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Abstract: Heuristic and task scheduling provide better scheduling solutions for cloud computing by greatly enriching in identifying 

candidate solutions, ensuring performance optimization and therefore reducing the make span of task scheduling. Several researchers have 

put forward scheduling and load balancing algorithms for cloud computing systems. However, how to reduce the response latency while 

efficiently utilizing detection operator mechanisms (switching between groups while scheduling with corresponding task) and reducing 

communication cost still remains a challenge. In this paper, a hybrid framework called, Multithreaded Locality Task Scheduling and 

Knapsack Load Balancing (MLTS-KLB) is constructed. The MLTS-KLB first schedules several tasks using Multithreaded Locality Parallel 

Task Scheduling (MLPTS) algorithm. The MLPTS algorithm gives a definition and method of achieving group synchronization. Secondly, 

a Knapsack Load balancing model is constructed by extending the migration based model. Then, after formulating the scheduling problems 

in the MLTS-KLB and bringing forward the MLPTS algorithm based Knapsack Fair Load Balancing algorithm, the efficiency of the 

MLTS-KLB is validated through simulation experiments. Simulation results demonstrate that the MLTS-KLB framework significantly 

reduce the latency time of parallel jobs and improves the average throughput of cloud computing environment by minimizing the average 

task waiting time compared to the state-of-the-art works. 

Keywords: Heuristic, Multithreaded, Locality Task Scheduling, Knapsack, Load Balancing, Group Synchronization 

1. Introduction 

In modern parallel and distributed applications, parallel jobs 

are handling in cloud computing environment, big data 

processing and so on. More complex computational jobs are 

said to be handled using cloud computing environment with the 

aid of virtual. The main problems to be addressed while 

handling complex computational jobs are scheduling and load 

balancing. Many researchers have designed solutions with this 

regard.  

 

A hybrid scheme of task scheduling and load balancing was 

provided in [1] using on demand scheduling algorithm. This 

significantly resulted in the reduced performance of response 

time of parallel jobs. However, dynamic changes remained a 

major issue to be handled. To this, a dynamic workload 

adjustment model was designed in [2] with the aid of 

availability and requirement of various resources. But, parallel 

data processing was not said to be achieved. To achieve this, an 

intermediate data placement algorithm was designed in [3] that 

not only achieved higher overall average balancing 

performance but also reduced the execution time of job waiting 

in queue.  

In order to supply user services, cloud data center hosts with 

large number of physical hosts. When cloud data center 

receives task requests, the cloud data center load gets 

imbalanced, compromising the timely user response. In [4], 

Load Balancing based on Bayes and Clustering was designed 

with the objective of improving the throughput and minimizing 

the failure number of task deployment.  

 

Yet another method based on offload interrupt load balancing 

was presented in [5] to address the issues related to load 

balancing. However, with less efforts paid on scheduling, the 

communication cost remained a major issue to be addressed. 

With this a soft real time task scheduling algorithm was 

designed in [6] that not only ensured efficient scheduling but 

also provided means for load balancing. Meanwhile, 

optimization remained a breakthrough which was addressed in 

[7] using various factors. 

 

Until now possible solutions to increase the performance of 

information system has be well researched for computation, 

analysis and storage. In [8], a Hyper Heuristic Scheduling 

Algorithm was designed to minimize the makespan of task 

scheduling. Budget driven scheduling algorithm for 

heterogeneous cloud was designed in [9] using two greedy 

algorithms called, Global Greedy Budget and Gradual 

Refinement resulting in cost effectiveness of the system. To 

address batch jobs in geographically distributed centers, 

thermal aware scheduling model was designed in [10]. A 

Traffic Balancing Oblivious Routing (TBOR) algorithm was 

designed in [11] using Cyclic Channel Dependency Graph 

(CDC).  

  

In this paper, the main focus on the aforementioned problems, 

particularly considers a hybrid framework related to task 

scheduling and performing load balancing for the scheduled 

tasks in cloud environment. The main contribution of this paper 

is to present a hybrid Multithreaded Locality Task Scheduling 
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and Knapsack Load Balancing (MLTS-KLB) framework. With 

MLTS-KLB, the cloud servers schedule the jobs of all cloud 

users in cloud environment by designing a multithreaded 

locality parallel task scheduling model. With the jobs 

scheduled, load balancing is also said to be achieved using 

knapsack load balancing model.  

