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Abstract−This paper discusses different classes of aggregation operators and their applications to Interval Vague Set 

(IVS) decision making problems.Correlation coefficient for interval vague sets is proposed and utilized in Multiple 

Attribute Group Decision Making (MAGDM) problems.  Ordered Weighted Geometric (OWG) operators are used for the 

MAGDM models proposed for IVSs and the proposed correlation coefficient is used for ranking alternatives. A data 

mining algorithm is also utilized for reducing the number of alternatives for the final decision making process. Numerical 

illustrations are provided for MAGDM models for interval vague sets. 
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1. INTRODUCTION 

 

Various attempts are made by researchers on the study 

of data vagueness through intuitionistic fuzzy sets and Vague 

Sets (VSs).  Gau&Buehrer, (1994) introduced the concept of 

vague sets, and it was shown that vague sets are indeed 

intuitionistic fuzzy sets (Bustince&Burillo, 1996). But Lu & 

Ng, (2004, 2005, 2009) based their research on the algebraic 

and graphical differences between vague sets and intuitionistic 

fuzzy sets. Combining interval-valued fuzzy sets and vague 

sets, Zhi-feng et al., (2001) introduced the concept of Interval 

Vague Sets (IVSs).  Gau&Buehrer, (1994), Li &Rao, (2001), 

Liu, P.D., (2009a) and Liu, P.D., & Guan, (2008; 2009) have 

detailed the essential operations of vague sets and interval 

vague sets.  Interval vague set is one of the higher order fuzzy 

sets and is being applied in various fields. The notion of truth 

membership function, false membership function and 

uncertainty function in interval vague sets describes the 

objective world more realistically and practically. Interval 

vague sets reflect people‟s understanding in three aspects 

comprehensively: Support degree, Negative degree and 

Uncertainty degree.  

Correlation coefficient of Fuzzy sets, Interval-valued 

Fuzzy sets, Intuitionistic Fuzzy sets and Interval-valued 

Intuitionistic Fuzzy sets are already in the literature. 

Bustince&Burillo (1995) and Hong (1998) have focussed on 

the correlation degree of interval valued intuitionistic fuzzy 

sets. Park et al. (2009) have also worked on the correlation 

coefficient of interval valued intuitionistic fuzzy sets and 

applied in multiple-attribute group decision making problems. 

Robinson &Amirtharaj, (2011a; 2011b; 2012a; 2012b) defined 

the correlation coefficient of vague sets, interval vague sets. In 

this paper a different correlation coefficient of IVSs is 

proposed and utilized in MAGDM problems. Liu, et al, (2012) 

presented novel method for MCDM problems based on interval 

valued intuitionistic fuzzy sets(IVIFSs).  Li, (2010) presented a 

TOPSIS-Based Nonlinear-Programming Methodology for 

Multi- attribute Decision Making with interval-valued 

intuitionistic fuzzy sets.  Li& Nan, (2011) extended the 

TOPSIS method for Multi-attribute group decision making 

under Intuitionistic Fuzzy Sets (IFS) environments.  Cui & 

Yong, (2009) developed a Fuzzy Multi-Attribute Decision 

Making model based on Degree of Grey Incidence and 

TOPSIS in the Open Tender of International Project about 

Contractor Prequalification Evaluation Process.  Shih et al., 

(2001; 2007) worked on Group Decision Making for TOPSIS 

and its extension.  

In many applications, ranking of IVSs plays a very 

important role in the decision making processes.  Liu, (2009) 

presented a novel method of TOPSIS using a new type of score 

and precise function for choosing positive and negative ideal 

solutions in contrast to the score and accuracy functions 

defined by Chen & Tan, (1994), Hong & Choi, (2000), Wang 

et al., (2006) and Xu, (2007).  However, Nayagam et al, (2011) 

proved the insufficiency of many of the score functions 

proposed in literature, and proposed a novel method of 

accuracy function for MCDM problems under IVIFS 

environment.  In most of the previous TOPSIS techniques 

presented in literature, different forms of score and accuracy 

functions were used to identify positive and negative ideal 

solutions.  In this work, a novel method is presented where the 

correlation coefficient of IVSs is used to identify positive and 

negative ideal solutions and for ranking alternatives based on 

the closeness coefficient.  Comparison is made between the 

proposed TOPSIS and existing TOPSIS methods and some 

ranking functions proposed by Chen & Tan, (1994), Xu, 

(2007), Hong & Choi, (2000) and Liu, (2009).   

Mining fuzzy association rule is an important task of 

fuzzy data mining which is often defined as finding the fuzzy 

item sets which frequently  occur together in a given 

transaction data base. A popular application for fuzzy 

association rule mining is the market basket analysis which 

identifies the buying behaviors of customers. It is widely used 

to find the products which are frequently purchased together by 

same customers in transaction data bases. Of course, this kind 

of information is quite useful for many industries to make the 

marketing strategies. In a transaction data base, if a fuzzy item 

set almost occur in all of the records, then this fuzzy item sets 
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may occur with fuzzy item sets frequently. Therefore, two 

fuzzy item sets which frequently occur together cannot imply 

that there is always an interesting relationship between them. 

The fuzzy simple correlation analysis has been used to 

discover the correlation relationship between two fuzzy item 

sets. 

