection is commonly the attribute correlation

with likeness measures between the record sets which is

quite expensive one. To dodge this restrictively expensive

analysis of all sets of records, a basic method is to precisely

segment the records into smaller subsets and quest for copies

just inside of these allotments. Two contending

methodologies are regularly referred to: Blocking techniques

allotment records into disjoint subsets, for occurrence

utilizing zip code as apportioning key. Sorted-neighborhood

based strategies that sort the information as per some key, for

example, last name, and afterward slide a window of altered

size over the sorted information and look at sets just inside of

the window.

Fig.1. Based on the effectiveness metric for our proposed

work with existing work.

6. CONCLUSION

This paper introduced the progressive sorted neighborhood
method and progressive blocking. Both algorithms increase
the efficiency of duplicate detection for situations with
limited execution time; they dynamically change the ranking
of comparison candidates based on intermediate results to
execute promising comparisons first and less promising
comparisons later. To determine the performance gain of our
algorithms, we proposed a novel quality measure for
progressiveness that integrates seamlessly with existing
measures. Using this measure, experiments showed that our
approaches outperform the traditional SNM by up to 100
percent and related work by up to 30 percent.

REFERENCES

1. S. E. Whang, D. Marmaros, and H. Garcia-Molina,

―Pay-as-you-go entity resolution,ǁ IEEE Trans. Knowl.

Data Eng., vol. 25, no. 5, pp. 1111– 1124, May 2012.

2. F. Naumann and M. Herschel, An Introduction to

Duplicate Detection. San Rafael, CA, USA: Morgan &

Claypool, 2010.

3. H. B. Newcombe and J. M. Kennedy, ―Record linkage:

Making maximum use of the discriminating power of

identifying information,ǁ Commun. ACM, vol. 5, no. 11,

pp. 563–566, 1962.

4. M. A. Hernandez and S. J. Stolfo, ―Real-world data is

dirty: Data cleansing and the merge/purge problem,ǁ Data

Mining Knowl. Discovery, vol. 2, no. 1, pp. 9–37, 1998.

5. X. Dong, A. Halevy, and J. Madhavan, ―Reference

reconciliation in complex information spaces,ǁ in Proc.

Int. Conf. Manage. Data, 2005, pp. 85–96.

6. O. Hassanzadeh, F. Chiang, H. C. Lee, and R. J. Miller,

―Framework for evaluating clustering algorithms in

duplicate detection,ǁ Proc. Very Large Databases

Endowment, vol. 2, pp. 1282– 1293, 2009.

7. O. Hassanzadeh and R. J. Miller, ―Creating probabilistic

databases from duplicated data,ǁ VLDB J., vol. 18, no. 5,

pp. 1141–1166, 2009.

8. U. Draisbach, F. Naumann, S. Szott, and O. Wonneberg,

―Adaptive windows for duplicate detection,ǁ in Proc.

IEEE 28th Int. Conf. Data Eng., 2012, pp. 1073–1083.

9. Shen H, Zhang Y, Improved approximate detection of

duplicates for data streams over sliding windows, Journal

of Computer Science and Technology, Volume 23(6),

2008, pp. 973-987.

10. Thorsten Papenbrock, Arvid Heise, and Felix Naumann,

“Progressive Duplicate Detection”, IEEE Transactions on

Knowledge and Data Engineering, Vol. 27, No. 5, May

2015.

