
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN: 2319-7242

Volume 6 Issue 2 Feb. 2017, Page No. 20324-20332

Index Copernicus Value (2015): 58.10, DOI: 10.18535/ijecs/v6i2.31

C.Antony, IJECS Volume 6 Issue 2 Feb., 2017 Page No.20323-20332 Page 20324

A Hybrid Multi Threaded Task Scheduling and Knapsack Load Balancing

in Multiple Cloud Centers
C.Antony

1
, C.Chandrasekar

2

1Research & Development Centre, Bharathiar University,

Coimbatore – 641 046, Tamilnadu, India.

nyaantony4@gmail.com
2Department of Computer Science, Periyar University,

Salem–636011, Tamilnadu, India,

ccsekar@gmail.com

Abstract: Heuristic and task scheduling provide better scheduling solutions for cloud computing by greatly enriching in identifying

candidate solutions, ensuring performance optimization and therefore reducing the make span of task scheduling. Several researchers have

put forward scheduling and load balancing algorithms for cloud computing systems. However, how to reduce the response latency while

efficiently utilizing detection operator mechanisms (switching between groups while scheduling with corresponding task) and reducing

communication cost still remains a challenge. In this paper, a hybrid framework called, Multithreaded Locality Task Scheduling and

Knapsack Load Balancing (MLTS-KLB) is constructed. The MLTS-KLB first schedules several tasks using Multithreaded Locality Parallel

Task Scheduling (MLPTS) algorithm. The MLPTS algorithm gives a definition and method of achieving group synchronization. Secondly,

a Knapsack Load balancing model is constructed by extending the migration based model. Then, after formulating the scheduling problems

in the MLTS-KLB and bringing forward the MLPTS algorithm based Knapsack Fair Load Balancing algorithm, the efficiency of the

MLTS-KLB is validated through simulation experiments. Simulation results demonstrate that the MLTS-KLB framework significantly

reduce the latency time of parallel jobs and improves the average throughput of cloud computing environment by minimizing the average

task waiting time compared to the state-of-the-art works.

Keywords: Heuristic, Multithreaded, Locality Task Scheduling, Knapsack, Load Balancing, Group Synchronization

1. Introduction

In modern parallel and distributed applications, parallel jobs

are handling in cloud computing environment, big data

processing and so on. More complex computational jobs are

said to be handled using cloud computing environment with the

aid of virtual. The main problems to be addressed while

handling complex computational jobs are scheduling and load

balancing. Many researchers have designed solutions with this

regard.

A hybrid scheme of task scheduling and load balancing was

provided in [1] using on demand scheduling algorithm. This

significantly resulted in the reduced performance of response

time of parallel jobs. However, dynamic changes remained a

major issue to be handled. To this, a dynamic workload

adjustment model was designed in [2] with the aid of

availability and requirement of various resources. But, parallel

data processing was not said to be achieved. To achieve this, an

intermediate data placement algorithm was designed in [3] that

not only achieved higher overall average balancing

performance but also reduced the execution time of job waiting

in queue.

In order to supply user services, cloud data center hosts with

large number of physical hosts. When cloud data center

receives task requests, the cloud data center load gets

imbalanced, compromising the timely user response. In [4],

Load Balancing based on Bayes and Clustering was designed

with the objective of improving the throughput and minimizing

the failure number of task deployment.

Yet another method based on offload interrupt load balancing

was presented in [5] to address the issues related to load

balancing. However, with less efforts paid on scheduling, the

communication cost remained a major issue to be addressed.

With this a soft real time task scheduling algorithm was

designed in [6] that not only ensured efficient scheduling but

also provided means for load balancing. Meanwhile,

optimization remained a breakthrough which was addressed in

[7] using various factors.

Until now possible solutions to increase the performance of

information system has be well researched for computation,

analysis and storage. In [8], a Hyper Heuristic Scheduling

Algorithm was designed to minimize the makespan of task

scheduling. Budget driven scheduling algorithm for

heterogeneous cloud was designed in [9] using two greedy

algorithms called, Global Greedy Budget and Gradual

Refinement resulting in cost effectiveness of the system. To

address batch jobs in geographically distributed centers,

thermal aware scheduling model was designed in [10]. A

Traffic Balancing Oblivious Routing (TBOR) algorithm was

designed in [11] using Cyclic Channel Dependency Graph

(CDC).

In this paper, the main focus on the aforementioned problems,

particularly considers a hybrid framework related to task

scheduling and performing load balancing for the scheduled

tasks in cloud environment. The main contribution of this paper

is to present a hybrid Multithreaded Locality Task Scheduling

http://www.ijecs.in/

DOI: 10.18535/ijecs/v6i2.31

C.Antony, IJECS Volume 6 Issue 2 Feb., 2017 Page No.20323-20332 Page 20325

and Knapsack Load Balancing (MLTS-KLB) framework. With

MLTS-KLB, the cloud servers schedule the jobs of all cloud

users in cloud environment by designing a multithreaded

locality parallel task scheduling model. With the jobs

scheduled, load balancing is also said to be achieved using

knapsack load balancing model.