 

The rest of this paper is organized as follows. Section 2 surveys 

related works. Section 3 introduces our task scheduling and 

load balancing framework. Section 4 presents experimental 

results. Section 5 provides a detailed discussion. Finally, 

Section 6 concludes the paper. 

2. Related works 

Virtualization technique adopted in cloud computing 

environment and resources deployment is performed in an 

efficient manner and therefore accessed through various 

services. With the modernization of current IT sector, the 

resource requirement in cloud environment is purely based on 

subscription. In [12], a hybrid bacterial swarm optimization 

algorithm was constructed to reduce the operational cost and 

maximize the resource utilization. Load balancing aware 

genetic algorithm was designed in [13] by applying Time Load 

Balance (TLB) model resulting in good load balancing 

properties between cloud users.  

 

Load balancing and locality aware scheduling was presented in 

[14] based on distributed environment to improve the 

throughput rate. In [15], an in-depth analysis and study of load 

balancing techniques in cloud environment was presented. 

With cloud data centers comprising of several virtual machines 

with significantly different specifications, due to fluctuating 

resource usages, imbalance between servers is said to occur. To 

resolve this issue, an agent-based load balancing model [16] 

was designed for efficient load balancing in a distributed 

manner. A Task-based Load Balancing model using Particle 

Swarm Optimization was designed in [17] that resulted in 

significant reduction in the time taken for load balancing 

process compared to conventional load balancing methods. 

  

A max-min task scheduling algorithm to realize load balancing 

was presented in [18] to improve the resource utilization and 

minimize the respond time of task. Yet another load balanced-

based resource scheduling algorithm was constructed in [19]. A 

task scheduling algorithm based on resource scheduling was 

designed in [20] that not only met users‟ requirements but also 

improved the rate of throughput. 

 

Scheduling algorithms for parallel jobs presented in [21] made 

effective use of two tier VMs resulted in the improvement of 

responsiveness that in turn significantly outperformed the most 

commonly used algorithms such as extensible Argonne 

scheduling system in a data center setting. In [22] a technique 

for efficient mapping of resource requests with a heuristic 

methodology was designed. Routing and scheduling algorithm 

in [23] for cloud architecture ensured minimal total energy 

consumption by switching off the network unused and/or 

information technology (IT) resources.  

 

In [24] the author provided maximized resource utilization 

mechanism with optimal execution efficiency with the aid of 

proportional share model. In [25] various workflow scheduling 

algorithms were designed and compared with their counterparts 

in terms of characteristics and applicability for cloud 

scheduling. In [26] a mechanism for scheduling single tasks 

considering two objectives: monetary cost and completion time 

and dynamic scheduling of scientific workflows were proposed. 

A cloud scheduler [27] that considered both user requirements 

and infrastructure properties assuring virtual resources were 

hosted using physical resources that match their requirements 

without getting users about the details of the cloud 

infrastructure.  

 

A fundamental drawback of the most existing researches is that 

they either considered scheduling of tasks in a distributed or 

dynamic manner or performed load balancing in cloud 

computing environment. To improve on this aspect and 

complete the previous works, we propose in this paper the 

MLTS-KLB framework which first schedules the task in an 

optimal manner and then performs load balancing for the 

scheduled task to achieve system load balancing. The proposed 

framework not only reduces the latency and average task 

waiting time but also improves the throughput rate or the task 

being assigned with the required resources in cloud 

environment. 

3. Multithreaded Locality Task Scheduling and 

Knapsack Load Balancing 

A hybrid parallel job scheduling and then balancing the load by 

cloud server through load balancer in cloud computing 

environment, called, Multithreaded Locality Task Scheduling 

and Knapsack Load Balancing (MLTS-KLB) is introduced. 

The MLTS-KLB framework begins by describing the 

preliminaries required and then present the detailed structure. 

