
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 6 Issue 10 October 2017, Page No. 22616-22626

Index Copernicus value (2015): 58.10 DOI: 10.18535/ijecs/v6i10.11

Nagalakshmi Batchu, IJECS Volume 6 Issue 10 October 2017 Page No. 22616-22626 Page 22616

Hop Onset Network: Adequate Stationing Schema for Large Scale Cloud-

Applications

Nagalakshmi Batchu
1
, Nagi Setty A

2

1
NIIT Private Limited, India

2
Neudesic Private Limited, India

Abstract

Reducing the time that a user has to occupy resources for completing cloud tasks can improve cloud

efficiency and lower user cost. Such a time, called cloud time, consists of cloud deployment time and

application running time. In this work we design jump-start cloud, under which an efficient cloud

deployment scheme is proposed for minimizing cloud time. In particular, VM cloning based on disk image

sharing has been implemented for fast VM and application deployment. For applications with heavy disk

visits, the post-deployment quality of service (QoS) may suffer from image sharing and consequently,

application running time will increase. To solve this problem, different image distribution schemes have

been designed. We test jump-start cloud through a Hadoop based benchmark and MapReduce applications.

Experiment studies show that our design saves application installation time and meanwhile, keeps

application running time reasonably low, thus makes cloud time shorter.

Key Words- Jump start, KVM, QoS, VM,

Deployment

1. Introduction

Cloud has been looked as a natural evolvement

for data centre (DC) so that resources such as

CPU, memory, storage, and IO/network in a DC

can be dynamically and flexibly grouped or

allocated, to serve clients with different service

level agreement (SLA). Virtualization has been

looked as a de facto management technology

because of the speed, flexibility and agility it

brings to cloud resource management. Providing

resources in terms of virtual machines (VMs), it is

easy to assign an application with a set of

quantitatively measurable resources, e.g., a

number of VMs where each VM has an assigned

CPU slots (VCPU) and an amount of

memory. As applications and OS are bundled

into VM images, virtualization enables users to

run their applications with a supporting OS of

their choice, giving users the exposure to system-

level

Deploying and launching a VM-based user cloud

application on top of a cloud infrastructure in

general involves the following steps. First, a VM

image mainly consisted of the targeted OS and

user applications is compiled and then up-

loaded to a VM image repository within the cloud

infrastructure. Then a number of VM’s are

launched on a set of DC physical hosts. Finally,

application environments (IP, hostname, etc.) are

configured and target applications are deployed.

It is desired that a cloud can jump-start, i.e., a

cloud can be deployed and ready in short time. We

think cloud jump-start time, in this work defined

as the overall time that a cloud application is

deployed and becomes functioning under desired

QoS, should be fast for improving cloud

infrastructure services for the following reasons:

http://www.ijecs.in/

DOI: 10.18535/ijecs/v6i10.11

Nagalakshmi Batchu, IJECS Volume 6 Issue 10 October 2017 Page No. 22616-22626 Page 22617

1. One of the most important goals for cloud

service providers is to make quick response to

clients’ resource requests and provide clients with

applications running in desired states as soon as

possible.

2. Even during the deployment time the

resources reserved for a cloud application cannot

be used by any other applications, which means

a kind of resource waste. Making clouds jump-

start can significantly improve cloud resource

efficiency because a cloud normally serves

thousands of users.

3. Users are usually billed based on the amount

of cloud resource requested and the length of time

to occupy such resource. The overall time that a

cloud application occupies the resources needed,

which we call cloud time, then is an important

criteria for measuring, e.g., non-long lasting cloud

services. It is to the interests of users to reduce

cloud jump-start time for minimizing cloud time,

unless the prompt cloud deployment results in a

much longer application execution time.

4. Reducing cloud jump-start time helps improve

cloud service availability. Various system

software and hardware failures or software

patches may require the entire cloud to shut down

and restart. Faster jump-start time will help reduce

system downtime and improve cloud availability.

Reducing cloud jump-start time has become a

research challenge, especially for virtual cloud

environment that normally involves a distributed

system consisted of a large number of VMs.