The rest of this paper is organized as follows. Section 2 surveys

related works. Section 3 introduces our task scheduling and

load balancing framework. Section 4 presents experimental

results. Section 5 provides a detailed discussion. Finally,

Section 6 concludes the paper.

2. Related works

Virtualization technique adopted in cloud computing

environment and resources deployment is performed in an

efficient manner and therefore accessed through various

services. With the modernization of current IT sector, the

resource requirement in cloud environment is purely based on

subscription. In [12], a hybrid bacterial swarm optimization

algorithm was constructed to reduce the operational cost and

maximize the resource utilization. Load balancing aware

genetic algorithm was designed in [13] by applying Time Load

Balance (TLB) model resulting in good load balancing

properties between cloud users.

Load balancing and locality aware scheduling was presented in

[14] based on distributed environment to improve the

throughput rate. In [15], an in-depth analysis and study of load

balancing techniques in cloud environment was presented.

With cloud data centers comprising of several virtual machines

with significantly different specifications, due to fluctuating

resource usages, imbalance between servers is said to occur. To

resolve this issue, an agent-based load balancing model [16]

was designed for efficient load balancing in a distributed

manner. A Task-based Load Balancing model using Particle

Swarm Optimization was designed in [17] that resulted in

significant reduction in the time taken for load balancing

process compared to conventional load balancing methods.

A max-min task scheduling algorithm to realize load balancing

was presented in [18] to improve the resource utilization and

minimize the respond time of task. Yet another load balanced-

based resource scheduling algorithm was constructed in [19]. A

task scheduling algorithm based on resource scheduling was

designed in [20] that not only met users‟ requirements but also

improved the rate of throughput.

Scheduling algorithms for parallel jobs presented in [21] made

effective use of two tier VMs resulted in the improvement of

responsiveness that in turn significantly outperformed the most

commonly used algorithms such as extensible Argonne

scheduling system in a data center setting. In [22] a technique

for efficient mapping of resource requests with a heuristic

methodology was designed. Routing and scheduling algorithm

in [23] for cloud architecture ensured minimal total energy

consumption by switching off the network unused and/or

information technology (IT) resources.

In [24] the author provided maximized resource utilization

mechanism with optimal execution efficiency with the aid of

proportional share model. In [25] various workflow scheduling

algorithms were designed and compared with their counterparts

in terms of characteristics and applicability for cloud

scheduling. In [26] a mechanism for scheduling single tasks

considering two objectives: monetary cost and completion time

and dynamic scheduling of scientific workflows were proposed.

A cloud scheduler [27] that considered both user requirements

and infrastructure properties assuring virtual resources were

hosted using physical resources that match their requirements

without getting users about the details of the cloud

infrastructure.

A fundamental drawback of the most existing researches is that

they either considered scheduling of tasks in a distributed or

dynamic manner or performed load balancing in cloud

computing environment. To improve on this aspect and

complete the previous works, we propose in this paper the

MLTS-KLB framework which first schedules the task in an

optimal manner and then performs load balancing for the

scheduled task to achieve system load balancing. The proposed

framework not only reduces the latency and average task

waiting time but also improves the throughput rate or the task

being assigned with the required resources in cloud

environment.

3. Multithreaded Locality Task Scheduling and

Knapsack Load Balancing

A hybrid parallel job scheduling and then balancing the load by

cloud server through load balancer in cloud computing

environment, called, Multithreaded Locality Task Scheduling

and Knapsack Load Balancing (MLTS-KLB) is introduced.

The MLTS-KLB framework begins by describing the

preliminaries required and then present the detailed structure.

3.1 Preliminaries

Let us assume that the dimension of resources is „ ‟ and each

cloud service provider‟s resources be expressed as a vector „

= () ‟, in which „ ‟ is the „ ‟ dimensional

resource that the cloud service provider „ ‟ has. The set of jobs

that arrives at some particular time slot is further presumed to

be „ ‟ with total jobs „ ‟ to be

„ ‟.

DOI: 10.18535/ijecs/v6i2.31

C.Antony, IJECS Volume 6 Issue 2 Feb., 2017 Page No.20323-20332 Page 20326

If the resources consumed by job „ ‟ when executed on cloud

service provider „ ‟ are a vector „ ‟, then

each job is said to be only executed on one cloud service

provider and cannot be further partitioned. Once a job is

executed successfully on some cloud service provider, the

MLTS-KLB receives the value of the job to be accomplished

as successful. Here, the scheduling target in the MLTS-KLB is

to maximize the total successful accomplishment of jobs with

the constraint of resource capacity of each cloud service

provider. Therefore, the scheduling problem for the MLTS-

KLB is formulated as given below.