 

3.1 Preliminaries 

Let us assume that the dimension of resources is „ ‟ and each 

cloud service provider‟s resources be expressed as a vector „  

= ( ) ‟, in which „ ‟ is the „ ‟ dimensional 

resource that the cloud service provider „ ‟ has. The set of jobs 

that arrives at some particular time slot is further presumed to 

be „ ‟ with total jobs „ ‟ to be 

„ ‟. 
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If the resources consumed by job „ ‟ when executed on cloud 

service provider „ ‟ are a vector „ ‟, then 

each job is said to be only executed on one cloud service 

provider and cannot be further partitioned. Once a job is 

executed successfully on some cloud service provider, the 

MLTS-KLB receives the value of the job to be accomplished 

as successful. Here, the scheduling target in the MLTS-KLB is 

to maximize the total successful accomplishment of jobs with 

the constraint of resource capacity of each cloud service 

provider. Therefore, the scheduling problem for the MLTS-

KLB is formulated as given below.  

 

             (1) 

           

  (2) 

 

From (1) and (2), the MLTS-KLB framework is formulated as 

a multidimensional „ ‟ knapsack problem, where „ ‟ 

assumes that the cloud service provider is assigned with a 

specific task whereas „ ‟ assumes that the cloud service 

provider is not assumed with a specific task. Besides, in order 

to make the MLTS-KLB work longer, all the jobs arriving is 

said to be executed in a uniform manner on the cloud servers.  

 

This makes the cloud users consume their resources evenly to 

avoid the phenomenon that certain cloud users with heavy load 

consume their resources too early and have to leave the system. 

In order to solve this problem, a scheduling algorithm based on 

the Multithreaded Locality Parallel Task is designed in the 

MLTS-KLB framework to enhance the performance of task 

scheduling. Meanwhile, the load of „ ‟ dimensional 

resource for cloud service provider „ ‟ is then given as below.  

              (3) 

The following part of this section presents MLPTS algorithm, 

which contains the group synchronization and optimal 

scheduling achieved through multithreaded parallel scheduling 

(MPS). With the scheduled task, load balancing is said to be 

achieved through knapsack load balancing model.  

. 

3.2 Multithreaded Locality Parallel Task Scheduling 

(MLPTS) 

In MLPTS, threads are allocated to the cloud server that 

utilizes multithreading architecture to perform all the 

scheduling processes. Each thread is assigned to a group of 

jobs, executed by multiple cloud centers. The objective of 

using MLPTS algorithm in the MLTS-KLB is the group 

synchronization. Such groups‟ synchronization in the MLTS-

KLB is achieved through using multithreading parallel 

scheduling. It uses multithreaded parallel scheduling on a 

group of cloud users that sees to that when more than one 

thread try to access a shared resource, measures are taken such 

that the resource is used by only one thread at a time and 

therefore providing group synchronization.  

 

This method of proceeding with the process of scheduling 

makes it more suitable and practical because the multithreading 

parallel scheduling tries to identify the best cloud user to be 

assigned with a corresponding job. Figure 1 shows the 

diagrammatic representation of multithreaded parallel 

scheduling (MPS).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Multithreaded Parallel Scheduling 

Let us consider multithreaded structured with threads 

„ ‟ assigned to different groups 

„ ‟ whose jobs to be allocated are in the 

corresponding group. From the figure, the jobs waiting in 

queue in group 1 is „ ‟, whereas the jobs waiting in queue in 

group 2 is „ ‟ and jobs waiting in queue in group n is „ ‟ 

respectively.  

 

As shown in the figure, the MPS starts by dividing the 

entire set of cloud servers „ ‟ into 

„ ‟ groups. Each group comprises of a number of jobs to be 

assigned by the cloud servers. Each group is assigned with a 

thread that in turn schedules the jobs in the queue.  

 

When any job is to be processed, the threads start 

searching in their groups. Each thread takes information about 

current job and starts searching in their groups. Upon 

successful identification of a thread that finds the resource to 

be assigned for the specific task, it immediately declares other 

threads to prevent searching for this task and starts searching 

for next tasks. In this way, all the cloud user‟s corresponding 

tasks are assigned with the resources by the cloud servers in an 

optimized manner.  