 

2. VAGUE SET  
A vague set A in a universe of discourse U is 

characterized by a truth membership function, tA, and a false 

membership function, fA, as follows:  : 0,1At U  ,  

 : 0,1Af U  and     1A At u f u  , where tA(u) is a 

lower bound on the grade of membership of u derived from the 

evidence for u, and fA (u) is a lower bound on the grade of 

membership of the negation of u derived from the evidence 

against u. Suppose U = {u1,u2,...,un}. A vague set A of the 

universe of discourse U can be represented as:   

1

[ ( ),  1- ( )] / ,     0 ( ) 1- ( ) 1,    1,2,...,
n

i i i i i

i

A t u f u u t u f u i n


     .In 

other words, the grade of membership of ui is bound to a 

subinterval    ,  1A i A it u f u    of [0,1].Let X = {x1, x2, 

...,xn} be the finite universal set, VS(X) be the collection of 

vague sets and A, B∈ VS(X) be given by 

     , ,1–  / ,A AA x t x f x x X   

     , ,1–  / .B BB x t x f x x X    And the length 

of the vague values are given by A (x) = 1 - tA (x) - fA (x),  B 

(x) = 1 - tB (x) - fB (x).                                                                  

 

 

3. OPERATIONS IN VAGUE SETS 
Let x, y be the two vague values in the universe of 

discourse U,  ,1 ,x xx t f  ,1 ,y yy t f     where 

 ,  ,  ,    0,1x x y yt f t f  and   1,    1x x y yt f t f    ;  

The operation and relationship between vague values is defined 

as follows: 

Definition: The minimum operation of vague values x and y is 

defined by 

   

   

,

,

   min ,  min 1 ,  1        

         min ,  1 max 1 ,  1

x y x y

x y x y

x y t t f f

t t f f

    
 

    
                                                               

(1)

 

Definition: The maximum operation of vague values x and y is 

defined by 

   

   

,

,

   max ,  max 1 ,  1     

          max ,1 min 1 ,  1

x y x y

x y x y

x y t t f f

t t f f

    
 

    
  (2)

 

Definition: The complement of vague value x is defined by 

  ,  1x xx f t 
                                                                     

(3)
 

Let A, B be two VSs in the universe of discourse U = {u1,u2, . . 

.,un},  

   
1

 ,  1  /
n

A i A i i

i

A t u f u u


    ,  

and    
1

 ,  1  / .
n

B i B i i

i

B t u f u u


     

Then the operations between VSs are defined as follows. 

 

The intersection of VSs A and B is defined by 

        
1

 ,  1  ,  1–  / .
n

A i A i B i B i i

i

A B t u f u t u f u u


         
                                     

(4)

 

The union of vague sets A and B is defined by 

        
1

 ,  1  ,  1–  / .
n

A i A i B i B i i

i

A B t u f u t u f u u


         
                                    

(5)

 

 The complement of vague set A is defined by 

   
1

,  1  / .
n

A i A i i

i

A f u t u u


   
                                                                                 

(6)

 

Definition: For the vague value    ,  1x xx t f  , define the 

de-fuzzification function to get the precise value as follows: 

 
 

   .
 

x

x x

t
Dfzz x

t f


                               (7)
 

 

3.1. DIFFERENT CLASSES OF OPERATORS 

IN MAGDM PROBLEMS 
 

3.1.1. Ordered Weighted Averaging (OWA) 

Operators 
 The OWA operator provides a parameterized family of 

aggregation operators which are used in many applications.  

The definition of the OWA operator was introduced by Yager, 

(1988). 

Definition:   An OWA operator of dimension n is a 

mapping :   nOWA R R  that has an associated weighting 

vector 1 2( , ,..., )T

nw w w w  of dimension n having the 

properties, [0,1],jw 
1

1
n

j

j

w


  and such that          

1 2

1

( , ,..., )
n

n j j

j

OWA a a a w b



                                      

(8)

 

Where bj is the j
th

 largest of the ai , for all i. 

 

3.1.2. The Induced OWA (I-OWA) Operator  
The I-OWA operator was introduced by Yager&Filev, 

(1999), and its main difference with the classical OWA 

operator is that the reordering step of the I-OWA is carried out 

with order-inducing variables, rather than depending on the 

values of the arguments ai.  It can be defined as follows: 

 

Definition:   An I-OWA operator of dimension n is a 

mapping  
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- :   n nI OWA R R R   defined by an associated 

weighting vector w of dimension n with 
1

1
n

j

j

w


  and 

[0,1]jw  , and a set of order-inducing variables ui , by a 

formula of the following form: 

 1 1 2 2

1

- , , , ,..., ,
n

n n j j

j

I OWA u a u a u a w b



                                   

(9)

 

Where ai is the argument variable, ui is the order-inducing 

variable and (b1,…,bn) is simply (a1,…,an) reordered in 

ascending order of the values of the ui. 

 

3.1.3 The Hybrid Average (HA) Operator 

 The Hybrid Average (HA) operator is an aggregation 

operator that uses both the Weighted Averaging (WA) and the 

OWA operator in the same formulation. Thus, it is possible to 

consider the attitudinal character of the decision maker and the 

degree of importance of the variables in the same problem. 

One of its main characteristics is that it provides a 

parameterized family of aggregation operators that include the 

maximum, the minimum, the Arithmetic Mean (AM), the WA 

and the OWA operator. It can be defined as follows: 

Definition:   An HA operator of dimension n is a mapping 

:   nHA R R that has an associated weighting vector w of 

dimension n with 
1

1
n

j

j

w


 and [0,1]jw  , such that         

 

1 2

1

( , ,..., )
n

n j j

j

HA a a a w b



                                                     

(10)

 

wherebj is the  j
th

  smallest of the ˆ ,ia and  ˆ ,i i ia n a  for all

1,2,..., .i n
 

And 1 2( , ,..., )T

n     is the weighting vector of the ai , 

with [0,1]i   and 
1

1.
n

j

j




  

 

3.1.4 The Fuzzy OWA Operator (FOWA) 

 The FOWA operator is an extension of the OWA 

operator that uses uncertain information in the arguments 

represented in the form of FNs. The reason for using this 

aggregation operator is that sometimes available information 

cannot be assessed with exact numbers and so it is necessary to 

use a parameterized family of aggregation operators that 

include the fuzzy maximum, the fuzzy minimum and the fuzzy 

average criteria. 