 (1)

 (2)

From (1) and (2), the MLTS-KLB framework is formulated as

a multidimensional „ ‟ knapsack problem, where „ ‟

assumes that the cloud service provider is assigned with a

specific task whereas „ ‟ assumes that the cloud service

provider is not assumed with a specific task. Besides, in order

to make the MLTS-KLB work longer, all the jobs arriving is

said to be executed in a uniform manner on the cloud servers.

This makes the cloud users consume their resources evenly to

avoid the phenomenon that certain cloud users with heavy load

consume their resources too early and have to leave the system.

In order to solve this problem, a scheduling algorithm based on

the Multithreaded Locality Parallel Task is designed in the

MLTS-KLB framework to enhance the performance of task

scheduling. Meanwhile, the load of „ ‟ dimensional

resource for cloud service provider „ ‟ is then given as below.

 (3)

The following part of this section presents MLPTS algorithm,

which contains the group synchronization and optimal

scheduling achieved through multithreaded parallel scheduling

(MPS). With the scheduled task, load balancing is said to be

achieved through knapsack load balancing model.

.

3.2 Multithreaded Locality Parallel Task Scheduling

(MLPTS)

In MLPTS, threads are allocated to the cloud server that

utilizes multithreading architecture to perform all the

scheduling processes. Each thread is assigned to a group of

jobs, executed by multiple cloud centers. The objective of

using MLPTS algorithm in the MLTS-KLB is the group

synchronization. Such groups‟ synchronization in the MLTS-

KLB is achieved through using multithreading parallel

scheduling. It uses multithreaded parallel scheduling on a

group of cloud users that sees to that when more than one

thread try to access a shared resource, measures are taken such

that the resource is used by only one thread at a time and

therefore providing group synchronization.

This method of proceeding with the process of scheduling

makes it more suitable and practical because the multithreading

parallel scheduling tries to identify the best cloud user to be

assigned with a corresponding job. Figure 1 shows the

diagrammatic representation of multithreaded parallel

scheduling (MPS).

Figure 1: Multithreaded Parallel Scheduling

Let us consider multithreaded structured with threads

„ ‟ assigned to different groups

„ ‟ whose jobs to be allocated are in the

corresponding group. From the figure, the jobs waiting in

queue in group 1 is „ ‟, whereas the jobs waiting in queue in

group 2 is „ ‟ and jobs waiting in queue in group n is „ ‟

respectively.

As shown in the figure, the MPS starts by dividing the

entire set of cloud servers „ ‟ into

„ ‟ groups. Each group comprises of a number of jobs to be

assigned by the cloud servers. Each group is assigned with a

thread that in turn schedules the jobs in the queue.

When any job is to be processed, the threads start

searching in their groups. Each thread takes information about

current job and starts searching in their groups. Upon

successful identification of a thread that finds the resource to

be assigned for the specific task, it immediately declares other

threads to prevent searching for this task and starts searching

for next tasks. In this way, all the cloud user‟s corresponding

tasks are assigned with the resources by the cloud servers in an

optimized manner.

Input: Resource dimension „ ‟, cloud service provider

resource vector = () ‟, job „ ‟, Cloud Users

„ ‟, Cloud Servers

„ ‟, Thread „ ‟,

Queue

DOI: 10.18535/ijecs/v6i2.31

C.Antony, IJECS Volume 6 Issue 2 Feb., 2017 Page No.20323-20332 Page 20327

Group „ ‟

Output: Optimal scheduling of jobs and improved throughput

1: Begin

2: For each resource dimension „ ‟

3: For each Cloud Servers „ ‟ and Cloud Users „ ‟ with

 „ ‟ jobs to be scheduled

4: Divide entire set of cloud servers „ ‟ into

 „ ‟ groups

5: Repeat

6: For each Thread „ ‟

7: For each groups „ ‟

8: Allocate jobs

9: If „current job‟ = „requested job‟

10: Perform searching in corresponding group

11: Upon matching prevent searching in other groups

12: End if

13: Else

14: If „current job‟ <> „requested job‟

15: Perform searching in other group

16: End if

17: End for

18: End for

19: Until (all jobs are assigned to the cloud users)

20: End for

21: End for

22: End

Algorithm 1 MLPTS algorithm

The MLPTS algorithm is illustrated in algorithm 1, where the

initial parameters include „ ‟

respectively. Step 2 to step 4 comprises of conditional settings

used that ranges from number of cloud users waiting, number

of cloud servers assigned with and dividing the cloud servers in

to groups. Step 8 and step 9 performs the task of assigning

thread to each group and jobs scheduled to each group, with

jobs scheduled in the form of queue. Conditional matching is

performed from step 10 to step 16 where the current job and

requested jobs are tested with and scheduled accordingly. In

this way, an optimal scheduling of job is ensured by performing

a perfect match.