 

Input: Resource dimension „ ‟, cloud service provider 

resource vector  = ( ) ‟, job „ ‟, Cloud Users 

„ ‟, Cloud Servers 

„ ‟, Thread „ ‟, 
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Group „ ‟ 

Output: Optimal scheduling of jobs and improved throughput  

1: Begin 

2: For each resource dimension „ ‟ 

3: For each Cloud Servers „ ‟ and Cloud Users „ ‟ with       

       „ ‟ jobs to be scheduled  

4: Divide entire set of cloud servers „ ‟ into  

       „ ‟ groups 

5: Repeat  

6: For each Thread „ ‟ 

7: For each groups „ ‟ 

8: Allocate jobs  

9: If „current job‟ = „requested job‟ 

10: Perform searching in corresponding group 

11: Upon matching prevent searching in other groups  

12: End if 

13: Else 

14: If „current job‟ <> „requested job‟ 

15: Perform searching in other group 

16: End if  

17: End for 

18: End for  

19: Until (all jobs are assigned to the cloud users) 

20: End for 

21: End for 

22: End   

 

Algorithm 1 MLPTS algorithm 

 

The MLPTS algorithm is illustrated in algorithm 1, where the 

initial parameters include „ ‟ 

respectively. Step 2 to step 4 comprises of conditional settings 

used that ranges from number of cloud users waiting, number 

of cloud servers assigned with and dividing the cloud servers in 

to groups. Step 8 and step 9 performs the task of assigning 

thread to each group and jobs scheduled to each group, with 

jobs scheduled in the form of queue. Conditional matching is 

performed from step 10 to step 16 where the current job and 

requested jobs are tested with and scheduled accordingly. In 

this way, an optimal scheduling of job is ensured by performing 

a perfect match.   

3.3 Knapsack Load Balancing Model 

Once optimal scheduling is accomplished using MLPTS 

algorithm, efficient load balancing has to be performed for the 

scheduled task. Efficient load balancing not only results in the 

increase of resource utilization for existing cloud users but also 

accommodates more cloud users in cloud computing 

environment. The MLTS-KLB uses a combinatorial 

optimization model with the aid of knapsack called as the 

knapsack load balancing model.  

 

The combinatorial optimization model includes both system 

persistence and optimized load balancing. One of the important 

issues to be solved while operating load balanced service is 

system persistence, where the response towards user‟s request 

(i.e. job response) is stored in a specific cloud server and 

avoiding subsequent requests in different cloud servers. In this 

case, the system persistence is solved in the MLTS-KLB using 

knapsack handler. The MLTS-KLB framework sees to that the 

jobs kept across multiple requests for the same cloud user in a 

user‟s session does not search or jump into another cloud 

server and therefore addressing system persistence. With the 

system persistence mode, knapsack load balancing model is 

designed in the next section. Figure 2 shows the structure of 

knapsack load balancing model. 

 

  
Figure 2: Knapsack load balancing 

As shown in the figure, in knapsack problem there is a 

knapsack with cloud servers „ ‟ and set „ ‟ of „ ‟ jobs to fill 

the knapsack. Each job „ ‟ has a prescribed weight „ ‟ 

and communication cost „ ‟ associated with it and is 

denoted mathematically as given below. 

 

               (4) 

 

From (4), it is assumed that for a given set of jobs, the total 

weight is less than or equal to a given limit of the knapsack and 

the communication cost has to be minimized. In the other 

words, the objective is to identify a subset of jobs where total 

size or weight is bounded by „ ‟ and whose communication 

cost is minimized.  

 

Let‟s further assume that there are „ ‟ cloud users, where 

„ ‟, and each user has a „ ‟ 

(i.e. size) and a „ ‟ (i.e. profit). The 

weight or size of the cloud user represents the resources the 

cloud user needs and is formulated as given below. 

 

   (5) 

 

From (5), „ ‟ represents the CPU requirements of cloud 

user „ ‟ and „ ‟ represents the memory requirement 
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of cloud user at time „ ‟. On the other hand, the value or 

communication cost is obtained as given below.  

 

       (6) 

 

From (6), the communication cost „ ‟ at time „ ‟ is 

measured on the basis of communication between the cloud 

user „ ‟ and cloud server „ ‟ respectively. With the weight 

and communication cost obtained the MLTS-KLB designs an 

algorithm to find the optimal solutions while performing load 

balancing.  

 

Many researchers have used hybrid model to find the optimal 

solutions and the MLTS-KLB is influenced by them including 

the works in [1] [2] [3]. However, compared with existing 

researches, the Knapsack Fair Load Balancing algorithm not 

only considers the weight involved (i.e. CPU and memory 

requirements), but also the communication cost incurred, 

decreasing the latency time compared to the state-of-the-art 

works. The algorithm is illustrated in algorithm 2.  

