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Abstract  

Probabilistic classifiers provide outputs to interpret conditional probabilities and distribution of classes given 

as input sample. User use sequence patterns to search for chemical formula and chemical names. Indexing of 

sequence patterns involving chemical formula identifies and index appearances of certain patterns for 

efficient search and retrieval. However, identifying chemical formulae has been a fundamental problem with 

increasing presence of formulae in any sequences. This is addressed through feature subset selection and 

indexing method in this work, called as Chemical Structured Bond Tree-based Indexing (CSBT-I). The 

algorithms in CSBT-I method are analyzed for different sequence patterns improving the chemical bond 

indexing accuracy using Bond Tree-based Structure and Sequential feature selection algorithm than existing 

methods. Bond tree based structure is created as a temporary indexing structure for particular requirement 

and purpose of indexing, therefore reducing the tree structure computation time. After creation of tree-based 

structure for several sequential patterns, indexing is performed using Bond Indexed Sequence, where several 

sequential patterns are analyzed to improve the search performance about chemical information. Chemical 

information indexing using multi level index pruning with the aid of sequential feature selection algorithm 

identifies and selects frequent and selective chemical molecular information as features to index, therefore 

reducing the chemical bond indexing time. Finally, to support user provided search queries that require a 

match between the chemical names used as a keyword, all possible sub-formulae of formulae that appear in 

any sequence are indexed. This in turn prunes the indices significantly without compromising the quality of 

the returned results in a significant manner.  

Keywords: Chemical information, Probabilistic classifier, conditional probabilities, Chemical Structure, 

Bond Tree  

1. Introduction  

Modern chemistry is regarded as an effort of justifying the fastness and reactivity of compounds in 

chemical bonding. However, from the point of view of heuristic, recurrence of structural patterns could also 

be interpreted based on the distances and geometric measurements between atomic nuclei. This therefore 

helps in analyzing and recognizing the patterns for efficient prediction of presence of atoms, molecules 

during a chemical reaction.  
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Based on structural information, Probabilistic Analysis of Molecular Motifs (PAMM) [1] designed 

and classified structural patterns using fuzzy as an entity. This in turn identified the atomic patterns 

automatically and also helped in recognizing complex structural patterns. With the increasing complexity of 

real world scenarios, delivering temporal structures in a sequence was considered to be hard. To address this 

situation, Temporal Skeletonization [2] was designed that summarized temporal correlations in the form of 

graph resulting in avoiding curse of dimensionality. However, in case of multi determinant state functions, 

problem still remains unaddressed. To this, a maximum separation criterion was introduced in [4] to 

facilitate evaluation of bond orders.  

Molecular graph can be used in chemical graph theory to evaluate the chemical, physical properties.  

In [5], second atom bond connectivity index was analyzed using hexagonal chain model. In [6], an efficient 

indexing method was designed with the aid of Non-ordered Discrete Data Spaces (NDDS) to perform 

similarity search in a significant manner. However, optimization remained an issue to be addressed. In [7], a 

tree structured formation for optimization using memetic algorithm was designed based on nature-inspired 

tree-based evolutionary operators. However with the objective of improving accuracy, Conditional Random 

Fields and Support Vector Machines [8] were evolved to enhance search performance.  

Based on the aforementioned methods and technique, Chemical Structured Bond Tree-based 

Indexing (CSBT-I) method is designed and the main contributions of this paper are summarized as follows: 

 A new Bond Tree-based structure using geometric concepts is presented which improves the tree 

construction time on the basis of the molecules present in the sequence patterns. The proposed 

method follows normalization for corresponding chemical bonding with the aid of adjacency matrix, 

therefore improving the connectivity between any pair of atoms in the molecule.  

 By efficient construction of balanced tree, the redundancy of occurrence of an atom or molecule is 

reduced in a sequence pattern based on the tree representative of the molecule. 

 Searching performance is improved by designing Bond Indexed Sequence model in an efficiency 

manner that not only performs efficient pruning but also does not compromise the quality of tree 

structure.  

Rest of the paper is organized as follows. Relevant work in this area is presented in section 2. Section 

3 introduces the relevant concepts and notations used for Chemical Structured Bond Tree-based Indexing 

(CSBT-I) method. Section 4 reports our experimental results with detailed discussions. Concluding remarks 

follow in the last section 5. 