Having a virtual cloud environment ready

requires many VMs deployed with a complex

configuration setting, thus leading to challenges

for both VM deployment and application

environment setup. For example, it takes Amazon

Elastic MapReduce about 4 minutes to deploy a

Hadoop cluster with 20 VMs.

We propose using VM cloning to reduce VM

installation time, thus to achieve a shorter jump-

start time. A small-sized memory state file is

generated from a suspending VM and distributed.

Upon receiving the memory state file a VM can be

resumed in a short time. The base image is

shared in an image server, e.g. a NFS server, and

VMs fetch extra data from the base image on-

demand, e.g., through leveraging remote disk

image access techniques that have been widely

used in VM migrations.

A design issue not clearly addressed by previous

cloning works such as how to differentiate cloned

VMs. cloning from the memory state can only

generate identical VMs. These VMs can’t start

working immediately before their memory states

for MAC/IP addresses and the roles they play in

the cloud application are assigned.

Another design issue not addressed previously,

which we think even more important, is how to

guarantee application post deployment QoS. The

QoS may suffer from VM cloning when there are

a large number of live VMs sharing the same disk

image, and for each VM disk image access is

frequent. The disk IO for accessing the image then

can be crammed, which leads to a long delay for

image data fetch. The delay may cause

application interruption and bad user experience

for real-time applications, or a longer task

accomplishment time for result-oriented

applications.

We design and evaluate a comprehensive jump-

start cloud deployment frame work that considers

all of the above issues. We implement VM

cloning for fast VM launching, design specific

daemon for VM differentiation and the consequent

application deployment, and propose different disk

image distribution methods for meeting post-

deployment cloud QoS. We focus on non-long

lasting VM-based Hadoop applications, and

consider major QoS as how soon a cloud task is

accomplished. The evaluation criteria then

becomes cloud time, which is composed of jump-

start time and application running time. The

research methodology, however, can be applied to

exploring how the proposed framework works for

long lasting applications, by investigating

intermediate stages of applications instead.

DOI: 10.18535/ijecs/v6i10.11

Nagalakshmi Batchu, IJECS Volume 6 Issue 10 October 2017 Page No. 22616-22626 Page 22618

In summary, our major contributions are as

follows:

We design jump-start cloud deployment

framework that balances deployment time and

post-deployment QoS. In this framework a KVM

fast cloud application installation scheme is a

designed.

– The scheme clones VMs upon memory state

file, differentiates VMs through post VM

configurations, and installs application through

VM meta-data. Depending on application image

access patterns, different image distribution

schemes are designed to solve image access

bottleneck problem.

– We identify cloud jump-start time as a critical

parameter for cloud service measurement, and

propose using cloud time that consists of cloud

jump-start time and application running time for

measuring non long-lasting applications.

– We design a Hadoop cloud application

benchmark. Through running it and cloud

applications, we conduct intensive experiments for

understanding, evaluating, and validating the

proposed schemes. Experimental data shows that

the proposed framework minimizes cloud time by

making the time consumed on both application

installation and application execution relatively

short.

2. Jump-Start Cloud Deployment Overview

The targeted usage is user-defined large-scale

cloud applications where both applications and

their execution environment (e.g., OS) are created

and/or defined by client. This may likely be one of

major cloud usage models because future cloud is

able to expose clients its infrastructure and let

client determine the soft- ware environment.

When the image is created by client, cloud

services may have

1) A better efficiency due to a close bundle

between application and its execution

environment and 2) a better privacy because the

client owns the entire software stack and data. In

this model, to request cloud resources a client

submits disk image to the cloud. The cloud works

on this image to deploy and run the user- defined

application. The application is on-the-fly, and for

each request cloud has to establish a new

execution environment. After the application is

completed, this environment including VMs and

data will be removed.

Our goal is to design a comprehensive cloud

deployment framework that can make a non long-

lasting user-defined cloud application finished in

shortest time, i.e., makes its cloud time minimum.

We care about the cloud time for result- oriented

applications because for client a shorter

completion time means a better QoS and a lower

cost (a client will be charged based on a

shorter resource occupation time), and for cloud a

shorter cloud time can improve cloud resource

efficiency (the released resources from the

finished application can be used by other clients).