 

Input: Cloud Users „ ‟, Cloud Servers 

„ ‟, Threshold „ ‟, Time „ ‟ 

Output: Fair load balancing and reducing latency time  

1: Begin 

2: For each Cloud Servers „ ‟ and Cloud Users „ ‟ with  

     „ ‟ jobs to be scheduled  

3: Measure weight for each job using (5) 

4: If  <  

5: Measure communication using (6) 

6: Update cloud server not overloaded  

7: Update job assigned with required resource achieving load  

     balancing  

8:  End if  

9:  If  >  

10: Update cloud server overloaded 

11: Update job not assigned and Load balancing not  

       performed 

12: End if  

13: End for 

14: End  

Algorithm 2: Knapsack Fair Load Balancing Algorithm 

 

In the MLTS-KLB, an algorithm named Knapsack Fair Load 

Balancing (KFLB) is proposed to minimize the communication 

cost and therefore the latency while performing load balancing 

for the scheduled jobs in cloud computing. KFLB is shown in 

algorithm 2. It consists of three parts, measuring scheduled job 

arrivals, evaluating jobs weight and evaluating the 

communication cost between the cloud user and cloud server 

for each job to be allocated. The scheduled job arrivals are first 

measured based on a queue structure. Followed by this, each 

jobs weight and communication cost between the cloud users in 

cloud computing environment is measured. Based on the 

resultant values, a fair load balancing is said to be achieved. 

4. Experimental Settings 

In this section, the experimental setup for designing 

Multithreaded Locality Task Scheduling and Knapsack Load 

Balancing (MLTS-KLB) framework in cloud computing that is 

used in our experiments uses the JAVA platform with 

CloudSim simulator is explained. The experiments were 

conducted on Amazon‟s EC2 infrastructure using the Amazon 

Access Samples dataset and Landsat 8 data on AWS to 

experiment the different parameters that offer distinct resource 

configurations for virtual machine instances.  

 

The attribute details included in Amazon Access Samples 

dataset comprises of four categories of attributes namely, 

PERSON_{ATTRIBUTE}, [RESOURCE_{ID}], [GROUP_ 

{ID}],  [SYSTEM_SUPPORT_{ID}] in table 1. On the other 

hand, the Landsat 8 data on AWS [28] consists of a raster file 

containing global information for bands 1 through 11 for 

Landsat 8 Operational Land Imager (OLI) and Thermal 

Infrared Sensor (TIRS) in table 2. 

 

Table 1: Amazon Access Samples table 

Attributes Description 

PERSON_{ATTRIBUTE} 

This category describes the 'user' who 

was given access. The [PERSON_ID] 

column is the primary key column for 

the file. There is one row per user. 

RESOURCE_{ID} 

This category of attributes represents 

the resources that a users can possibly 

have access to. A user will have a 1 in 

this column if the have access to it 

otherwise it will be 0.  

GROUP_{ID} 

This category of attributes represents 

the groups that a users can possibly 

have access to. A user will have a 1 in 

this column if the have access to it 

otherwise it will be 0. 

SYSTEM_SUPPORT_ 

{ID} 

This category of attributes represents 

the system that a user can possibly be 

supporting. A user will have a 1 in this 

column if the have can possibly be 

supporting it, otherwise it will be 0.  

 

Table 2: Landsat imagery used for remote estimation of lake 

clarity 

Path Rows Acquisition date Satellite sensor 

12 27 – 30 8/30/2010 Landsat 5 TM 

12 27 – 30 9/14/2004 Landsat 5 TM 

12 27 – 30 9/6/1995 Landsat 5 TM 

11 28 – 29 8/9/2005 Landsat 5 TM 

11 27 – 29 8/9/2002 Landsat 7 ETM+ 

11 27 – 29 9/5/2009 Landsat 5 TM 

 

The upcoming cloud computing environments and several 

application services makes the cloud users to focus on precise 

cloud system design with different processor types and varying 

ranges. Amazon EC2‟s interface minimizes the time required 

for various instances according to the changes observed in 
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computing requirements. MLTS-KLB experiments with the 

c1.medium, a compute optimized instance type, a 32-bit 

processor, 1.7 GB RAM and 350 local disk storage.  