Definition:   Let ψ be the set of FNs. A FOWA operator of 

dimension n is a mapping :   nFOWA   that has an 

associated weighting vector w of dimension n with 

[0,1]jw  and 
1

1
n

j

j

w


 , such that   

1 2

1

( , ,..., )
n

n j j

j

FOWA a a a w b



                                         

(11)

 

Where bjis the j
th

 largest of the ia , and the ia  are FNs. 

 

3.1.5 The Probabilistic OWA (POWA) Operator     

 The POWA operator is an aggregation operator that 

unifies the probability and the OWA operator in the same 

formulation considering the degree of importance that each 

concept has in the analysis and providing a parameterized 

family of aggregation operators between the minimum and the 

maximum, defined as follows: 

Definition:   A POWA operator of dimension n is a mapping 

:   nPOWA R R that has an associated weighting vector w 

of dimension n such that [0,1]jw  and 
1

1
n

j

j

w


 , 

according to the formula: 

1 2

1

ˆ( , ,..., )
n

n j j

j

POWA a a a p b



                                     

(12)

 

Where bjis the j
th

 largest of the ai , and its corresponding 

probability is pj.  Each argument ai has an associated 

probability pi with 
1

1
n

i

i

p


 and [0,1]ip  , 

ˆ (1 )j j jp w p     with [0,1].   

 

3.1.6 The Fuzzy Probabilistic OWA (FPOWA) Operator 

 The FPOWA operator is an aggregation operator that 

provides a parameterized family of aggregation operators 

between the fuzzy maximum and the fuzzy minimum whose 

main advantage is unifying fuzzy probabilistic aggregation and 

the FOWA operator in the same formulation and considering 

the degree of importance of each concept in the aggregation. 

The probabilistic information and the attitudinal character of 

the decision maker can be used in the same formulation.  

Definition:   Let   be the set of FNs. A FPOWA operator of 

dimension n is a mapping : nFPOWA    that has 

associated a weighting vector w of dimension n such that 

[0,1]jw  and 
1

1
n

j

j

w


 , according to the following 

formula: 

1 2

1

ˆ( , ,..., )
n

n j j

j

FPOWA a a a p b



                                        

(13)

 

Where bj is the j
th

 largest of the ia ,  with corresponding 

probability ,jp the ia  are FNs and each one has an 

associated probability ip with 
1

1
n

i

i

p


 and 
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ˆ[0,1], (1 )i j j jp p w p       with [0,1]   and 

jp  is the i
p  ordered according to bj,  that is, according to 

the j
th

 largest of the ia . 

 

3.1.7 Geometric Mean (GM) Operator: 

Definition:   A Geometric Mean (GM) operator of 

dimension m is a mapping :   mGM R R   and is defined 

as: 

 
1

1 2

1

( , ,..., )
m

m

m j

j

GM a a a a



                                  

(14)

 

3.1.8 Ordered Weighted Geometric (OWG) Operators: 

 The Ordered Weighted Geometric (OWG) operator is 

based on the OWA operator and the Geometric Mean (GM) 

operator and provides a parameterized family of aggregation 

operators used in many applications.  The definition of the 

OWG operator is as follows: 

 

Definition:   An OWG operator of dimension m is a 

mapping :   mOWG R R  that has an associated weighting 

vector 1 2( , ,..., )T

mw w w w  of dimension m having the 

properties, [0,1],jw 
1

1
m

j

j

w


 and such that              

1 2

1

( , ,..., ) j

m
w

m j

j

OWG a a a b



                                         

(15)

 

Where bj is the j
th

 largest of the ai . 

 

  

4. INTERVAL VAGUE SET 
The set of all IVSs in X is denoted by IVS(X). Then for each 

x∈X, ( )At x   and ( )Af x are closed intervals and their lower 

and upper end points are denoted by: 

( ),   ( ),   ( ),   ( )AL AL AU AUt x f x t x f x .  Then, 

        , , , , / ,AL AU AL AUA x t x t x f x f x x X       

where     0   1, .AU AUt x f x x X     

For each A∈ IVS(X), the hesitancy degree of a vague  interval 

of X in A is defined and denoted as:

              1    1   ,  1   .A A A AU AU AL ALx t x f x t x f x t x f x          

  

4.1 Induced Vague Ordered Weighted Geometric (I-VOWG) 

Operator 

 

Definition:     Let ( , ),j j ja t f for all j = 1,2,…,n be a 

collection of vague values. The Vague Weighted Geometric 

(VWG) operator :   nVWG Q Q is defined as:  

1 2

1 1 1

( , ,..., ) ,1 (1 )j j j

n nn

n j j j

j j j

VWG a a a a t f
  


  

 
    

 
  

                         

(16)

 

Where 1 2( , ,..., )T

n     be the weight vector of 

( 1,2,..., ),ja j n and 0j  ,

1

1.
n

j

j




  

Definition:    Let ( , ),j j ja t f for all j = 1,2,…,n be a 

collection of vague values.  The Vague Ordered Weighted 

Geometric (VOWG) operator, 

:   nVOWG Q Q is defined as:  

1 2 ( )

1

( ) ( )

1 1

( , ,..., )

                     ,1 (1 )

j

j j

n
w

w n j

j

n n
w w

j j

j j

VOWG a a a a

t f



 



 



 
   
 



                                        

(17) 

Where 1 2( , ,..., )T

nw w w w  is the associated weighting 

vector such that 0jw  and 

1

1
n

j

j

w


 . Furthermore, 

( (1), (2),..., ( ))n    is a permutation of (1,2,…,n), such 

that ( 1) ( )j ja a    for all  j = 2,…, n.  