3.3 Knapsack Load Balancing Model

Once optimal scheduling is accomplished using MLPTS

algorithm, efficient load balancing has to be performed for the

scheduled task. Efficient load balancing not only results in the

increase of resource utilization for existing cloud users but also

accommodates more cloud users in cloud computing

environment. The MLTS-KLB uses a combinatorial

optimization model with the aid of knapsack called as the

knapsack load balancing model.

The combinatorial optimization model includes both system

persistence and optimized load balancing. One of the important

issues to be solved while operating load balanced service is

system persistence, where the response towards user‟s request

(i.e. job response) is stored in a specific cloud server and

avoiding subsequent requests in different cloud servers. In this

case, the system persistence is solved in the MLTS-KLB using

knapsack handler. The MLTS-KLB framework sees to that the

jobs kept across multiple requests for the same cloud user in a

user‟s session does not search or jump into another cloud

server and therefore addressing system persistence. With the

system persistence mode, knapsack load balancing model is

designed in the next section. Figure 2 shows the structure of

knapsack load balancing model.

Figure 2: Knapsack load balancing

As shown in the figure, in knapsack problem there is a

knapsack with cloud servers „ ‟ and set „ ‟ of „ ‟ jobs to fill

the knapsack. Each job „ ‟ has a prescribed weight „ ‟

and communication cost „ ‟ associated with it and is

denoted mathematically as given below.

 (4)

From (4), it is assumed that for a given set of jobs, the total

weight is less than or equal to a given limit of the knapsack and

the communication cost has to be minimized. In the other

words, the objective is to identify a subset of jobs where total

size or weight is bounded by „ ‟ and whose communication

cost is minimized.

Let‟s further assume that there are „ ‟ cloud users, where

„ ‟, and each user has a „ ‟

(i.e. size) and a „ ‟ (i.e. profit). The

weight or size of the cloud user represents the resources the

cloud user needs and is formulated as given below.

 (5)

From (5), „ ‟ represents the CPU requirements of cloud

user „ ‟ and „ ‟ represents the memory requirement

DOI: 10.18535/ijecs/v6i2.31

C.Antony, IJECS Volume 6 Issue 2 Feb., 2017 Page No.20323-20332 Page 20328

of cloud user at time „ ‟. On the other hand, the value or

communication cost is obtained as given below.

 (6)

From (6), the communication cost „ ‟ at time „ ‟ is

measured on the basis of communication between the cloud

user „ ‟ and cloud server „ ‟ respectively. With the weight

and communication cost obtained the MLTS-KLB designs an

algorithm to find the optimal solutions while performing load

balancing.

Many researchers have used hybrid model to find the optimal

solutions and the MLTS-KLB is influenced by them including

the works in [1] [2] [3]. However, compared with existing

researches, the Knapsack Fair Load Balancing algorithm not

only considers the weight involved (i.e. CPU and memory

requirements), but also the communication cost incurred,

decreasing the latency time compared to the state-of-the-art

works. The algorithm is illustrated in algorithm 2.

Input: Cloud Users „ ‟, Cloud Servers

„ ‟, Threshold „ ‟, Time „ ‟

Output: Fair load balancing and reducing latency time

1: Begin

2: For each Cloud Servers „ ‟ and Cloud Users „ ‟ with

 „ ‟ jobs to be scheduled

3: Measure weight for each job using (5)

4: If <

5: Measure communication using (6)

6: Update cloud server not overloaded

7: Update job assigned with required resource achieving load

 balancing

8: End if

9: If >

10: Update cloud server overloaded

11: Update job not assigned and Load balancing not

 performed

12: End if

13: End for

14: End

Algorithm 2: Knapsack Fair Load Balancing Algorithm

In the MLTS-KLB, an algorithm named Knapsack Fair Load

Balancing (KFLB) is proposed to minimize the communication

cost and therefore the latency while performing load balancing

for the scheduled jobs in cloud computing. KFLB is shown in

algorithm 2. It consists of three parts, measuring scheduled job

arrivals, evaluating jobs weight and evaluating the

communication cost between the cloud user and cloud server

for each job to be allocated. The scheduled job arrivals are first

measured based on a queue structure. Followed by this, each

jobs weight and communication cost between the cloud users in

cloud computing environment is measured. Based on the

resultant values, a fair load balancing is said to be achieved.

4. Experimental Settings

In this section, the experimental setup for designing

Multithreaded Locality Task Scheduling and Knapsack Load

Balancing (MLTS-KLB) framework in cloud computing that is

used in our experiments uses the JAVA platform with

CloudSim simulator is explained. The experiments were

conducted on Amazon‟s EC2 infrastructure using the Amazon

Access Samples dataset and Landsat 8 data on AWS to

experiment the different parameters that offer distinct resource

configurations for virtual machine instances.