2. Related works  

Many indexing methods have been presented regarding chemical information. Some of them are 

atom bond indexing [9], using molecular interactions [10], to name a few. An efficient sorting model using 

in-plane and out-of-plane was designed in [11] to improve search performances. Mathematical properties of 
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ABC was provided in [12] for finding extreme values of chemical trees. Another efficient indexing tree that 

supports ensemble models on data streams was designed in [13] by utilizing Ensemble tree and R tree.  

 

The database community in current years has evolved as a milestone with the growing amount of 

research on uncertain data modeling, due to its significance in different areas including, data cleaning, radio 

frequency identification (RFID) networks, chemical formation and so on. In [14], a novel indexing structure 

named U-Quadtree was evolved to improve search efficiency. LIGht weight Hash Tree (LIGHT) [15] was 

evolved as a model to improve response time and bandwidth consumption that also served as an efficient 

query search model. To support geometric document search, rank-based search algorithm was designed in 

[16].  

In chemical graph theory, many invariant polynomials and topological indices exists for a molecular 

graph. The topological index on the other hand provides numerical value for correlation of chemical 

structure with diversified physical and chemical properties. To this, simple connected molecular graphs were 

constructed in [17]. In [18], topological index of certain molecular structures from mathematical standpoint 

was presented. A detailed comparison between geometric arithmetic index and atom bond connectivity 

index to analyze molecular structure descriptors was presented in [19]. Concept of bond flexibility index 

was analyzed in [20].  

 

On the basis of the analyses, Chemical Structured Bond Tree-based Indexing is constructed called, 

CSBT-I, which comprises of two main parts, construction of chemical bond tree and indexing through multi 

level indexing. The former provides functionality to perform efficient construction of tree for the sequence 

patterns on the basis of molecular formula and the latter shows a summary of each interaction pattern 

through indexing and therefore emphasizing on the efficient search. 

3. Methodology 

In this section a method called Chemical Structured Bond Tree-based Indexing (CSBT-I) for 

different sequence patterns are analyzed for the sequences in which chemical bonds are organized in the 

training samples. The novelty of the CSBT-I method in this paper lies in analyzing different sequential 

patterns, that are capable of sequencing the chemical bonds organized in the training samples more 

efficiently than any other conventional method of indexing. This is achieved by creating temporary index 

structure and improving search performance of chemical information through bond indexing. To do this, a 

Bond Tree-based structure is created as a temporary indexing structure. Figure 1 illustrates the block 

diagram of Chemical Structured Bond Tree-based Indexing. 
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Figure 1 Block diagram of Chemical Structured Bond Tree-based Indexing 

As illustrated in the block diagram, the Chemical Structured Bond Tree-based Indexing (CSBT-I) 

method consists of two parts. The first part involved in the construction of Bond Tree-based structure uses 

atom-bond connectivity with the core objective of optimizing different sequential patterns. Followed by this, 

the second part involved is the design of Bond Indexed Sequences which is performed through sequential 

feature selection algorithm and multi level indexing. The elaborate description of CSBT-I method is given in 

the following sections with the aid of preliminaries.  

3.1 Preliminaries  

Let us consider a four element tuple connected graph (i.e. molecular graph that form aggregated 

atoms) „           ‟, where „ ‟ represents the set of vertices, „      ‟ represents the set of 

undirected edges, with maximum vertex degree of at most 4 is said to be a „molecular graph‟. Here „ ‟ is the 

set of vertex and edge labels whereas „ ‟ maps vertices to the edge labels respectively. The graphical 

representation resembles a structural formula of a certain molecule. Then, the bond order and atom-bond 

connectivity [3] graph is as given below, 

  

     
       

 
         (1) 

 

From (1), the bond order „  ‟, is the average ratio of difference between the number of bonding 

electrons „  ‟, and number of anti bonding electrons „   ‟ respectively. With the bond order, the atom-bond 

connectivity [4] for constructing tree-based structure is obtained as given below. 

                     √
             

        
     (2) 

 

From (2), the atom-bond connectivity „   ‟ of a graph „ ‟ is the ratio of square root of summation 

of distance between the vertices „    ‟ and edges „    ‟ to the product of distance between vertices and 

edges „        ‟ respectively.  
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3.2 Bond Tree-based structure  

The Bond Tree-based structure in CSBT-I method uses geometric concepts to analyze and optimize 

different sequence patterns. In order to control the contribution of each chemical bonding for different 

sequential patterns in the geometric formation, normalization is applied. To perform normalization, the edge 

length of each chemical bonding is normalized by the domain size of the corresponding chemical bonding 

with the aid of adjacency matrices and is as given below.  