Definition:    Let ( , ),j j ja t f for all j = 1,2,…,n be a 

collection of vague values.  An Induced Vague Ordered 

Weighted Geometric (I-VOWG) operator,

:   nI VOWG Q Q   is defined as:  

  ( )1 1 2 2

1

( ) ( )

1 1

- , , , ,..., ,

                                             ,1 (1 )

j

j j

n
w

jw n n

j

n n
w w

j j

j j

I VOWG u a u a u a a

t f



 



 



 
   
 



 
                

(18)

 

where 1 2( , ,..., )T

nw w w w  is a weighting vector, such 

that [0,1],jw 
1

1,   1,2,..., ,
n

j

j

w j n


 

( ) ( ) ( )( , )j j ja t f    is the ia  value of the VOWG 

pair ,i iu a  having the j
th

 largest ,    [0,1]i iu u  , and ui in 

,i iu a  is referred to as the order inducing variable and 

,    ( , )i i i ia a t f  are the vague values. 

 

The I-VOWG operator has the following properties similar to 

those of the I-OWA operator. 

a. Commutativity 
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 1 1 2 2
- , , , ,..., ,

w n n
I VOWG u a u a u a

 1 1 2 2- , , , ,..., ,w n nI VOWG u a u a u a    

where  1 1 2 2
, , , ,..., ,

n n
u a u a u a    is any permutation of 

 1 1 2 2
, , , ,..., ,

n n
u a u a u a . 

b. Idempotency 

 If 

,  where  ( , ) and ( , )
j j j j

a a a a       for 

all  j, then  

 1 1 2 2
- , , , ,..., ,

w n n
I VOWG u a u a u a a . 

c. Monotonicity 

 If j ja a  for all j, then 

 1 1 2 2
- , , , ,..., ,

w n n
I VOWG u a u a u a

 1 1 2 2
- , , , ,..., ,

w n n
I VOWG u a u a u a   . 

 

4.2 Induced Interval-Vague Ordered Weighted Geometric 

(I-IVOWG) Operator 

 

Definition:   Let ([ , ],[ , ]),j j j j ja a b c d for all 

1,2,...,j n  be a collection of interval-vague values. The 

Interval-vague Weighted Geometric (IVWG) operator

:   nIVWG Q Q   is defined as: 

1 2

1

1 1 1 1

( , ,..., )

         , , 1 (1 ) ,1 (1 )

j

j j j j

n

n j

j

n n n n

j j j j

j j j j

IVWG a a a a

a b c d





   



   



    
         

    



   
                   

(19)

 

Where 1 2( , ,..., )T

n     be the weight vector of 

( 1,2,..., ),ja j n and 0j  ,
1

1
n

j

j




 . 

Definition:   Let ([ , ],[ , ]),j j j j ja a b c d for all 

1,2,...,j n  be a collection of interval-vague values. The 

Interval-Vague Ordered Weighted Geometric (IVOWG) 

operator, :   nIVOWG Q Q  is defined as: 

1 2 ( )

1

( ) ( ) ( ) ( )

1 1 1 1

( , ,..., )

= , , 1 (1 ) ,1 (1 )

j

j j j j

n
w

w n j

j

n n n n
w w w w

j j j j

j j j j

IVOWG a a a a

a b c d



   



   



    
        

    



   
                     

(20) 

 

where 1 2( , ,..., )T

nw w w w  is the associated weight 

vector such that 0jw  and 

1

1
n

j

j

w


 . Furthermore, 

( (1), (2),..., ( ))n    is a permutation of (1,2,…, n), 

such that ( 1) ( )j ja a    for all  j=2,…, n.

 

 

Definition:   Let ([ , ],[ , ]),j j j j ja a b c d for all 

1,2,...,j n  be a collection of interval-vague values. An 

Induced Interval-Vague Ordered Weighted Geometric (I-

IVOWG) operator, - :   nI IVOWG Q Q  is defined as: 

  ( )1 1 2 2

1

( ) ( ) ( ) ( )

1 1 1 1

- , , , ,..., ,

       = , , 1 (1 ) ,1 (1 )

j

j j j j

n
w

jw n n

j

n n n n
w w w w

j j j j

j j j j

I IVOWG u a u a u a a

a b c d



   



   



    
        

    



   
                

(21)

 

Where 1 2( , ,..., )T

nw w w w  is a weighting vector, such 

that [0,1],jw 
1

1,   1,2,..., ,
n

j

j

w j n


 

( ) ( ) ( ) ( ) ( )([ , ],[ , ]),j j j j ja a b c d      is the 

ia  value of the  

I-IVOWG pair ,i iu a  having the j
th

largest ,   [0,1]i iu u  , 

and ui in ,i iu a  is referred to as the order inducing variable 

and ,   ([ , ],[ , ])i i i i i ia a a b c d  are interval-vague values.   