The attribute details included in Amazon Access Samples

dataset comprises of four categories of attributes namely,

PERSON_{ATTRIBUTE}, [RESOURCE_{ID}], [GROUP_

{ID}], [SYSTEM_SUPPORT_{ID}] in table 1. On the other

hand, the Landsat 8 data on AWS [28] consists of a raster file

containing global information for bands 1 through 11 for

Landsat 8 Operational Land Imager (OLI) and Thermal

Infrared Sensor (TIRS) in table 2.

Table 1: Amazon Access Samples table

Attributes Description

PERSON_{ATTRIBUTE}

This category describes the 'user' who

was given access. The [PERSON_ID]

column is the primary key column for

the file. There is one row per user.

RESOURCE_{ID}

This category of attributes represents

the resources that a users can possibly

have access to. A user will have a 1 in

this column if the have access to it

otherwise it will be 0.

GROUP_{ID}

This category of attributes represents

the groups that a users can possibly

have access to. A user will have a 1 in

this column if the have access to it

otherwise it will be 0.

SYSTEM_SUPPORT_

{ID}

This category of attributes represents

the system that a user can possibly be

supporting. A user will have a 1 in this

column if the have can possibly be

supporting it, otherwise it will be 0.

Table 2: Landsat imagery used for remote estimation of lake

clarity

Path Rows Acquisition date Satellite sensor

12 27 – 30 8/30/2010 Landsat 5 TM

12 27 – 30 9/14/2004 Landsat 5 TM

12 27 – 30 9/6/1995 Landsat 5 TM

11 28 – 29 8/9/2005 Landsat 5 TM

11 27 – 29 8/9/2002 Landsat 7 ETM+

11 27 – 29 9/5/2009 Landsat 5 TM

The upcoming cloud computing environments and several

application services makes the cloud users to focus on precise

cloud system design with different processor types and varying

ranges. Amazon EC2‟s interface minimizes the time required

for various instances according to the changes observed in

DOI: 10.18535/ijecs/v6i2.31

C.Antony, IJECS Volume 6 Issue 2 Feb., 2017 Page No.20323-20332 Page 20329

computing requirements. MLTS-KLB experiments with the

c1.medium, a compute optimized instance type, a 32-bit

processor, 1.7 GB RAM and 350 local disk storage.

The objective of CloudSim is to provide a global and

extensible simulation framework that compares the proposed

Multithreaded Locality Task Scheduling and Knapsack Load

Balancing (MLTS-KLB) framework in cloud computing with

the existing hybrid task scheduling and load balancing scheme

called DeMS [1] and novel Adaptive Task Scheduling strategy

based on Dynamic Workload Adjustment (ATSDWA) [2] in

cloud environment. Experiment is conducted to measure and

evaluate the MLTS-KLB framework on the factors such as

latency time, throughput rate and average task waiting time

with respect to different number of jobs being assigned in cloud

environment.

The latency time or mean response time for assignment of

parallel jobs is measured on the basis of the mean scheduling

time and the scheduling time for „ ‟ jobs in the queue. The

mean scheduling time is the overall time required to respond to

the „ ‟ jobs in cloud environment. Meanwhile, time for

scheduling is measured on the basis of each job, where time

differs for each job due to the request response rate variance

for each resource requirement.

So, job assigned and the time for scheduling the assigned jobs

is considered for obtaining the latency time. Let us consider a

simulation scenario with 50 jobs to be assigned in the cloud

environment with the mean scheduling time „ ‟ being

0.58ms. Then, the latency time is measured as given below.

 (6)

Throughput is a measure of how many jobs are processed in a

given amount of time in cloud environment. Throughput has

been a measure of the comparative effectiveness in cloud

environment that run many cloud user programs or accesses

several cloud user jobs concurrently. Therefore, the throughput

rate in the MLTS-KLB is the number of cloud users allocated

with the jobs by the cloud servers in a given time period. The

rate of throughput is measured in terms of percentage (%).

The average task waiting time is the product of job requests

made by the cloud user to the cloud server in cloud

environment and the time taken by the cloud server to respond

to each jobs in the queue. The mathematical evaluation of the

average task waiting time is formulated as given below.

 (7)

From (7), „ ‟,measures the average task waiting time with

respect to the jobs „ ‟ in the queue. The average task waiting

time is measured in terms of milliseconds (ms).

5. Result Analysis

To better understand the effectiveness of the proposed

Multithreaded Locality Task Scheduling and Knapsack Load

Balancing (MLTS-KLB) framework, extensive experimental

results are reported in figure 3. The MLTS-KLB framework is

compared against the existing hybrid task scheduling and load

balancing scheme called DeMS [1] and novel Adaptive Task

Scheduling strategy based on Dynamic Workload Adjustment

(ATSDWA) in cloud environment. CloudSim simulator is used

to measure and experiment the factors by analyzing the

percentage of result with the help of graph values. Results are

presented for different number of jobs assigned. The results

reported here confirm that with the increase in the number of

jobs assigned, the latency time also gets increased.