Let us consider a molecular representation of isopentane as shown in figure 2(a), then the graphical 

representation is as given in figure 2(b) with the adjacency matrix representation as shown in figure 2(c) for 

which the bond Tree-based structure of isopentane is provided in figure 2(d).  

                                                                                      

                                                                             

                                                               

(a)           Molecule                                (b) Graph 

 

|
|
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| (c) Adjacency matrix      

 

 

 

        (d) 

Figure 2 (a) Molecular representation of isopentane (b) Graphical representation of isopentane 

(c) Adjacency matrix representation of isopentane (d) Bond Tree-based structure of isopentane 

As shown in the figure 2(c), in the adjacency matrix of isopentane, rows and columns corresponds to 

the atom numbering, off-diagonal elements bond ordering pointed by row and column. With all chemical 

bonds known a priori, the connectivity between any pair of atoms in the molecule is embedded into a Bond 

Tree-based Structure. This one-time embedding then allows all subsequent operators, under the guidance of 
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the constructed tree structure, is then used as a basis for searching and indexing individuals. The pseudo 

code of Bond Tree-based Structure is provided in figure 3.  

Input: Training samples Dataset „  ‟, sequence pattern „  ‟ 

Output: Optimized pattern generation  

1: Begin  

1:        For each sequence pattern „  ‟ and allocate it as root node 

2:                Establish its adjacent sequence patterns and allocate them as its child node 

3:               Allocate all the child nodes to „ ‟  

4:               Assign empty set „ ‟ 

5:               While „ ‟ not empty 

6:                          Repeat  

7:                                    Identify neighboring sequence patterns of „ ‟ 

8:                                    Allocate them as the children of „ ‟ 

9:                           Until (children of „ ‟  = parent of „ ‟) 

10:                         If „ ‟ has at least one child 

11:                                   Put „ ‟ in „ ‟ 

12:                          End if  

13:                 End while 

14:    End for  

15: End  

Figure 3 Pseudo code of the construction of Bond Tree-based Structure 

Inspired by the molecular patterns by machine learning [2], in this work, a Bond Tree-based 

Structure is presented. To start with, different sequence patterns that form as the input are analyzed and are 

made available for further processing. Based on the tree representative of the molecule (i.e. sequence 

patterns) and the corresponding empty set thereof, the Bond Tree-based Structure then performs a random 

rotation. In other words, each molecule in the sequential pattern forms an adjacency matrix between that 

particular atom and its parent. This procedure is repeated for all set of molecules in the sequence pattern or 

until the initial population is fully populated. In this way, consequently, it is easy to see a molecule as a tree 

provided all its bond lengths and angles form independency with each other. Finally, the neighboring 

sequence patterns are identified to form a tree for each molecule that forms as a basis for temporary indexing 

structure. 

3.3 Bond Indexed Sequence  

With the resultant Bond Tree-based Structure, a Bond Indexed Sequence is generated to improve 

search performance about chemical information and their ordering. In order to ensure search performance 
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that require a partial match between the atoms present in the molecule (i.e. obtained from sequential pattern 

through tree structure) and user provided atoms, all possible sequence patterns for each molecule has to be 

indexed. Indexing all possible sequence pattern, results in increase in the storage and memory requirements. 

Therefore, in this paper, a Bond Indexed Sequence to prune the indices in a significant manner without 

compromising the quality of the returned results is designed.  

In the process of recognizing structural patterns, if non parametric partitioning [1] has to be 

performed for recognizing molecular patterns for possible sub-terms of a chemical name, the size of the 

partitioning will be extremely large and constructing such a partitioning model not only results in the 

increased memory requirements but also compromises the processing time. To address this problem, in this 

work, an index pruning technique, called, Bond Indexed Sequence that not only reduces the index size but 

also reduces degradation in the quality of search results is presented. 

 

To construct Bond Indexed Sequence sequential patterns are analyzed and features are selected for 

indexing. This in turn improves the corresponding search operations and ensures higher rate of similarity 

search. For example, same chemical molecule may have dissimilar formula strings mentioned in text, e.g., 

„tartaric acid‟ may have been listed as „      ‟ (basic formula) or „                    ‟ 

(structural formula). Then, given a training samples dataset „   ‟ of sequences „      

                ‟, „      ‟, the support of subsequence „    ‟ represents the set of all sequences „   ‟ 

containing „    ‟. The sequence is segmented into subsequences, and is mathematically formulated as given 

below.  

