

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 4 Issue 2 February 2015, Page No. 10450-10450

Sruthi T.K., IJECS Volume 4 Issue 2 February, 2015 Page No.10450-10453 Page 10450

Query Recommendations for Interactive Database

Exploration

Sruthi T. K

 Dept. of Computer Science and Engineering, M.Tech Student

M.G University, Mount Zion College of Engineering,

Kadammanitta, Pathanamthitta, Kerala, India

sruthu777@gmail.com

Abstract: Query Recommendation for Interactive Database Exploration (QueRIE) is a recommendation system that supports interactive

database exploration. The users who are not familiar with the database schema may face great difficulty in performing this job. This system

aims at assisting non expert users of relational databases by generating personalized query recommendations. QueRIE tracks the querying

behavior of previous users and identifies similar patterns. These similar query patterns are used to generate recommendations. There are

three approaches used in this work for generating query recommendations viz., suggested query by dictionary mapping, tuple based and

fragment history. And also the performance is analyzed among the three approaches.

Keywords: Query recommendation, dictionary mapping, tuple based, fragmentation, Interactive database exploration, personalization.

1. Introduction

The database systems store large amount of data. When the

number of users who use the database increases, it is critical to

access large volume of data from the database systems. The

users who lack familiarity with the database schema often have

difficulties in retrieving relevant data. First-time users may not

have the necessary knowledge to know where to start their

exploration. Other times, users may simply overlook queries

that retrieve important information.

This work describes a framework to assist non-expert users

by providing personalized QueRIE recommendations. The

recommended queries are relevant to the user’s information

needs and can be submitted directly or be further refined. In

other words, the user can use them as “templates” for query

formulation instead of having to compose new ones.

QueRIE is built on a simple premise that is inspired by Web

recommender systems: If users A and B have similar queries,

then the other queries of B may be of interest to user A and

vice versa. In other words, we can recommend the queries of

user B in order to help user A in their exploration of the

database. But, the transfer of this approach to the database

context introduces several technical challenges. First, SQL is a

declarative language, and hence syntactically different queries

may reflect the same information need. A second important

challenge is that how do we know which queries are important

in the computation of user similarity? Finally, the

recommended queries need to be intuitive so that the user can

understand and refine if necessary.

QueRIE addresses these challenges by decomposing each

query into basic elements. These elements are used to compute

similarities between users. Recommendations are generated by

mining queries from the system log that match well with the

users query fragments. Hence, the user is presented with

queries that match her querying behavior. In this, QueRIE

continuously monitors the user’s querying behavior and finds

matching patterns in the system’s query log, in an attempt to

identify previous users with similar information needs.

Subsequently, QueRIE uses these “similar” users and their

queries to recommend queries that the current user may find

interesting.

The remaining of this paper is organized as follows: The

remaining of this paper is organized as follows: Section 2

describes the literature review and section 4 gives the

architecture. Section 5 provides a brief methodology, and the

modules. Section 6 discusses the performance evaluation.

Section 7 and conclude the paper with the plans for future

work.

2. Review of Literature

2.1 Hive - A petabyte scale data warehouse using

HADOOP (A. Thusoo et al.)

This paper says that HADOOP is a popular open-source map-

reduce implementation which is being used in companies like

Yahoo, Facebook etc. to store and process extremely large data

sets on commodity hardware. However, the map-reduce

programming model is very low level and requires developers

to write custom programs which are hard to maintain and reuse.

Hive, an open-source data warehousing solution built on top of

HADOOP. Hive supports queries expressed in a SQL-like

declarative language - HiveQL, which are compiled into map-

reduce jobs that are executed using HADOOP.

2.2 QueRIE: A recommender system supporting

interactive database exploration (S. Mittal, J. S. V.

Varman)

http://www.ijecs.in/

Sruthi T.K., IJECS Volume 4 Issue 2 February, 2015 Page No.10450-10453 Page 10451

This paper mentioned that the demonstration presents QueRIE,

a recommender system that supports interactive database

exploration. This system aims at assisting non-expert users of

scientific databases by generating personalized query

recommendations. Drawing inspiration from Web

recommender systems, QueRIE tracks the querying behavior of

each user and identifies potentially “interesting” parts of the

database related to the corresponding data analysis task by

locating those database parts that were accessed by similar

users in the past. It then generates and recommends the queries

that cover those parts to the user.

2.3 Amazon.com recommendations: Item-to-item

collaborative filtering (G. Linden, B. Smith, and J.