Figure 3: Comparison of latency time

Figure 3 presents the variation of latency time with respect to

job assigned. All the results provided in figure confirm that the

proposed MLTS-KLB framework significantly outperforms the

other two methods, DeMS [1] and ATSDWA [2]. The latency

time is reduced in the MLTS-KLB framework that schedules

the job using multithreaded architecture. At the same time, the

curve is found to be linear, which ensures that all the jobs are

assigned with equal priority and therefore, an increase in the

job being assigned results in the increased latency time. With

the application of multithreaded parallel scheduling, group

synchronization is resolved where more than one thread waits

for the other to release the thread and waiting indefinitely. In

MLTS-KLB framework, the jobs to be accessed in stored in the

form of group, with the availability of the job in a group, the

corresponding job is scheduled to the corresponding cloud

user. On the other hand, the job is searched in the same block

and unavailability of the job makes a search to be performed by

the cloud server in other group. Therefore, the latency time for

scheduled is reduced using the MLTS-KLB framework by 11%

compared to DeMS and 20% compared to ATSDWA.

The targeting results of through rate using MLTS-KLB

framework with the aid of Access Samples dataset and Landsat

8 dataset is provided in figure 4 and compared with two state-

of-the-art methods [1], [2] based on the job assigned for

scheduling in cloud environment.

DOI: 10.18535/ijecs/v6i2.31

C.Antony, IJECS Volume 6 Issue 2 Feb., 2017 Page No.20323-20332 Page 20330

Figure 4: Comparison of Throughput with Respect To Job

Assigned Using Access Samples Dataset

The throughput rate using MLTS-KLB framework with two

state-of-the-art methods [1], [2] in figure 4 and figure 5 is

presented for visual comparison based on the jobs assigned by

cloud users in cloud environment using two different datasets.

The targeting results of throughput using Access Samples and

Landsat 8 dataset with respect to 50 jobs is provided in figure 4

and figure 5 respectively.

Figure 5: Comparison of Throughput with Respect to Job

Assigned Using Landsat 8 Dataset

Using both the datasets, the MLTS-KLB framework ensures

higher throughput rate than the existing state-of-the-art works.

The MLTS-KLB framework differs from the DeMS [1] and

ATSDWA [2] in that we have incorporated the MLPTS

algorithm in MLTS-KLB framework that minimizes the cloud

server waiting time and in turn improves the rate of throughput

rate by 5 % (using Access Samples dataset) compared to

DeMS. In addition, with the cloud service provider‟s resources

being stored in a vector form of data structure, allocated in

contiguous memory and also have the advantage of growing in

nature. Therefore, resources scheduled and released by the

cloud user is stored explicitly and the availability of resources

ensures higher throughput rate using MLTS-KLB framework

by 5% compared to DeMS and 16% compared to ATSDWA

(using Access Samples dataset). As a result, optimum job

scheduling is ensured close to the target output (i.e. average

success ratio). This in turn improves the average throughput

rate using MLTS-KLB framework by 5% (using Landsat 8)

compared to DeMS and 11% (using Landsat 8) compared to

ATSDWA respectively.

To explore the influence of average task waiting time on

MLTS-KLB framework with the help of Knapsack Fair Load

Balancing (KFLB) algorithm, the experiments were performed

by varying the jobs assigned in figure 6.

Figure 6: Comparison of Average Task Waiting Time

It also shows that with the application of KFLB algorithm it

extensively provides competitive results compared to the state-

of-the-art methods, namely DeMS [1] and ATSDWA [2]. The

average task waiting time using MLTS-KLB framework

increases with the increase in the jobs being assigned. But,

comparatively performs better than the state-of-the-art

methods. This is because the knapsack load balancing model

using MLTS-KLB framework uses a combinatorial

optimization model. This combinatorial optimization model

helps in addressing system persistence through which the

search for resources being made by the cloud user through jobs

are restricted if found in a group. In this way, system

persistence is achieved using MLTS-KLB framework and

therefore reduces the average task waiting time by 8%

compared to DeMS. Furthermore, optimal solutions for load

balancing are achieved by comparing the value of the cloud

user weight with that of the threshold. This in turn reduces the

average task waiting time through balanced load by 27%

compared to ATSDWA respectively.