 

The I-IVOWG operator has the following properties similar to 

those of the I-OWA operator. 

a. Commutativity 

 1 1 2 2- , , , ,..., ,w n nI IVOWG u a u a u a

 1 1 2 2- , , , ,..., ,w n nI IVOWG u a u a u a    

Where  1 1 2 2, , , ,..., ,n nu a u a u a    is any permutation of  

 1 1 2 2, , , ,..., ,n nu a u a u a . 

b. Idempotency 

 If ja a  for all j, where 

([ , ],[ , ]),   ([ , ],[ , ]),j j j j ja a b c d a a b c d  then  

 1 1 2 2- , , , ,..., ,w n nI IVOWG u a u a u a a . 

c. Monotonicity 

 If j ja a  for all j, then 

 1 1 2 2- , , , ,..., ,w n nI IVOWG u a u a u a

 1 1 2 2- , , , ,..., ,w n nI IVOWG u a u a u a   . 

 

4.3 CORRELATION COEFFICIENT OF INTERVAL-

VAGUE SETS 

 
Let X = {x1, x2, ...,xn} be the finite universal set and A, B∈ 

IVS(X) be given by  

          ,  , ,  , / ,AL AU AL AUA x t x t x f x f x x X       
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          ,  , ,  , / ,BL BU BL BUB x t x t x f x f x x X         

For each A∈ IVS(X), the informational vague energy of A is 

defined as: 

             2 2 2 2 2 2

1

1
            .

2

n

IVS AL i AU i AL i AU i AL i AU i

i

E A t x t x f x f x x x 


                   

(22) 

 The correlation of A and B is given by the formula: 

 
           

           1

1
,    .  

2           

n
AL i BL i AU i BU i AL i BL i

IVS

i AU i BU i AL i BL i AU i BU i

t x t x t x t x f x f x
C A B

f x f x x x x x   

  
  

    


   

(23) 

For A, B∈ IVS(X), the correlation has the following properties: 

(1)  CIVS(A, A) = E (A). 

(2) CIVS(A, B) = CIVS(B, A). 

Furthermore, the correlation coefficient of A and B is defined 

by the formula 

( ,  )
( ,  )    

( ) . ( )

IVS
IVS

IVS IVS

C A B
K A B

E A E B


                                                             

(24)

 

 

4.4 Algorithm for Mining Fuzzy Correlation Rules 

4.4.1 Frequent Fuzzy Item-Sets, Closed Fuzzy Item-Sets 

and Fuzzy Assocıatıon Rules 

Since most of the real time databases are fuzzy in 

nature, it is necessary to explore and discover association rules 

and correlation rules in a fuzzy environment. To this end many 

researchers have proposed methods for mining fuzzy 

association rules, from various fuzzy datasets. If a fuzzy item 

set almost occurs in all records, then it may frequently occur 

with other fuzzy item-sets also. In order to find out useful 

relationships between the fuzzy item-sets based on fuzzy 

statistics, fuzzy correlation rules are generated. By using the 

fuzzy correlation analysis, the fuzzy correlation rules for fuzzy 

numbers are generated to see that two fuzzy sets not only 

frequently occur together in same records, but also are related 

to each other. 

Let 1 2 m{ , ,..., I }I I I be a set of fuzzy items. Let D, 

the task-relevant fuzzy data, be a set of database transactions 

where each transaction T is a set of fuzzy items such that 

T I . Let A be a set of fuzzy items. A transaction T is said 

to contain A if and only if A T . A fuzzy association rule is 

an implication of the form A B , where ,A I B I   

and A B   . The rule A B holds in the transaction set 

D with fuzzy support s, where s is the percentage of 

transactions in D that contain A B (i.e., both A and B). This 

is taken to be the probability ( )P A B . The rule A B  has 

fuzzy confidence c in the transaction set D, where c is the 

percentage of transactions in D containing A that also contain 

B. This is taken to be the conditional probability, ( / )P B A . 

Fuzzy support ( ) ( ),A B P A B  
 

fuzzy confidence ( ) ( / )A B P B A                              (25) 

A set of items is referred to as an item-set. An item-set that 

contains k items is called a k-item-set. The occurrence 

frequency of an item-set is the number of transactions that 

contain the item-set. The fuzzy item-set support defined in 

equation (1) is called relative support, whereas the occurrence 

frequency is called the absolute support. If the relative support 

of an item-set I, satisfies a pre-specified minimum support 

threshold, then I is a frequent fuzzy item-set. From (1) we 

have: 

fuzzy confidence                                                

sup ( ) sup _ ( )
( ) ( / )

sup ( ) sup _ ( )

port A B port count A B
A B P B A

port A port count A

 
   

(26)

  

Equation (26) shows that the fuzzy confidence of rule A B  

can be easily derived from the support counts of A and 

A B . Once the support counts of A, B and A B  are 

found, it is straightforward to derive the corresponding 

association rules  A B and B A  , and check whether 

they are strong. Thus the problem of mining fuzzy association 

rules can be reduced to that of mining frequent fuzzy item-sets. 

A fuzzy item-set X is closed in a fuzzy data set S if there exists 

no proper super-itemset Y such that Y has the same support 

count as X in S. An item-set X is a closed frequent fuzzy item-

set in set S if X is both closed and frequent in S. 

The fuzzy item-sets which frequently occur together 

in large databases are found using fuzzy association rules. All 

the methods used for mining fuzzy association rules are based 

upon a support-confidence framework where fuzzy support and 

fuzzy confidence are used to identify the fuzzy association 

rules. Let 1 2{ , ,..., }mF f f f  be a set of fuzzy items, 

1 2{ , ,..., }nT t t t  be a set of fuzzy records, and each fuzzy 

record it  is represented as a vector with m values, 

1 2( ( ), ( ),..., ( ))i i m if t f t f t , where ( )j if t  is the degree that 

jf  appears in record it , ( ) [0,1]j if t  . Then a fuzzy 

association rule is defined as an implication form such as 

X YF F , where ,X YF F F F   are two fuzzy item-

sets. 