The two major steps after the cloud has loaded

user image is application deployment and

application running. To make the application

deployment time (including the VM deployment

time) short, our proposed technology for jump-

start cloud is VM cloning. VM memory state files

(or snap shots) are generated first at a physical

machine where the application image is loaded.

They are then delivered to the physical machines

where VMs are supposed to be located at. As the

size for a state file is small, the time for

distributing it is short. VMs can then be quickly

activated at destined machines. Once application

metadata is sent to these VMs accordingly,

application can start to run.

Such a fast application deployment may cause

negative impact on application performance. A

VM may visit the image from time to time. This

happens, e.g., when disk image contains a large

amount of data that has to be processed by the

cloud application. Generally, a number of VMs

will share and visit the same image, e.g., through

NFS. In case a large number of image visits from

a large number of VMs over the disk access IO, an

DOI: 10.18535/ijecs/v6i10.11

Nagalakshmi Batchu, IJECS Volume 6 Issue 10 October 2017 Page No. 22616-22626 Page 22619

image visit for a VM may take long time. If we

consider the case that for an application the

parallelism has been done perfectly at VM level

so that there is only single thread in each of the

VMs, the increased image access delay for a VM

will result in the same increased running time for

the application part running in that VM.

Keeping image access delay low thus is critical.

In our efficient cloud deployment framework we

add one more step before application deployment.

The application disk image will be distributed to a

number of physical machines within the cloud, if

needed, to keep cloud time low for applications

with a large number of image visits. Basically, a

few image copies will serve VMs so that the

number of VMs that share the same image

becomes smaller. Consequently, the request rate

for visiting a particular image becomes lower,

which leads to a lower average image access

delay. Because distributing image also takes time,

whether or not to distribute images depends on

applications’ image visiting pattern, including

application scale (number of VMs) and image

visiting load per VM. In jump-start cloud images

can be distributed before application is deployed

or after application has already started.

3 Fast Cloud Application Deployment

Fast distributed application deployment in

virtualized environment include VM installation

and application deployment. In this section we

present the detailed design and our solutions for

implementation issues.

3.1 Fast VM Installation and Differentiation

For distributed cloud applications we deploy VMs

through live cloning in a cloud that supports

KVM. The memory state file of the original VM

is distributed to the hosts (i.e., physical machines)

where the VMs are supposed to be located. At this

stage we consider all of VMs share one disk

image, e.g., through NFS. Since the size of

memory state file is small, distributing such a file

within cloud takes a short time. Once a destined

host receives the state file, the VM can be resumed

at that host immediately. The state file can be

either submitted by a cloud user or generated by

cloud itself, through storing the memory state into

a separate file.

The cloned VMs are exactly the same as their

parent, including networking configurations for IP

address and MAC address. The next step for VM

installation then is how to enable these VMs with

individual network configurations and other

distinguished features if any. Ideally, if a

hypervisor at the host of that VM knows which

part of the VM memory state should be changed

for such di- versification, it can modify the

internal memory state and consequently diversify

the VM. However, up-to-date there is no such

technology due to the extreme complexity of

memory state file.

In this work we diversify VMs by adding a

daemon into each of them. The daemon will load

the information needed, called VM metadata in

this paper, to distinguish its host VM. The VM-

metadata is obtained from cloud manager. Based

on the metadata the daemon triggers a re-

configuration for the VM to have its distinguished

features enabled.

A remained design issue is how a daemon obtains

the metadata of a VM. Note that a daemon

cannot obtain the metadata from the cloud

manager directly through the DC network, as the

VM cannot communicate with any other cloud

components until its diversification is completed.

Therefore, the metadata can only be obtained

through some other ways based on the virtualized

hardware.

In this work we collect VM metadata by

generating an ISO image, as what has been done

in VM Plants. The metadata stored in the ISO

image will be delivered to VM host along with the

memory state file, while the daemon accesses the

information from CDROM. The ISO image is

customized through an interface open to cloud

users. When creating a VM image the user adds

additional information to VM-metadata, e.g.,

DOI: 10.18535/ijecs/v6i10.11

Nagalakshmi Batchu, IJECS Volume 6 Issue 10 October 2017 Page No. 22616-22626 Page 22620

through a user script added to the ISO image.