6. Conclusion

In this paper, Multithreaded Locality Task Scheduling and

Knapsack Load Balancing (MLTS-KLB) is provided based on

the novel hybrid model combining Multithreaded Locality

Parallel Task Scheduling and Knapsack Load Balancing model

in cloud computing. This framework reduced average task

waiting time and improves the throughput rate of jobs being

process in cloud environment. As the framework uses the

multithreaded parallel scheduling algorithm, it reduces the

average task waiting time through addressing group

synchronization avoiding the job being locked and resource

being used by only one thread at a time. As a result, the MLTS-

KLB framework performs efficient job scheduling in a parallel

DOI: 10.18535/ijecs/v6i2.31

C.Antony, IJECS Volume 6 Issue 2 Feb., 2017 Page No.20323-20332 Page 20331

manner. By applying the knapsack load balancing model in

MLTS-KLB framework, load balancing is achieved using a

combinatorial optimization model in cloud environment.

Finally, with the application of two algorithms, MLTS and

Knapsack Fair Load Balancing, latency time is reduced. A

series of simulation results are performed to test the latency

time, average task waiting time and throughput rate based on

the jobs being assigned. Experiments conducted on varied

simulation runs shows improvement over the state-of-the-art

methods. The results show that MLTS-KLB framework offers

better performance with an improvement of throughput rate by

8% and reduces the average task waiting time by 17%

compared to DeMS and ATSDWA respectively.

References

[1] Yu Liu,Changjie Zhang, BoLi, Jianwei Niu, “DeMS:

hybrid scheme of task scheduling and load balancing in

computing clusters”, Elsevier, Journal of Network and

Computer Applications, May 2015, Pages 1-8.

[2] Xiaolong Xu, Lingling Cao, and Xinheng Wang,

“Adaptive Task Scheduling Strategy Based on Dynamic

Workload Adjustment for Heterogeneous Hadoop

Clusters”, IEEE Systems Journal, Volume 10, Issue 2,

June 2014, Pages 471 – 482.

[3] Zhuo Tang, Xiangshen Zhang, Kenli Li, Keqin Li, “An

intermediate data placement algorithm for load balancing

in Spark computing environment”, Elsevier, Future

Generation Computer Systems, July 2016, Pages 1-15.

[4] Jia Zhao, Kun Yang, Xiaohui Wei,Yan Ding, Liang Hu,

Gaochao Xu, “A Heuristic Clustering-based Task

Deployment Approach for Load Balancing Using Bayes

Theorem in Cloud Environment”, IEEE Transactions on

Parallel and Distributed Systems, Volume 27, Issue 2,

February 2015, Pages 305 – 316.

[5] Luwei Cheng and Francis C.M. Lau, “Offloading Interrupt

Load Balancing from SMP Virtual Machines to the

Hypervisor”, IEEE Transactions on Parallel and

Distributed Systems, Volume 27, Issue 11, March 2016,

Pages 3298 – 3310.

[6] Huangning Chen and Wenzhong Guo, “Real-Time Task

Scheduling Algorithm for Cloud Computing Based on

Particle Swarm Optimization”, Springer, Cloud

Computing and Big Data, January 2016, Pages 141-152.

[7] Nidhi Bansal, Amit Awasthi and Shruti Bansal, “Task

Scheduling Algorithms with Multiple Factor in Cloud

Computing Environment”, Springer, Information Systems

Design and Intelligent Applications, February 2016,

Pages 619-627.

[8] Chun-Wei Tsai, Wei-Cheng Huang, Meng-Hsiu Chiang,

Ming-Chao Chiang, and Chu-Sing Yang, “A Hyper-

Heuristic Scheduling Algorithm for Cloud”, IEEE

Transactions On Cloud Computing, Volume 2, Issue 2,

April-June 2014, Pages 236-250.

[9] Yang Wang and Wei Shi, “Budget-Driven Scheduling

Algorithms for Batches of MapReduce Jobs in

Heterogeneous Clouds”, IEEE Transactions On Cloud

Computing, Volume 2, Issue 3, September 2014, Pages

306-319.

[10] Marco Polverini, Antonio Cianfrani, Shaolei Ren, and

Athanasios V. Vasilakos, “Thermal-Aware Scheduling of

Batch Jobs in Geographically Distributed Data Centers”,

IEEE Transactions On Cloud Computing, Volume 2,

Issue 1, March 2014, Pages 71-84.

[11] Pengju Ren, Michel A. Kinsy and Nanning Zheng,

“Fault-Aware Load-Balancing Routing for 2D-Mesh and

Torus On-Chip Network Topologies”, IEEE Transactions

on Computers, Volume 65, Issue 3, June 2015, Pages 873

– 887.

[12] V. Jeyakrishnan, P. Sengottuvelan, “A Hybrid Strategy

for Resource Allocation and Load Balancing in

Virtualized Data Centers Using BSO Algorithms”,

Springer, Wireless Personal Communications, July 2016,

Pages 1-23.