 

The objective of CloudSim is to provide a global and 

extensible simulation framework that compares the proposed 

Multithreaded Locality Task Scheduling and Knapsack Load 

Balancing (MLTS-KLB) framework in cloud computing with 

the existing hybrid task scheduling and load balancing scheme 

called DeMS [1] and novel Adaptive Task Scheduling strategy 

based on Dynamic Workload Adjustment (ATSDWA) [2] in 

cloud environment. Experiment is conducted to measure and 

evaluate the MLTS-KLB framework on the factors such as 

latency time, throughput rate and average task waiting time 

with respect to different number of jobs being assigned in cloud 

environment. 

 

The latency time or mean response time for assignment of 

parallel jobs is measured on the basis of the mean scheduling 

time and the scheduling time for „ ‟ jobs in the queue. The 

mean scheduling time is the overall time required to respond to 

the „ ‟ jobs in cloud environment. Meanwhile, time for 

scheduling is measured on the basis of each job, where time 

differs for each job due to the request response rate variance 

for each resource requirement. 

 

So, job assigned and the time for scheduling the assigned jobs 

is considered for obtaining the latency time. Let us consider a 

simulation scenario with 50 jobs to be assigned in the cloud 

environment with the mean scheduling time „ ‟ being 

0.58ms. Then, the latency time is measured as given below.  

 

     (6) 

 

Throughput is a measure of how many jobs are processed in a 

given amount of time in cloud environment. Throughput has 

been a measure of the comparative effectiveness in cloud 

environment that run many cloud user programs or accesses 

several cloud user jobs concurrently. Therefore, the throughput 

rate in the MLTS-KLB is the number of cloud users allocated 

with the jobs by the cloud servers in a given time period. The 

rate of throughput is measured in terms of percentage (%).  

 

The average task waiting time is the product of job requests 

made by the cloud user to the cloud server in cloud 

environment and the time taken by the cloud server to respond 

to each jobs in the queue. The mathematical evaluation of the 

average task waiting time is formulated as given below.  

 

          (7) 

From (7), „ ‟,measures the average task waiting time with 

respect to the jobs „ ‟ in the queue. The average task waiting 

time is measured in terms of milliseconds (ms). 

5. Result Analysis 

To better understand the effectiveness of the proposed 

Multithreaded Locality Task Scheduling and Knapsack Load 

Balancing (MLTS-KLB) framework, extensive experimental 

results are reported in figure 3. The MLTS-KLB framework is 

compared against the existing hybrid task scheduling and load 

balancing scheme called DeMS [1] and novel Adaptive Task 

Scheduling strategy based on Dynamic Workload Adjustment 

(ATSDWA) in cloud environment. CloudSim simulator is used 

to measure and experiment the factors by analyzing the 

percentage of result with the help of graph values. Results are 

presented for different number of jobs assigned. The results 

reported here confirm that with the increase in the number of 

jobs assigned, the latency time also gets increased. 

 
 

Figure 3: Comparison of latency time 

 

Figure 3 presents the variation of latency time with respect to 

job assigned. All the results provided in figure confirm that the 

proposed MLTS-KLB framework significantly outperforms the 

other two methods, DeMS [1] and ATSDWA [2]. The latency 

time is reduced in the MLTS-KLB framework that schedules 

the job using multithreaded architecture. At the same time, the 

curve is found to be linear, which ensures that all the jobs are 

assigned with equal priority and therefore, an increase in the 

job being assigned results in the increased latency time. With 

the application of multithreaded parallel scheduling, group 

synchronization is resolved where more than one thread waits 

for the other to release the thread and waiting indefinitely. In 

MLTS-KLB framework, the jobs to be accessed in stored in the 

form of group, with the availability of the job in a group, the 

corresponding job is scheduled to the corresponding cloud 

user. On the other hand, the job is searched in the same block 

and unavailability of the job makes a search to be performed by 

the cloud server in other group. Therefore, the latency time for 

scheduled is reduced using the MLTS-KLB framework by 11% 

compared to DeMS and 20% compared to ATSDWA.  