 

                                             (3) 

                   (4) 

       |    |        (5) 

 

From (4) and (5), the subsequence „    ‟ precede the set of all sequences „   ‟, with „|    |‟ 

representing the number of sequences in „   ‟. Let us consider a dataset „  ‟ with sequence pattern 

„ {                } ‟, „      
‟ the support of subsequence „    ‟ is then given as „      

 

{          } ‟. With the above considerations, a sequential feature selection algorithm is designed that 

extracts all molecules from a given sequence pattern. Followed by this, all possible partial molecules are 

generated. With the generated possible partial molecules, the proposed method records the occurrences or 

the frequency is measured with which the indexing is performed. Figure 4 shows the algorithmic 

representation of sequential feature selection algorithm. 
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Input: Training samples Dataset „   ‟, sequence pattern „   ‟, Molecules 

„                   ‟ 

Output: Optimized search performance  

1: Begin 

2:    For each sequences  

3:         Repeat  

4:             For all molecules „ ‟ in a sequence pattern „  ‟  

5:                   If           

6:                           Extract all molecules from a given sequence pattern using (3) 

7:                           Measure frequency of occurrences using (5) 

8:                 Compare probability of each molecule in sequence pattern to user specified 

chemical information using (6) 

9:                           Perform multi level indexing  

10:                     End if  

11:              End for 

12:      Until (all sequence patterns are processed)  

13:    End for 

14: End  

Figure 4 Sequential feature selection algorithm 

 

Analogously as shown in the figure 4, Sequential feature selection algorithm compares the 

probability of each molecule in a sequence pattern with the user specified chemical information. This in turn 

gives more flexibility to different sequencing being used which is mathematically formulated as given 

below.  

 

        
     (

   
 ⁄ )  

     (
   

 ⁄ )       (
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     (6) 
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From (6), „     (
   

 ⁄ )‟ specifies the total summed probability of sequence the method derived 

by Bond Tree-based Structure algorithm, with „     (
   

 ⁄ )‟ specifying the probability of sequence that 

obtains a random zero value over Markov model. This therefore ensures and recognizes sequences even in 

the presence of sequencing errors. Finally, „ ‟ represents the fraction of „     (
   

 ⁄ )‟ corresponding to 

the most likely occurrence of molecule in a sequence, if present „ ‟ or „ ‟ otherwise. With the occurrence of 

molecule in a sequence, a multi level indexing is applied to improve the search performance. Figure 5 

illustrates the Bond multi level indexing followed in the proposed work. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Structure of Bond multi level indexing  

 

As illustrated in figure 5, the Bond index records contains of the search-key values and data pointers. 

With the increasing size of the molecule, analogously, the size of sequence pattern also grows. In order to 

speed up the search operations, the proposed work uses bond multi level indexing in order to keep large size 

index in memory. As shown in the figure, the bond multi level indexing applied in the proposed work is to 

reduce the part of the index that we have to continue to search. It consists of an inner index, outer index and 

data blocks with the single level ordered indexes in inner indices, the new index to the inner index called as 

the outer index and so on. The bond multi level indexing process is continued until all entries of a specific 

sequence in molecular formula fit in a single block, ensuring optimized searching.   

 

4.  Experimental settings 
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The experimental work is carried out in JAVA language for evaluating the sequence patterns in 

chemical bonding. The performance of proposed method is evaluated with parameters such as chemical 

bond density, chemical bond size, tree structure computation time, chemical bond indexing time and 

chemical bond indexing accuracy against existing state-of-art techniques.  The experimental data used for 

the analysis of proposed and existing methods are extracted from Molecular Description Data Sets (Octane 

Isomers (O8), PolyAromatic Hydrocarbons (PAH), and PolyChloroBiphenyls (PCB)). The results of the 

experiments are presented below.  

 

4.1 Scenario 1: Tree structure computation time 

Tree structure computation time is measured using the number of chemical bonds (i.e. density) and 

the tree structure formation time. The mathematical formulation for Chemical bond tree structure 

computation time is given as below. 

     ∑            
             (7) 

From (7), the tree structure computation time „  ‟ is measured using the number of chemical bonds 

or density of chemical bonds „   ‟ and the time taken to construct tree (i.e. time to construct tree for 

different sequence patterns provided as input). The computation time is measured in terms of milliseconds. 