York)

This paper wrote that recommendation algorithms are used to

personalize the online store for each customer. The store

radically changes based on customer interests, showing

programming titles to a software engineer and baby toys to a

new mother. There are three common approaches to solving the

recommendation problem: traditional collaborative filtering,

cluster models, and search-based methods. Here, it compares

these methods with our algorithm, which is called item-to-item

collaborative filtering. The algorithm produces

recommendations in real-time, scales to massive data sets, and

generates high quality recommendations.

2.4 Recommending Multidimensional Queries (A.

Giacometti, P. Marcel, and E. Negre)

In this work, the authors propose a framework for generating

OLAP query recommendations for the users of a data

warehouse. The techniques and the algorithms employed in the

multidimensional scenario (for example, the similarity metrics

and the ranking algorithms) are very different to the one that

proposed. Recommendations can be computed on the fly

efficiently and that our system can be tuned to obtain

objectively good recommendations.

2.5 QueRIE: Collaborative Database Exploration

(Magdalini Eirinaki, Suju Abraham, Neoklis Polyzotis,

Naushin Shaikh)

This work describes an instantiation of the QueRIE framework,

where the active user’s session is represented by a set of query

fragments. The recorded fragments are used to identify similar

query fragments in the previously recorded sessions, which are

in turn assembled in potentially interesting queries for the

active user. We show through experimentation that the

proposed method generates meaningful recommendations on

real-life traces from the SkyServer database and propose a

scalable design that enables the incremental update of

similarities, making real-time computations on large amounts

of data feasible.

3. QUERIE Architecture

The framework for generating query recommendations is

given in Figure 1. The input query is accepted from the user.

The user’s query is forwarded to both the database system and

the recommendation engine. The DBMS processes the input

query and return the result to the database query interface. At

the same time, the query is stored in the query log. The

recommendation engine finds matching patterns in the system’s

query log by using previous user’s querying behavior. And

generate a set of query recommendation that is returned to the

user through the query interface. Three approaches are used to

generate the query recommendations: (1) suggested query by

dictionary mapping (2) suggested query by tuple based query

recommendations (3) suggested query by fragment history.

Figure 1: Architecture of QueRIE framework

4. Methodology

The active users query is decomposed into basic elements by

the Querie framework paper Querie framework that captures

the essence of the query’s logic. These elements are used to

compute similarities between users, as well as signature of the

user’s querying behavior. Recommendations are generated by

mining queries from the system log that match well with the

signature. The proposed system consists of the following three

modules:

 Database Monitoring

 Query Analyzer

 Query Recommendation

When a user logs in the system the user have to submit an

SQL query to the query interface. The SQL query is sent to the

database as well as the recommendation engine. Also the query

is fragmented and stored in the system log. The query is

processed by the query analyzer and returns the result. At the

same time recommendation engine will generate the

recommendation that match well with the query.

4.1 Database Monitoring

Each time when a user logs in the system he/she have to submit

an SQL query through the database query interface.

SQL query which is provided by the user is sent to syntax

checker to check SQL syntax then the SQL query is fragmented

and then transmitted to both the DBMS and recommendation

engine. The input query is fragmented and stored in the system

query log. This will make the comparison easier when finding

the highly similar patterns from the system query log. Query

fragmentation also makes storing the query in the database in

an easier way.

4.2 Query Analyzer

The DBMS requested to the database and return the results to

the user and then query is fragmented, creating an implicit

query profile which consists of fragments. The given query is

decomposed into fragments with respect to the keywords such

as select, from, where, group by, having, order by. Names are

given for the fragmented queries. The fragmented query

Sruthi T.K., IJECS Volume 4 Issue 2 February, 2015 Page No.10450-10453 Page 10452

attributes are stored in the fragment table with respect to the

fragment name.

4.3 Query Recommendation

Recommendation engine combine the active user query and

query log and generate the set of queries, which are the

recommendations. These recommendations are generated by

the methods such as suggested query by dictionary mapping,

suggested query by tuple based query recommendations,

suggested query by fragment history.

The data dictionary will store the column name and the

synonyms. This will map the column name given by the user to

the synonyms given in the dictionary when the column name

given by the user is invalid. Using the dictionary mapping the

query analyzer will generate the result.

 In the tuple based instantiation user’s querying behavior is

used to generate result. This will captures the individual

witness of the tuple. The similarity between the current user

session and that of the previous users should be calculated

every time when the user submits a new query.