Once the ISO image is invoked after the VM

cloning, customized configurations including

application configurations will be accomplished.

We implement the fast VM deployment in KVM,

hypervisor supports offline migration, during

which memory state is stored into a file and then

loaded in the destination. Two important

implementation works are VM meta-data

construction and self-configuration daemon

design.

3.2 Cloud Application Deployment

Once VMs are installed, each of them has to act as

different roles of a distributed application. If a

VM template also carries application memory

state file, the application can be installed along

with VM. However, in some applications such

state file depends on cloud settings, which cannot

be obtained before it starts to run in cloud. For

example, in a process of HDFS in Hadoop, the

storage ID is generated according to the cloud

configurations and once it is set, it cannot be

modified. It is then difficult for a client to provide

a storage ID in the VM template.

We extend the VM-metadata and design a

framework that makes dynamic application

configuration automatically. Under this

framework, client adds a script to the VM-

metadata that implements the client interface,

and sends a script to a centralized configuration

management server (CMS) that is designed for

collecting information and delivering customized

configurations.The CMS then can assign the VM

a role through sending meta data, to initiate

application deployment. After the fast

installation of VMs the CMS has the system

VM deployment information through collecting

reports from these VMs. It then de- livers

configuration commands based on client’s request,

through which the role of each VM is determined.

For example, when deploying a Hadoop cluster in

the cloud, after receiving VM installation

completion reports from all VMs, the CMS

decides which VM works as Master. It then tells

other VMs the Master’s IP address and their roles,

which are Slaves. Slaves then contact the master

to get application started.

The application configuration framework is

implemented with Python. When a request is

submitted to the cloud stack, the CMS makes a

new waiting list for VMs regarding to the request.

After configuring network, the daemon in a VM

will invoke the script named self in the VM-

metadata. The activated VM then communicates

with the CMS using remote procedure call (RPC).

Upon receiving a PRC, the CMS invokes the

user policy to make a decision what should be

returned to the VM. The returned value can be

additional meta-data or a configuration command.

Typically there is only one interaction between a

daemon and CMS.

 A daemon can trigger more RPC calls if more

information is required.

4 Image Distribution for Application QoS

When applications depend on frequent, large

number of disk image visits, the delay for a VM to

obtain data from disk image may be large. This

lowers computation efficiency and results in an

increased application running time (i.e., a worse

QoS). To reduce the average image access time,

disk image can be distributed to a number of

physical machines so that each of the images is

visited by fewer VMs. In general, image

distribution helps to reduce cloud time only if the

time cost for the image distribution is less than

the consequent time savings on disk image

reading.

Since the size of an image is generally very large,

it will take a long time to copy an image from one

physical machine to another. In addition, for any

part of a large-scale application, which runs in a

VM in our case, it may only visit a small portion

of the image. It is then not necessary to distribute

the whole image to every host. Another reason for

not distributing too many images within cloud is

DOI: 10.18535/ijecs/v6i10.11

Nagalakshmi Batchu, IJECS Volume 6 Issue 10 October 2017 Page No. 22616-22626 Page 22621

for storage savings, as storage is considered as

cloud cost as well.

Ideally, if client or Cloud is aware of which part

of image a VM will visit, the image part that will

be visited by a lot of VMs then can be properly

distributed. Unfortunately, identifying roles of

each part of an image and separating them is not

an easy work. Therefore, as a first step, in this

work we consider the case that client or Cloud

does not have the detailed knowledge of the image

contents.

However, they may know whether the application

will visit the image frequently or not either

through previous experience or Cloud monitoring.

The major image distribution schemes we have

implemented in jump-start cloud deployment

framework are pre-deployment, background

deployment, and on-demand deployment.

4.1 Pre-deployment

In the pre-deployment distribution scheme the

image will be copied and distributed in cloud

before application runs. Given a client request that

has defined the number of VMs required for

running the application, the cloud decides the

number of images to be distributed so that for

each image, the number of VMs it will serve is

below a threshold value. The number of images to

be distributed depends on image reading load

from each of the VMs as well as the network and

disk IO bandwidth availability.