Table 1 Tabulation for chemical bond tree construction time 

Chemical bond 

density 

Chemical bond tree construction time (ms) 

CSBT-I PAMM  Temporal 

Skeletonization 

15 5.28 6.19 6.49 

30 9.32 10.47 10.85 

45 13.21 14.35 15.05 

60 18.90 19.12 21.35 

75 23.14 23.29 24.89 

90 28.90 29.32 31.43 

105 33.12 34.29 35.13 

120 38.32 39.47 41.99 

135 43.89 44.32 46.32 

150 49.14 50.30 52.17 
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The table given above describe the performance result of the Chemical Structured Bond Tree-based 

Indexing (CSBT-I) with the existing methods Probability Analysis of Molecular Motifs (PAMM) [1] and 

Temporal Skeletonization [2].  The chemical bond tree construction time is measured based on the chemical 

bond density present in the sequence pattern. The value of the proposed CSBT-I method is compared with 

the existing PAMM [1] and Temporal Skeletonization [2] is illustrated in table 1. Table 1 displays the tree 

construction time for chemical bond density in the range of 15 and 150. The tree construction time is used to 

measure the time needed to construct the chemical bonds. The chemical bond density is taken as the input 

for constructing the tree and the construction time using different methods are obtained.  

 

 

Figure 6 Chemical bond tree construction time versus chemical bond density 

Figure 6 shows the chemical bond tree construction time during optimized searching based on the 

chemical bond density. As shown in the figure, by applying the Bond Tree-based structure using geometric 

concept, construction time is improved even with the increase in the chemical bond density. In the case of 

the proposed indexing method, the CSBT-I perform better than the existing PAMM [1] and Temporal 

Skeletonization [2]. On average, the proposed CSBT-I outperforms the PAMM by 5% and 11% compared to 

Temporal Skeletonization respectively. In the proposed CSBT-I method, edge length of the chemical bond is 

normalized using adjacency matrix. With the adjacency matrix values, chemical bond tree is constructed for 

different sequence patterns. This in turn optimizes the construction of tree and therefore reduces the tree 

construction time.  

Furthermore, the transformation process is applied to coefficients only from the high pass filter and 

are subsequently provided and are repeated up to the desired level of wavelet computation that further 

improves the compression ratio for different set of images.  
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4.2 Scenario 2: Chemical bond indexing accuracy 

The chemical bond indexing accuracy is the measure to determine the rate of probability of the 

structures of chemical bonds being properly indexed so that resulting in the improved search performance. 

The indexing accuracy is mathematically formulated as given below. 

    ∑                                             
      (8)  

From (8), the indexing accuracy „  ‟ is measured with chemical bonds properly indexed to the total 

chemical bonds „   ‟ used in the experimentation. It is measured in terms of percentage and higher the 

indexing accuracy results in the improvement of the search performance and therefore the efficiency of the 

method is said to be proven. The chemical bond indexing accuracy with varying chemical bond density with 

the existing methods PAMM, Temporal Skeletonization and CSBT-I is illustrated in table 2. 

Table 2 Tabulation for chemical bond indexing accuracy 

Chemical bond 

density 

Chemical bond indexing accuracy (%) 

CSBT-I PAMM  Temporal 

Skeletonization 

15 82.15 71.37 63.40 

30 88.13 78.32 67.35 

45 91.53 83.48 79.44 

60 92.32 85.27 81.23 

75 85.14 78.09 74.05 

90 87.10 80.05 76.01 

105 90.32 83.27 79.23 

120 85.56 77.51 73.47 

135 90.14 83.09 79.04 

150 93.33 86.28 82.24 

 

The chemical bond indexing accuracy is used to evaluate the rate at which the indexing is performed 

and the accurate indexed evolved which further helps to measure the search performance for chemical 

information. The actual chemical bond density is taken to measure the chemical bonds that are properly 

indexed. Next, the chemical bond indexing accuracy for measuring search performance using different 

methods is obtained. Finally, the ratio of chemical bonds that are properly indexed and the chemical bond 

density gives the chemical bond indexing accuracy.   
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Figure 7 Chemical bond indexing accuracy versus chemical bond density 

As shown in the figure 7, the chemical bond indexing accuracy is measured using chemical bond 

density in the range of 15 to 150 and performed for 10 simulation runs. Compared to the existing methods, 

the proposed CSBT-I method involves highest indexing accuracy even when chemical bond density 

increases. In the proposed CSBT-I method, bond indexed sequence is performed for varying chemical bond 

density a sequential feature selection algorithm is performed. Here the sequence are segmented into 

subsequences using the precede formation. With the resultant value obtained, the sequential feature selection 

algorithm extracts all molecules from a given sequence pattern that has dual advantages. They are the index 

size is reduced and in time reduces the degradation in search quality. The indexing process is finally 

performed only if the support of subsequence „    ‟ represents the set of all sequences „   ‟ that helps in 

maximizing the indexing accuracy by 9% compared to PAMM and 15% compared to Temporal 

Skeletonization respectively.  