The fuzzy association rule X YF F  holds in T with the 

fuzzy support ( fsupp ({ , })X YF F  ) and the fuzzy confidence ( 

fconf ( )X YF F ). The fuzzy support and fuzzy confidence 

are given as follows: 

fsupp ({ , })X YF F 1

min( ( ) / { , })
n

j i j X Y

i

f t f F F

n








                              

(27)                                        

({ , })
( )

({ })

X Y
X Y

X

Ffsupp
fconf

f

F

upp
F

s
F

F
    

(28) 

 

If the fsupp ({ , })X YF F  is greater than or equal to a 

predefined threshold, minimal fuzzy support ( )fs , and the  

fconf ( )X YF F  is also greater than or equal to a predefined 

threshold, minimum fuzzy confidence ( )fc , then X YF F  

is considered as an interesting fuzzy association rule, and it 

means that the presence of the fuzzy item-set XF  in a record 
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can imply the presence of the fuzzy item sets YF  in the same 

record. 

4.5 Mining Fuzzy Association and Fuzzy Correlation Rules 

Mining fuzzy association rules is better done by 

finding frequent fuzzy item-sets using candidate generation 

method (Agrawal et al. 1993; Agrawal&Srikanth, 1994). 

Apriori is a seminal algorithm proposed for mining frequent 

fuzzy item-sets. The algorithm uses prior knowledge of 

frequent fuzzy item-set properties. Apriori employs an iterative 

approach known as level-wise search, where k-item sets are 

used to explore (k+1) –item sets. First, the set of 1-item sets is 

found by scanning the fuzzy database to accumulate the count 

for each item, and collecting those items that satisfy minimum 

support. The resulting set is denoted by L1.  Next L1 is used to 

find L2, the set of frequent fuzzy 2-itemset, which is used to 

find L3, and so on, until no more frequent fuzzy k-item-sets can 

be found.  The finding of each Lk requires one full scan of the 

database. The algorithm consists of two steps, namely (i) the 

join step and (ii) the prune step, for candidate generation. 

The fuzzy correlation rules mining method already 

proposed by Thiagarasu&Umasankar, (2016)Will be utilized in 

this section. 

 Assume that  1 2, ,..., mF f f f  be a set of fuzzy 

items;  1 2, ,..., nT t t t  be a random sample with n fuzzy 

data records, and each sample record it  is represented as a 

vector with m values,       1 2, ,...., ,i i m if t f t f t  where 

 j if t  is the degree that fuzzy item jf  occurs in record it , 

  [0,1]j if t  . 

 And next, three predefined thresholds are needed to 

be defined. Here, fs  is the minimal fuzzy support; fc  is the 

minimal fuzzy confidence; fr  is the minimal fuzzy correlation 

coefficient. The procedure of mining fuzzy correlation rules is 

described as the follows: 

 Step 1: Transform the Vague dataset into a fuzzy set 

using any of the transformation technique. 

 Step 2: The fuzzy support of each fuzzy item 

,if F supp( )if f is computed by using formula (eqn. 27 & 

28). 

 Step 3: Let  1 , upp( ) sp p p fL f f F fs f    be 

the set of frequent fuzzy item sets whose size is equal to 1. 

 Step 4: Let   2 ,A BC F F  be the set of all 

combinations of two elements belong to 1L  , where 

1, ,A BF F L A BF F . That is, 2C  is generated by 1L  joint 

with 1L . Because AF   and BF  are the element of 1L , the size 

of each element of 2C  is 2. 

 Step 5: For each element of 2C ,  ,A BF F  the fuzzy 

support,   supp ,A Bf F F  is computed by using formula 

(27) and then the fuzzy correlation between AF  and BF , ,A Br ,  

is computed by using formula discussed by 

Thiagarasu&Umasankar, (2016). Since ,A Br  is computed from 

the random sample T, ,A Br  is needed to be tested to determine 

if it is really greater than the minimal fuzzy correlation 

coefficient fr , The formula for testing is as follows: 

 
,

2

,1

2

A B f

A B

r r
t

r

n








   

 (29) 

 Compare the computed t value to 1 ( 2) ,nt   where 

1 ( 2)nt   is the (1 )th  percentile in the t distribution with 

degree of freedom n-1. If we obtain the t value which is greater 

than the predefined minimal fuzzy correlation coefficient. 

 Step 6: For each element, whose fuzzy support is 

greater than or equal to fs  and fuzzy correlation coefficient 

passes the test, of 2C , then it is an element of 2L . Hence, 2L

is the set of the frequent combinations of two fuzzy item sets, 

and still, the size of each element of 2L  is 2. 

 Step 7: Next, each kC , 3k  , is generated by 1kL   

joint with 1kL  . Assume that ( , )W XF F  and ( , )Y ZF F are 

two elements of 1kL  , where X YF F . If  the size of the 

combinations  ( , , )X W ZF F F  is k, and ( , )W ZF F  is also a 

frequent combination of two fuzzy item sets, then the 

combination  ( , , )X W ZF F F  is a element with size k of kC . 

For each element  of kC , its fuzzy support and fuzzy 

correlation coefficient are still used to find the elements of kL . 

 Step 8: When each kL , 2k  , is obtained, for each 

element of kL , ( , )G HF F , two candidate fuzzy correlation 

rules, G HF F and H GF F  can be generated. If the 

fuzzy confidence of a rule is greater than or equal to fc , then 

it is considered as an interesting fuzzy correlation rule. 

 The algorithm won‟t stop until no next 1kC   can be 

generated. 