 

The targeting results of through rate using MLTS-KLB 

framework with the aid of Access Samples dataset and Landsat 

8 dataset is provided in figure 4 and compared with two state-

of-the-art methods [1], [2] based on the job assigned for 

scheduling in cloud environment.   
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Figure 4: Comparison of Throughput with Respect To Job 

Assigned Using Access Samples Dataset 

 

The throughput rate using MLTS-KLB framework with two 

state-of-the-art methods [1], [2] in figure 4 and figure 5 is 

presented for visual comparison based on the jobs assigned by 

cloud users in cloud environment using two different datasets. 

The targeting results of throughput using Access Samples and 

Landsat 8 dataset with respect to 50 jobs is provided in figure 4 

and figure 5 respectively. 

 
Figure 5: Comparison of Throughput with Respect to Job 

Assigned Using Landsat 8 Dataset 

 

Using both the datasets, the MLTS-KLB framework ensures 

higher throughput rate than the existing state-of-the-art works. 

The MLTS-KLB framework differs from the DeMS [1] and 

ATSDWA [2] in that we have incorporated the MLPTS 

algorithm in MLTS-KLB framework that minimizes the cloud 

server waiting time and in turn improves the rate of throughput 

rate by 5 % (using Access Samples dataset) compared to 

DeMS. In addition, with the cloud service provider‟s resources 

being stored in a vector form of data structure, allocated in 

contiguous memory and also have the advantage of growing in 

nature. Therefore, resources scheduled and released by the 

cloud user is stored explicitly and the availability of resources 

ensures higher throughput rate using MLTS-KLB framework 

by 5% compared to DeMS and 16% compared to ATSDWA 

(using Access Samples dataset). As a result, optimum job 

scheduling is ensured close to the target output (i.e. average 

success ratio). This in turn improves the average throughput 

rate using MLTS-KLB framework by 5% (using Landsat 8) 

compared to DeMS and 11% (using Landsat 8) compared to 

ATSDWA respectively.   

 

To explore the influence of average task waiting time on 

MLTS-KLB framework with the help of Knapsack Fair Load 

Balancing (KFLB) algorithm, the experiments were performed 

by varying the jobs assigned in figure 6.  

 

 
Figure 6: Comparison of Average Task Waiting Time 

 

It also shows that with the application of KFLB algorithm it 

extensively provides competitive results compared to the state-

of-the-art methods, namely DeMS [1] and ATSDWA [2]. The 

average task waiting time using MLTS-KLB framework 

increases with the increase in the jobs being assigned. But, 

comparatively performs better than the state-of-the-art 

methods. This is because the knapsack load balancing model 

using MLTS-KLB framework uses a combinatorial 

optimization model. This combinatorial optimization model 

helps in addressing system persistence through which the 

search for resources being made by the cloud user through jobs 

are restricted if found in a group. In this way, system 

persistence is achieved using MLTS-KLB framework and 

therefore reduces the average task waiting time by 8% 

compared to DeMS. Furthermore, optimal solutions for load 

balancing are achieved by comparing the value of the cloud 

user weight with that of the threshold. This in turn reduces the 

average task waiting time through balanced load by 27% 

compared to ATSDWA respectively. 

6. Conclusion  

In this paper, Multithreaded Locality Task Scheduling and 

Knapsack Load Balancing (MLTS-KLB) is provided based on 

the novel hybrid model combining Multithreaded Locality 

Parallel Task Scheduling and Knapsack Load Balancing model 

in cloud computing. This framework reduced average task 

waiting time and improves the throughput rate of jobs being 

process in cloud environment. As the framework uses the 

multithreaded parallel scheduling algorithm, it reduces the 

average task waiting time through addressing group 

synchronization avoiding the job being locked and resource 

being used by only one thread at a time. As a result, the MLTS-

KLB framework performs efficient job scheduling in a parallel 
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manner. By applying the knapsack load balancing model in 

MLTS-KLB framework, load balancing is achieved using a 

combinatorial optimization model in cloud environment. 

Finally, with the application of two algorithms, MLTS and 

Knapsack Fair Load Balancing, latency time is reduced. A 

series of simulation results are performed to test the latency 

time, average task waiting time and throughput rate based on 

the jobs being assigned. Experiments conducted on varied 

simulation runs shows improvement over the state-of-the-art 

methods. The results show that MLTS-KLB framework offers 

better performance with an improvement of throughput rate by 

8% and reduces the average task waiting time by 17% 

compared to DeMS and ATSDWA respectively. 
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