[13] Zhi-Hui Zhan, Ge-Yi Zhang, Ying-Lin, Yue-Jiao Gong,

and Jun Zhang, “Load Balance Aware Genetic Algorithm

for Task Scheduling in Cloud Computing”, Springer,

Simulated Evolution and Learning, 2014, Pages 644-655.

[14] Ke Wang, Kan Qiao, Iman Sadooghi, Xiaobing Zhou,

Tonglin Li, Michael Lang, Ioan Raicu, “Load-balanced

and locality-aware scheduling for dataintensive workloads

at extreme scales”, Wiley & Sons, Journal Concurrency

and Computation: Practice & Experience archive, Volume

28, Issue 1, January 2016, Pages 70-94.

[15] Geethu Gopinath PP, Shriram K Vasudevan, “An in-

depth analysis and study of Load balancing techniques in

the cloud computing environment”, Elsevier, Procedia

Computer Science, Volume 50, 2015, Pages 427-432.

[16] J. Octavio Gutierrez-Garcia, Adrian Ramirez-Nafarrate,

“Agent-based load balancing in Cloud data centers”,

Springer, Cluster Computing, September 2015, Volume

18, Issue 3, Pages 1041–1062.

[17] Fahimeh Ramezani, Jie Lu, Farookh Khadeer Hussain,

“Task-Based System Load Balancing in Cloud Computing

Using Particle Swarm Optimization”, Springer,

International Journal of Parallel Programming, October

2014, Volume 42, Issue 5, Pages 739–754.

[18] Yingchi Mao, Xi Chen and Xiaofang Li, “Max–Min Task

Scheduling Algorithm for Load Balance in Cloud

Computing”, Springer, Intelligent Systems and

Computing, Volume 255, 2014, Pages 457-465.

[19] Haihua Chang and Xinhuai Tang, “A Load-Balance

Based Resource-Scheduling Algorithm under Cloud

Computing Environment”, Springer, New Horizons in

Web-Based Learning, 2011, Pages 85-90.

[20] Yiqiu Fang, Fei Wang, and Junwei Ge, “A Task

Scheduling Algorithm Based on Load Balancing in Cloud

Computing”, Springer, Verlag Berlin Heidelberg, 2010,

Pages 271-277.

[21] X. Liu, C. Wang, B.B. Zhou, J. Chen, T. Yang, and A.Y.

Zomaya, “Priority-based consolidation of parallel

DOI: 10.18535/ijecs/v6i2.31

C.Antony, IJECS Volume 6 Issue 2 Feb., 2017 Page No.20323-20332 Page 20332

workloads in the cloud”, IEEE Transactions on Parallel

and Distributed Systems, Vol. 24, September 2013.

[22] C. Papagianni, A. Leivadeas, S. Papavassiliou, V.

Maglaris, C.C Pastor, and A. Monje, “On the optimal

allocation of virtual resources in cloud computing

networks”, IEEE Transactions on Computers, Vol. 62,

June 2013.

[23] J. Buysse, K. Georgakilas, A. Tzanakaki, M.D. Leenheer,

B. Dhoedt, and C. Develder, “Energy-efficient resource-

provisioning algorithms for optical clouds”, Journal of

Optical Communications and Networking, Vol. 5, March

2013.

[24] Sheng Di, and Cho-Li Wang, “Dynamic optimization of

multiattribute resource allocation in self-organizing

clouds”, IEEE Transactions on Parallel and Distributed

Systems, Vol. 24, March 2013.

[25] L. F. Bittencourt, E.R.M. Madeira, and N.L.S. Fonseca,

“Scheduling in hybrid clouds” Cloud Computing:

Networking and Communications Challenges, IEEE

Communications Magazine, September 2012.

[26] [26] H.M. Fard, R. Prodan, and T. Fahringer, “A truthful

dynamic workflow scheduling mechanism for commercial

multicloud environments”, IEEE Transactions On Parallel

And Distributed Systems, Vol. 24, June 2013.

[27] Imad M. Abbadi and Anbang Ruan, “Towards trustworthy

resource scheduling in clouds”, IEEE Transactions on

Information Forensics and Security, Vol. 8, June 2013

[28] Ian M. McCullough, Cynthia S. Loftin, Steven A. Sader,”

Combining lake and watershed characteristics with

Landsat TM data for remote estimation of regional lake

clarity”, Remote Sensing of Environment, Elsevier, Mar

2012

Author Profile

Antony C received M.E degree in Computer

Science and Engineering from Anna University Chennai, India in

2007. Now he is pursuing his Ph.D degree in the Department of

Computer Science Bharathiar University. His research interests

include Cloud Computing, Computer Security.

Chandrasekar C received his Ph.D degree in

Computer Science from Periyar University Salem in 2005. He is

currently Professor in the Periyar University, India. His research

interests include Real-Time Computing, Cloud Computing, Advanced

Computer Architecture.