The fragment based method will compare the query

fragments of the active user with the fragments stored in the

query log. The idea behind this approach is to recommend

queries whose syntactical features match the queries of the

current user.

5. Performance Evaluation

The evaluation of the proposed Querie framework is done by

using the MySQL Server. The evaluation is based on the

following SQL query

SELECT * FROM FACEDICTIONARY

This is given to the Database Query interface. It will generate a

set of result which is returned to the user. And also a set of

recommendations are generated by using the three methods

viz., suggested query by dictionary mapping, suggested query

by tuple based query recommendations, suggested query by

fragment history. At all times, the active user is able to: (a)

formulate a query from scratch, (b) select a recommended

query and submit it as it is, or (c) select a recommended query

and edit it before submitting it to the database. Moreover, the

interface allows the user to browse the database schema,

analyze and re-submit queries that were posed during her

recent history. A snapshot of the QueRIE prototype is shown

in Figure 2. The recommendations are generated in the Figure

3. The recommendations are generated in three different ways

i.e., suggested query by dictionary mapping, suggested query

by tuple based query recommendations, suggested query by

fragment history. From this chart it is understood that the

fragment based method is efficient than the other two methods.

Because it takes only 0.073208363 second. But the other two

methods namely dictionary mapping and tuple based query

recommendations takes 0.383681081second and 0.703118613

second respectively.

Figure 2: QueRIE interface after a query has been submitted.

Figure 3: Performance of the various recommendation

methods.

The big advantage of the fragment-based approach is that

it can be implemented very efficiently; the space of fragments

grows slowly allowing for a scalable system. The fragment-to-

fragment similarities can be computed offline and stored for

very fast retrieval when recommendations need to be generated,

leveraging all the advantages of item-to-item collaborative

filtering.

6. Conclusion and Future work

The Querie system supports interactive database exploration.

This system aims to assist the users of the relational database

by generating recommendations. The recommendations are

generated by using the three methods viz., tuple based method,

fragment based method and dictionary mapping method. And it

is clear from the performance evaluation of the above

mentioned method that the fragment based method is efficient

than the other two. This system is able to generate almost all

the recommendation, because it uses all the three methods in a

single system.

Sruthi T.K., IJECS Volume 4 Issue 2 February, 2015 Page No.10450-10453 Page 10453

Future work lies in several areas, one is at developing a

more generic and scalable system such as by using matrix

factorization methods.

References

[1] Magdalini Eirinaki, Suju Abraham, Neoklis Polyzotis and

Naushin Shaikh “QueRIE: Collaborative database

exploration,” in Proc. IEEE Transactions,vol.26, no.7,

july 2014.

[2] A. Thusoo et al., “Hive - A petabyte scale data warehouse

using hadoop,” in Proc. IEEE 26th ICDE, Long Beach,

CA, USA, Mar. 2010, pp. 996–1005.

[3] G. Chatzopoulou, M. Eirinaki, and N. Polyzotis,

“Collaborative filtering for interactive database

exploration,” in Proc. 21st Int. Conf. SSDBM, New

Orleans, LA, USA, 2009, pp. 3–18.

[4] S. Mittal, J. S. V. Varman, G. Chatzopoulou, M. Eirinaki,

and N. Polyzotis, “QueRIE: A recommender system

supporting interactive database exploration,” in Proc.

IEEE ICDM, Sydney, NSW, Australia, 2010.

[5] J. Akbarnejad et al., “SQL QueRIE recommendations,”

PVLDB, vol. 3, no. 2, pp. 1597–1600, 2010.

[6] N. Alon, Y. Matias, and M. Szegedy, “The space

complexity of approximating the frequency moments,” in

Proc. 28th STOC, NewYork, NY, USA, 1996.

[7] E. Cohen, “Size-estimation framework with applications to

transitivenclosure and reachability,” J. Comput. Syst. Sci.,

vol. 55, no. 3, pp. 441–453, 1997.Pocket Telephone, Inc.

[8] G. Linden, B. Smith, and J. York, “Amazon.com

recommendations: Item-to-item collaborative filtering,”

IEEE Internet Comput., vol. 7, no. 1, pp. 76–80, Jan./Feb.

2003.

Author Profile

Sruthi T. K received the B.Tech degree in Computer Science

and Engineering from M.G University, Kerala at Sree Buddha

College of Engineering for Women in 2013. And now she is

doing her M.Tech degree under the same university in Mount

Zion College of Engineering.

	PointTmp