After the number of disk images to be distributed

in the Cloud has been deter- mined, a remained

issue for pre-deployment is where to store these

images (i.e., where to locate these image servers)

and how to store them. Image server location

depends on cloud system deployment and

configuration. A general guideline is to store an

image to make it easily accessed by its serving

VMs. In our frame- work, an image is located at

the same subnet as its serving VMs. After

receiving an image, the image server stores it in its

local disk. Because reading from disk takes longer

time, to enhance image access speed, the image

can be stored in the memory. This, however, is at

the cost of occupying a much larger size of

memory.

For applications that client or cloud is aware

which part of the image may be visited by

applications, only that part needs to be distributed.

A typical such application can be one that

processes client provided data, where data is the

major disk part to be visited and distributed. Other

disk parts, e.g., application execution OS, are

shared by all the VMs, unless image access

bottleneck problem occurs then we can use

background deployment method introduced

later to resolve it. Distributing partial image

significantly reduces image distribution time.

4.2 Background Deployment

Usually for any submitted cloud application it

is not easy for either client or cloud to predict

image reading pattern. Therefore, it is hard to

make decision whether to pre-deploy disk image

and how many images should be deployed. In our

framework, for applications without the

knowledge of image visiting patterns, all VMs

share a single image at the beginning. Through

monitoring the image access load as well as

image reading time, the Cloud manager then

decides whether the image has to be copied and

deployed at other physical machines. During

image deployment, application may continue

running. The number of images that should be

finally distributed in the cloud can be reached

gradually by adding images from time to time,

until image access time is below a required value.

This value is estimated through observing under

what access latency application performance may

not be seriously affected. An implementation issue

regarding to background deployment is about the

So-called VM re-direction. Because at the

beginning all the VMs are directed to a single

image, when other images are ready, some of

VMs have to be re-directed to their new assigned

image servers. In this work we resolve the issue

by changing the image direction command in

DOI: 10.18535/ijecs/v6i10.11

Nagalakshmi Batchu, IJECS Volume 6 Issue 10 October 2017 Page No. 22616-22626 Page 22622

KVM, which determines the image access for

VMs.

4.3 On-Demand Deployment

Lots of image parts, e.g., OS bootstrap and

drivers, may not or seldom be read by

applications. Therefore, it is not efficient to

distribute the entire image. However, pre-

deployment requires a clear knowledge for

what part of an image will be accessed during

application runtime, which is difficult. To

address this issue, we propose on-demand image

distribution scheme.

In this scheme, at the beginning a number of

images are built along with the original image in

cloud. These images are actually empty, and we

call them pseudo images. Like the original image

(or real image), a pseudo image also serves a

number of VMs. When a process running in a

VM served by a pseudo image requires some

image data, it will visit the pseudo image serving

it. If the data requested is not available at the

pseudo image, the pseudo image will ask the real

image for that part. Once the pseudo image

receives the data, it delivers it to the requesting

VM. At the meantime, it stores a copy for serving

other VMs that may require the same image part

later. On-demand deployment may lead to a

longer delay for some image readings, yet it can

significantly reduce communication load for

image distribution.

To further improve the performance of on-demand

image deployment, multi- cast and data pre-

fetching can be applied.

5. Experimental Results

5.1 Experimental Data

Hadoop Deployment Time. In Fig.1 we show

when applying our fast application deployment

scheme that shares a single image, the deployment

time of a Hadoop with different scales, i.e.,

different number of VMs. The overall deployment

time is around 10 seconds, which is much shorter

than deploying such a Hadoop in EC 2. In

addition, the deployment time does not

significantly increase when Hadoop scales up,

because in such application after loading the VM

memory state file, a VM seldom visits the disk

image. Access delay for disk reading at the image

server then is short. The metadata delivered for

VM role configuration has a small size too.

Therefore, even if the number of VMs increases,

there is a minor increase for application

deployment time. In Fig. 2 we show the detailed

time contribution from different stages of Hadoop

deployment at each of the VMs, when 56 VMs

are assigned. At this scale, the time for memory

state file distribution (for VM cloning), VM

resume, and application configuration are about

0.5s, 2s, 8s respectively.