 

4.6 ALGORITHM FOR MAGDM USING I-IVOWG 

OPERATOR AND CORRELATION 

COEFFICIENT OF IVSS 

 

Let  1 2 m , , ,A A A A  be a discrete set of 

alternatives, and  1 2, , , nG G G G   be the set of 

attributes,  1 2( , ,..., )n     is the weighting 

vector of the attribute Gj(j=1,2,…,n), where 

1

[0,1], 1.
n

j j

j

 


  Let  1 2  , , , tD D D D   be 
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the set of decision makers, 1 2( , ,..., )T

tw w w w  be the 

weighting vector of decision makers, with 

1

[0,1], 1
n

k k

k

w w


  . 

 Suppose that 

   ( ) ( ) ( ) ( ) ( )[ , ],[ , ]k k k k k

k ij ij ij ij ijm n m n
R r a b c d

 
   is the 

interval-vague decision matrix, where 
( ) ( )[ , ]k k

ij ija b  indicates 

the degree that the alternative Aisatisfies the attribute Gj given 

by the decision maker  Dk, 
( ) ( )[ , ]k k

ij ijc d  indicates the degree 

that the alternative Aidoes not satisfy the attribute Gj given by 

the decision maker Dk,
( ) ( ) ( ) ( ) ( ) ( )[ , ] [0,1],    [ , ] [0,1],   1,k k k k k k

ij ij ij ij ij ija b c d b d   

   1,2,..., ,    1,2,..., ,   1,2,..., .i m j n k t  
 

 In the following, the I-IVOWG and IVWG operator are 

applied to MAGDM based on interval-vague information. 

Step-1:       Utilize the decision information given in matrix

kR , and the I-IVOWG operator with the weighting vector of 

the decision makers as 1 2( , ,..., ) .T

nw w w w
 

 (1) (2) ( )

1 2([ , ],[ , ]) - , , , ,..., , t

ij ij ij ij ij w ij ij t ijr a b c d I IVOWG u r u r u r   

  i=1,2…,m, j=1,2,….,n,  to aggregate all the decision matrices 

,   ( 1,2,..., )kR k t  into a collective decision matrix 

 ij m n
R r


 .  

Step-2:     Utilize the decision information given in matrix R , 

and the IVWG operator  

 1 2([ , ],[ , ]) , ,..., ,   1,2,...,i i i i i i i inr a b c d IVWG r r r i m   , 

to derive the collective overall preference values 

,   for  1,2,...,ir i m  of the alternative Ai, where 

1 2( , ,..., )T

n     is the weighting vector of the 

attributes. 

Step-3:      Calculate the correlation coefficient 

( ,  )
( ,  ) ,

( ) . ( )

PK
PK

PK PK

C A B
K A B

E A E B
    for interval-vague 

preference value ,   for  1,2,...,ir i m  and the positive 

ideal vague value ([1,1],[0,0])r


  .  

Step-4:    Rank all the alternatives Ai, for i=1, 2,…,m, and 

select the best one(s) in accordance with the calculated 

correlation coefficient ( ,  ).IVSK A B
 

Step-5:    Utilize the above discussed algorithm for mining 

fuzzy correlation rules and reduce the number of alternatives 

from the final decision system. 

 

4.7 NUMERICAL ILLUSTRATION 

 
 Suppose there are five possible alternatives Ai for 

i=1,2,3,4,5, to be evaluated using the interval-vague numbers by 

the three decision makers, whose weighting vector 

(0.35,0.40,0.25)Tw    under the above four attributes used 

in section 2.5.4, whose weighting vector 

(0.2,0.1,0.3,0.4)T  , and construct, respectively, the 

decision matrices as listed in the following matrices 

 ( )

5 4
, 1,2,3;   1,2,3,4,5;   1,2,3,4,k

k ijR r k i j


     as 

follows: 

1

([0.3,0.4],[0.4,0.5]) ([0.5,0.6],[0.1,0.3]) ([0.4,0.5],[0.3,0.4]) ([0.4,0.6],[0.2,0.4])

([0.3,0.6],[0.3,0.4]) ([0.4,0.7],[0.1,0.2]) ([0.5,0.6],[0.2,0.3]) ([0.6,0.7],[0.2,0.3])

([0.2,0.5],[0.4,0.5]) ([0.2,0R  .3],[0.4,0.6]) ([0.3,0.5],[0.3,0.4]) ([0.1,0.3],[0.5,0.6])

([0.4,0.5],[0.3,0.5]) ([0.5,0.8],[0.1,0.2]) ([0.2,0.5],[0.3,0.4]) ([0.4,0.7],[0.1,0.2])

([0.5,0.6],[0.2,0.4]) ([0.6,0.7],[0.1,0.3]) ([0.3,0.4],[0.1,0.3])  ([0.6,0.7],[0.1,0.3])

 
 
 
 
 
 
 
 

 

2

([0.4,0.5],[0.3,0.4]) ([0.4,0.6],[0.2,0.4]) ([0.1,0.3],[0.5,0.6]) ([0.3,0.4],[0.3,0.5])

([0.6,0.7],[0.2,0.3]) ([0.6,0.7],[0.2,0.3]) ([0.4,0.7],[0.1,0.2]) ([0.5,0.6],[0.1,0.3])

([0.3,0.6],[0.3,0.4]) ([0.5,0R  .6],[0.3,0.4]) ([0.5,0.6],[0.1,0.3]) ([0.4,0.5],[0.2,0.4])

([0.7,0.8],[0.1,0.2]) ([0.6,0.7],[0.1,0.3]) ([0.3,0.4],[0.1,0.2]) ([0.3,0.7],[0.1,0.2])

([0.3,0.4],[0.2,0.3])  ([0.3,0.5],[0.1,0.3]) ([0.2,0.5],[0.4,0.5]) ([0.3,0.4],[0.5,0.6])