 

4.3 Scenario 3: Chemical bond indexing time 

Chemical bond indexing time is the time taken for indexing with respect to the number of chemical 

bonds (i.e. density). The mathematical formulation for Chemical bond indexing time is as given below. 

     ∑            
                            (9) 

From (9), the chemical bond indexing time „  ‟ is measured using the number of chemical bonds or 

density of chemical bonds „   ‟ and the time taken to perform multi level indexing. The indexing time is 

measured in terms of milliseconds. Table 3 provides an insight into the chemical bond indexing time using 

the proposed CSBT-I method and the existing methods, PAMM and Temporal Skeletonization respectively.  
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Table 3 Tabulation for chemical bond indexing time 

Chemical bond 

density 

Chemical bond indexing time (ms) 

CSBT-I PAMM  Temporal 

Skeletonization 

15 4.28 4.95 5.33 

30 7.14 8.32 9.43 

45 10.35 12.14 13.25 

60 14.56 16.89 17.90 

75 18.32 20.14 21.25 

90 22.14 24.33 25.44 

105 25.14 27.87 28.98 

120 30.33 32.14 33.25 

135 34.14 37.78 38.89 

150 38.13 41.32 52.43 

 

Chemical bond indexing time is obtained by the product of chemical bond density and the time taken 

to perform multi level indexing. Lower the chemical bond indexing time, more efficient the method is said 

to be and is measured in terms of milliseconds (ms). The targeting results of chemical bond indexing time 

using CSBT-IT with two state-of-the-art methods [1], [2] in table 3 presented for comparison based on the 

chemical bond density.  

 

 

Figure 8 Chemical bond indexing time versus chemical bond density 
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Figure 8 presents the variation of chemical bond indexing time with respect to chemical bond 

density. All the results provided in figure 8 confirm that the proposed CSBT-I method significantly 

outperforms the other two methods, PAAM [1] and Temporal Skeletonization [2]. The chemical bond 

indexing time is improved in the CSBT-I method using the multilevel indexing technique. With the 

application of multilevel indexing technique, the sequential feature selection algorithm obtains a measure of 

probable occurrence of each molecule in a sequence pattern to the user specified chemical information. This 

in turn ensures higher rate of flexibility towards different sequencing. Followed by this, random zero value 

over Markov model is applied to measure the probability rate. With the molecule occurrences in a sequence, 

the CSBT-I method performs multi level indexing is applied. This in turn reduces the chemical bond 

indexing time using CSBT-I by 12% compared to PAAM. As a result chemical indexing time is reduced in 

CSBT-I method using multilevel indexing. In addition by applying multilevel indexing in CSBT-I method in 

turn minimizes the index that we have to continue to search, in turn reducing the chemical bond indexing 

time by 19% compared to Temporal Skeletonization. 

5. Conclusion  

Indexing scheme is one of the key issues to be handled for different structural patterns for the 

sequences in which the chemical bonds are organized. Tree structure is developed for organization of 

chemical bonds and the ordering of chemical bonds is obtained by chemical bond tree-based structure. This 

paper presents an emergence of new search performance about chemical information called Chemical 

Structured Bond Tree-based Indexing (CSBT-I). To overcome the limitations of existing search performance 

for sequences in which chemical bonds are organized, three parameters such as the chemical bond indexing 

accuracy, chemical bond indexing time and tree structure computation time is taken into account along with 

the sequential feature selection algorithm from which it is identified that the proposed CSBT-I method has 

the improved search performance. Besides, a tree-based structure to reduce the chemical bond tree 

construction time and multilevel indexing to reduce the chemical bond indexing time is introduced. 

Performance results revealed that the proposed CSBT-I method provides 12% indexing accuracy by 

reducing the indexing time by 16% compared to the state-of-the-art methods.  
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