Fig. 1. Deployment time for Hadoop at different

scales

Fig. 2. Time taken at different stages and different

VMs

In Table 1 we compare the time needed for

deploying MapReduce with different scales in

jump-start cloud and EC 2. Generally, EC 2 will

take a few minutes while jump-start cloud takes

less than 20 seconds. Considering a MapReduce

application such as sorting may take only a few

minutes, fast deployment through jump-start cloud

can greatly improve user experience and cloud

efficiency.

DOI: 10.18535/ijecs/v6i10.11

Nagalakshmi Batchu, IJECS Volume 6 Issue 10 October 2017 Page No. 22616-22626 Page 22623

Table 1. Deployment Time: Jump-Start Cloud vs.

EC 2

Application

Scale(Number of VMs)

20 50 100

Jump Start cloud

Launching time

13s 14s 15s

EC2 launching time 238s 291s 304s

Improvement through Image Distribution. In Fig.

3 we shows distributing disk image does help to

reduce average image access delay, and

consequently the overall application running time.

Under our testing scenario, when the number of

images changes from 1 to 2, the delay decreases

significantly. When the number of images

increases further, the gain on access delay

becomes trivial. This implies that for reducing

access delay, distributing too many images may

not be necessary.

(a) Sequential Access

(b) Random Access

Fig. 3. Average access delay per request under

different number of images

We show in Fig. 4 how image pre-deployment

may help to reduce application cloud time when

VM has a sequential reading pattern. Both unicast

and mul- ticast are used for image distribution for

comparison. It is observed that image distribution

works for heavy image visiting load. Multicast

has a better gain because it helps to save image

distribution time. From our experimental data we

found that image pre-deployment can help to

cloud time if when a single image serves all the

VMs, its disk IO is fully occupied. As we

mentioned previously, when VMs read disk

sequentially, the equivalent disk IO bandwidth in

our setting is about 20MB/s or 160M b/s. For the

unicast case, if we use 1 GB/s for intra-cluster

connection, the maximum number of images is

approximately 2. The experimental results proves

the mathematical deduction. When the number of

images becomes greater, pre-deployment has a

longer cloud time. This can be explained by

referring to Fig. 3. A greater number of images

results in very minor access delay improvement at

a much longer image distribution time. The

overall time saving on application execution then

cannot compensate the time taken on distributing

images. For the multicast image distribution

case there is no such issue, through which

generally the a greater number of images are

distributed, a shorter cloud time can be achieved.

However, when the number reaches a value, the

gain from multicast is minor as well. Since the

number of images to be multicasted determines

how much cloud network bandwidth and system

storage are needed, this number should be

carefully selected based on application parameters

and cloud configurations.

(a) λ = 50

DOI: 10.18535/ijecs/v6i10.11

Nagalakshmi Batchu, IJECS Volume 6 Issue 10 October 2017 Page No. 22616-22626 Page 22624

(b) λ = 200

Fig. 4. Cloud time for application with sequential

access under different number of images

Fig. 5 shows the cloud time for random image

access pattern. The overall performance trend is

similar to what has been shown for the sequential

disk reading case. For unicast the optimum

number of image to be distributed, however, is

greater than 2 because the equivalent disk IO

bandwidth now is much smaller. Our test result

shows the IO bandwidth is about 2MB/s, the

optimum number for distributing images is about

8.

Background and On-Demand Deployment. When

using background image distribution we found

there was no gain on cloud time reduction. The

reason is that image distribution can help to

reduce overall cloud time only when sharing

single image, image disk IO is fully occupied.

Therefore, background distribution under heavy

disk visiting load will contend disk IO with

applications, making the overall data getting out

from disk image greater than the case when all

VMs share a single image. However, background

distribution may help is some particular

application cases where QoS can be degraded to

keep applications from being interrupted. For

example, for a streaming video application at the

beginning a fewer frames per second can be

played, while the saved disk bandwidth can be

used for image distribution. Once the background

image distribution is completed, the performance

becomes normal.

In Figure 6 we show cloud time improvement

when on-demand image distribution is applied.