 
 
 
 
 
 
 
   

3

([0.2,0.5],[0.3,0.4]) ([0.4,0.5],[0.1,0.2]) ([0.3,0.6],[0.2,0.3]) ([0.3,0.7],[0.1,0.3])

([0.2,0.7],[0.2,0.3]) ([0.3,0.6],[0.2,0.4]) ([0.4,0.7],[0.1,0.2]) ([0.5,0.8],[0.1,0.2])

([0.1,0.6],[0.3,0.4]) ([0.1,0R  .4],[0.3,0.5]) ([0.2,0.6],[0.2,0.3])  ([0.2,0.4],[0.1,0.5])

([0.3,0.6],[0.2,0.4]) ([0.4,0.6],[0.2,0.3]) ([0.1,0.4],[0.3,0.6]) ([0.3,0.7],[0.1,0.2])

([0.4,0.7],[0.1,0.3])  ([0.5,0.6],[0.3,0.4]) ([0.2,0.5],[0.3,0.4]) ([0.5,0.6],[0.2,0.4])

 
 
 
 
 
 
 
 

 

 

Then, utilize the approach developed to get the most desirable 

alternative(s). 

 

Step-1:    Utilizing the decision information given in matrix 

kR , and the I-IVOWG operator:    

 (1) (2) ( )

1 2([ , ],[ , ]) - , , , ,..., , t

ij ij ij ij ij w ij ij t ijr a b c d I IVOWG u r u r u r   

 
3

( )1 1 2 2

1

3 3 3 3

( ) ( ) ( ) ( )

1 1 1 1

- , , , ,..., ,

          = , , 1 (1 ) ,1 (1 )

j

j j j j

w

jw n n

j

w w w w

j j j j

j j j j

I IVOWG u a u a u a a

a b c d



   



   



    
        

    



   
 

which has the decision makers weight as 

(0.35,0.40,0.25) ,Tw   then a collective decision 

matrix  ij m n
R r


  is obtained as follows: 

([0.28,0.45],[0.35,0.45]) ([0.45,0.57],[0.12,0.29])

([0.31,0.65],[0.25,0.35]) ([0.40,0.67],[0.15,0.29])

R= ([0.18,0.55],[0.35,0.45]) ([0.20,0.38],[0.35,0.54])

([0.41,0.58],[0.23,0.42]) ([0.48,0.71],[0.13,0.25])

([0.42,0.58],[0.17,0.35])     ([0.49,0.62],[0.17,0.29])

                                       ([0.28,0.48],[0.32,0.42]) ([0.35,0.58],[0.19,0.39])

                                       ([0.45

 










,0.65],[0.15,0.25]) ([0.55,0.71],[0.15,0.27])

                                       ([0.29,0.55],[0.23,0.35]) ([0.16,0.36],[0.34,0.54])

                                       ([0.18,0.45],[0.26,0.44]) ([0.35,0.70],[0.10,0.20])

                                       ([0.24,0.45],[0.23,0.38])  ([0.49,0.60],[0.23,0.40])










 

Step-2:   Utilizing the IVWG operator, the collective overall 

preference values ir  of the alternatives Ai(i=1, 2, …,5) are 

obtained as follows: 

 1 2([ , ],[ , ]) , ,..., ,   1,2,...,i i i i i i i inr a b c d IVWG r r r i m  
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4

1 2

1

4 4 4 4

1 1 1 1

( , ,..., )

         , , 1 (1 ) ,1 (1 )

j

j j j j

n j

j

j j j j

j j j j

IVWG a a a a

a b c d





   



   



    
         

    



   

 

Hence, the collective values are calculated as follows: 

1 ([0.319,0.518],[0.260,0.405])r  ,

2 ([0.444,0.673],[0.173,0.284])r  , 

3 ([0.201,0.447],[0.316,0.470])r  ,

4 ([0.303,0.591],[0.182,0.329])r  , 

5 ([0.388,0.547],[0.211,0.373])r  . 

Step-3:   The correlation coefficient ( ,  ) IVSK A B  for 

interval-vague sets between the collective overall preference 

values ir  and the interval-vague positive ideal solution 

([1,1],[0,0])r


 is given as:  

1( , ) 0.6681,IVSK r r  2( , ) 0.8284,IVSK r r 

3( , ) 0.5119,IVSK r r 
 

4( , ) 0.6840,IVSK r r  5( , ) 0.7389IVSK r r 
 

Step-4:  Rank all the alternatives Ai (i=1, 2, 3, 4, 5) in 

accordance with the correlation coefficient ( ,  ) IVSK A B of 

the collective overall interval-vague preference values 

( 1,2,...,5)ir i  :           

2 5 4 1 3A A A A A    , 

And thus the most desirable alternative is A2. 

Step-5:    Utilizing the algorithm for mining fuzzy correlation 

rules and reducing the number of alternatives from the final 

decision system, we get the ranking of alternatives as follows: 

2 5 4.A A A   

 

5. CONCLUSION 

This paper discussed different classes of aggregation 

operators and their applications to MAGDM problems with 

IVSs. Correlation coefficient for interval vague sets was 

proposed and utilized in decision making together with some 

data mining techniques already proposed in our previous work.  

Ordered Weighted Geometric (OWG) operators were used for 

the MAGDM models proposed for IVSs and the proposed 

correlation coefficient is used for ranking alternatives. Data 

mining algorithm was utilized for reducing the number of 

alternatives and removing the less important decision variables 

from the final decision making process. Numerical illustrations 

were provided for MAGDM models for interval vague sets.  
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