Different numbers of images (including one real

image) are deployed. We suppose 50% of the

image will be accessed by all of the VMs,

 (a) λ = 5

(b) λ = 20

Fig. 5. Cloud time for application with random

access under different number of images while

other parts of the image will be accessed by VMs

individually. It is observed that on-demand

distribution can help to reduce cloud time. We

also found that the deployment with 3 pseudo

images has a little worse gain that from

1 pseudo image case. The reason is that the

visiting load to the real image is the performance

bottleneck for on-demand distribution. This

visiting load, actually, is determined by the

number of the physical machines it serves. The

number of physical machines the real image

serves is greater in the 3 pseudo image case in our

settings (The cloud has 8 physical machines), thus

it has worse performance. It is also observed that

deploying one pseudo image in the on-demand

scheme results in a better performance than

deploying one more real image through pre-

deployment, because pre-deployment has to

distribute the image part that will not be accessed

as well. When the number of image increases,

pre-deployment works better, at the cost of

communication and storage.

DOI: 10.18535/ijecs/v6i10.11

Nagalakshmi Batchu, IJECS Volume 6 Issue 10 October 2017 Page No. 22616-22626 Page 22625

In Figure. 7 we show how image access pattern

impacts the cloud time gain in on-demand

distribution. The access pattern we care about is

how much of the image will be accessed (or

shared) by all of the VMs. We consider only 1

pseudo image is deployed. According to the

figure, it is observed that the more image data to

be shared, the more cloud time reduction can be

achieved through on-demand distribution. This is

because the major role of the on-demand

distribution is to reduce the visiting load at the

real image. This load is mainly determined by the

size of the disk data to be shared. Therefore, the

on-demand distribution works better when more

image part has to be shared. Impact of Image

Distribution on Real Application. In Fig. 8 a) we

show the impact of image distribution on a

MapReduce sorting application. There are 2G

data to be sorted, through a MapReduce that runs

over 56 VMs. The data is provided by user and

originally stored in a disk image. We modified

Hadoop so that data can be loaded from local

storage. Each Mapper fetches the same amount

data from the disk, and no data is shared. Mappers

read data in turn, following a sequential reading

pattern. As in our previous experiment, the tested

results show the equivalent disk IO bandwidth can

be up to 20MB/s. Because

Fig. 6. Cloud time with on-demand

Fig. 7. On-demand distribution gain vs. image

distribution image visiting pattern

(a) cloud time

 (b) Map time

Fig. 8. Impact of image distribution on real

application the network has a bandwidth of

1G, according to the analysis in 4.1 image

distribution should be able to help to reduce cloud

time. The experimental data proves it. We show

in Fig. 8 b) that the major gain on application

running time comes from Mapper, because that is

the process involving most image access for

loading data.

6 Conclusions

We enable jump-start cloud that applies an

efficient deployment framework we designed to

reduce cloud time for resource efficiency and

service quality improvement. VM cloning is used

for fast application deployment, and image

distribution is used for post-deployment QoS. We

test different application image access pat- terns

and cloud system configurations to study cloud

application characteristics and evaluate the

deployment scheme.

DOI: 10.18535/ijecs/v6i10.11

Nagalakshmi Batchu, IJECS Volume 6 Issue 10 October 2017 Page No. 22616-22626 Page 22626

References

1. Armbrust, M., Above the Clouds: A

Berkeley View of Cloud Computing.

Technical report, UC Berkeley Reliable

Adaptive Distributed Systems Laboratory

(2009)

2. EC2: Amazon Elastic Compute Cloud,

http://aws.amazon.com/ec2/

3. Chase, J.S., Irwin, D.E., Grit, L.E., Moore,

J.D., Sprenkle, S.E.: Dynamic Virtual

Clusters in a Grid Site Manager. In:

HPDC (2003)

4. Google app engine,

http://code.google.com/appengine/

5. Windows azure platform,

http://www.microsoft.com/windowsazure/

6. Amazon elastic map reduce,

http://aws.amazon.com/elasticmapreduce/

7. Hadoop, http://hadoop.apache.org/

8. Wood, T., Shenoy, P., Venkataramani,

A., Yousif, M. Black-box and Gray-box

http://hadoop.apache.org/

